
applied
sciences

Article

Performance Analysis of Maximal Risk Evaluation
Formulas for Spectrum-Based Fault Localization

Tingting Wu 1,* , Yunwei Dong 1, Man Fai Lau 2, Sebastian Ng 2, Tsong Yueh Chen 2

and Mingyue Jiang 3

1 School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China;
yunweidong@nwpu.edu.cn

2 Department of Computer Science and Software Engineering, Swinburne University of Technology,
Hawthorn, VIC 3122, Australia; elau@swin.edu.au (M.F.L.); sng@swin.edu.au (S.N.);
tychen@swin.edu.au (T.Y.C.)

3 School of Information Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; mjiang@zstu.edu.cn
* Correspondence: tingtingwu@mail.nwpu.edu.cn; Tel.: +86-186-2959-9137

Received: 31 October 2019; Accepted: 31 December 2019; Published: 5 January 2020
����������
�������

Abstract: The effectiveness analysis of risk evaluation formulas has become a significant research
area in spectrum-based fault localization (SBFL). The risk evaluation formula is designed and widely
used to evaluate the likelihood of a program spectrum to be faulty. There are numerous empirical
and theoretical studies to investigate and compare the performance between sixty risk evaluation
formulas. According to previous research, these sixty risk evaluation formulas together form a
partially ordered set. Among them, nine formulas are maximal. These nine formulas can further be
grouped into five maximal risk evaluation formula groups so that formulas in the same group have
the same performance. Moreover, previous research showed that we cannot theoretically compare
formulas across these five maximal formula groups. However, experimental data “suggests” that a
maximal formula in one group could outperform another one (from a different group) more frequently,
though not always. This inspired us to further investigate the performance between any two maximal
formulas in different maximal formula groups. Our approach involves two major steps. First,
we propose a new condition to compare between two different maximal formulas. Based on this new
condition, we present five different scenarios under which a formula performs better than another.
This is different from the condition suggested by the previous theoretical study. We performed an
empirical study to compare different maximal formulas using our condition. Our results showed that
among two maximal risk evaluation formulas, it is feasible to identify one that can outperform the
others more frequently.

Keywords: spectrum-based fault localization; maximal risk evaluation formulas; testing; debugging

1. Introduction

Spectrum-based fault localization (SBFL) [1,2] is an important technique aiming to locate the most
possible faulty statements during software testing and debugging processes, which are time consuming,
resource intensive, and expensive due to the ever increasing scale and complexity of software [3].
To determine the suspicious area in a faulty program, SBFL utilizes the concept of program spectrum.
Loosely speaking, a program spectrum is a “certain entity” of the program under debugging together
with the execution information, such as testing results and coverage information, with respect to a test
suite. The program entity can be of any granularity [1], ranging from a simple statement to a certain
basic block. The purpose of SBFL is to identify which program spectrum, actually the program entity
contained in the spectrum, is more likely to have faults. For SBFL to be possible, all information related

Appl. Sci. 2020, 10, 398; doi:10.3390/app10010398 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3588-7839
http://www.mdpi.com/2076-3417/10/1/398?type=check_update&version=1
http://dx.doi.org/10.3390/app10010398
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 398 2 of 17

to program spectra have to be collected during the testing of the program. Based on these collected
information, debugger uses a risk evaluation formula to calculate the risk values of all program spectra
and then ranks these risk values in descending order because the risk evaluation formula has been
designed in such a way that the higher the risk value of a program spectrum is, the more likely the
program spectrum contains faults. The program debugger then inspects the program spectrum ranking
list from top to bottom, and those program spectra with high risk values are regarded as the likely
faulty areas [4]. Since there are many different risk evaluation formulas proposed in the research
literature and different formulas may give rise to different risk values, which lead to different ranking
orders, and hence, different “potential” faulty areas, it is necessary to find the most effective formula
to “best” locate the faulty program entity.

There are both empirical and theoretical researches on studying the effectiveness of different
risk evaluation formulas. For example, empirical investigations have been used to compare the
performances of different risk evaluation formulas [2,4–10]. However, the empirical investigation can
never be sufficient and fair enough to compare formulas because of different experimental setups and
factors affecting the results.

Theoretical approaches have been proposed to analyze the effectiveness of risk evaluation
formulas [11–17]. Detailed definitions and discussions on their work are in Section 2.2. Theoretical analysis
proves that (a) there are five groups of maximal formulas [14,17]; (b) formulas within the same group
have the same performance [14]; and (c) no formula from one of these groups always comes out ahead
of a formula from another group [18]. However, it is possible that one formula from one group more
frequently (though not always) comes out ahead of a formula from another group. It is too difficult to
use a theoretical analysis to show which formula more frequently comes out ahead of another formula,
because there are many possible variations. Therefore, we adopted an empirical analysis to see which
formula more frequently comes out ahead of another formula.

This then led us to investigate the following research questions

1. For any two maximal formulas from different maximal formula groups, which one can perform
better than another one more frequently?

2. Is there a maximal formula group that can always perform better than other maximal formula
groups more frequently?

Please note that previous research has shown that there are five maximal formula groups and the
maximal formulas from the same maximal group have the same performance. Hence, we only need to
pick one maximal formula from each of these five groups and compare them in a pairwise manner.
Hence, we have 10 such comparisons. We performed an empirical study on 11 small to medium sized
C programs ranging from 135 to 9932 source lines of code with an average of 3137.8. We present our
findings in this work.

The primary contributions of this paper are summarized as follows:

(1) We performed an empirical study to compare between any two maximal risk evaluation formulas,
each from a different maximal formula group.

(2) We propose using a new condition to compare between two risk evaluation formulas.
This condition is different from other similar empirical and theoretical studies. We use the
expected location of the “faulty” statement to compare between the formulas, whereas previous
studies used the exact location for comparison.

(3) We present and discuss five different scenarios that could lead to the conclusion that one maximal
formula can perform better than another maximal formula more frequently using our condition.
However, when using the “exact location” condition as in the previous study, these scenarios
could not be easily discovered or discussed.

The remainder of this paper is organized as follows. Section 2 introduces the background of SBFL
and the maximal risk evaluation formula groups. Section 3 proposes a new condition to compare
between two risk evaluation formulas. It also discusses the five scenarios to cover all possible cases

Appl. Sci. 2020, 10, 398 3 of 17

that one formula outperforms another one. Section 4 discusses our empirical study, its results, and its
threats to validity. Section 5 describes the related work on the effectiveness of SBFL techniques. Finally,
Section 6 concludes the paper and discusses future work.

2. Background

2.1. Spectrum-Based Fault Localization (SBFL)

Spectrum-based fault localization (SBFL) uses two significant pieces of information to help localize
faults, if any, in a program during the software testing and debugging processes. The first piece of
information is the testing result of the program with respect to a test suite. It basically indicates
whether a program passes or fails on each individual test case. The second piece of information is the
program spectrum, which contains the information about a program entity (e.g., statement, branch
or basic block) and its coverage information, such as whether it has been executed or not; how many
test cases that execute or do not execute in the program entity such that the program passes; and how
many test cases that execute or do not execute in the program entity such that the program fails [3].
The program spectrum information, together with the test results, provide a behavioral signature for
program execution with respect to a test suite [1]. It also describes the characterized information of
the program entities obtained from program runtime profiling when the program executes on the test
suite. From software testing perspective, a program entity could be a statement, branch, path, function,
or basic block, among which statement is the most widely used because of its analysis simplicity [19].
The characterized information of a program entity could be the number of times that the program
entity has been executed, entity coverage information, and program state before and after the execution
etc. [11]. Testers and debuggers can make use of the test results and program spectra to identify the
program entities that are more likely to cause program failure [1,20]. An example is to combine the test
results and statement coverage information [21,22].

Given a program PG with n statements (s1, s2, . . . , sn) and a test suite TS with m test cases (t1, t2,
. . . , tm), Figure 1 depicts the relationships among all the essential information for SBFL [14]. The n×m
matrix MS records the coverage information for each statement in PG with respect to each test case in
TS. If statement si is executed by test case tj, the entry in the i-th row and j-th column of MS will be
marked as “1”. Otherwise, it will be marked as “0”. The 1×m matrix RE represents the testing result
of individual test case in terms of pass (p) or fail (f). The 1× 4 matrix A represents four important
quantities for each statement in the program. These four quantities are (1) the number of test cases that
execute the statement and fail the program, denoted as e f ; (2) the number of test cases that execute the
statement and pass the program, denoted as ep; (3) the number of test cases that do not execute the
statement and fail the program, denoted as n f ; and (4) the number of test cases that do not execute
the statement and pass the program, denoted as np. Obviously, the sum of these four quantities is
equal to the size of the test suite TS; that is e f + ep + n f + np = m [14]. The sum of e f and n f is equal
to the total number of failed test cases, denoted by F, and the sum of ep and np is equal to the total
number of passed test cases, denoted by P. That is, e f + n f = F, ep + np = P. Also, 0 6 e f , n f 6 F and
0 6 ep, np 6 P. Finally, the n× 4 matrix MA summarizes these quantities for all statements in program
PG, which will be used to calculate the risk values according to different risk evaluation formulas.

Appl. Sci. 2020, 10, 398 4 of 17

TS :
(

t1 t2 · · · tm

)
A :
(

e f ep n f np

)

PG :


s1

s2
...

sn

 MS :


1/0 1/0 · · · 1/0

1/0 1/0 · · · 1/0
...

...
. . .

...

1/0 1/0 · · · 1/0

 MA :


e1

f e1
p n1

f n1
p

e2
f e2

p n2
f n2

p
...

...
...

...

en
f en

p nn
f nn

p


RE :

(
p/ f p/ f · · · p/ f

)
Figure 1. Essential information for SBFL.

2.2. Risk Evaluation Formulas

After constructing the program spectrum information, a risk evaluation formula is designed
to compute a risk value which is used to indicate the likelihood of a program entity being faulty.
The program entity that has a greater risk value will have a higher chance of being faulty. Many
classical formulas have been proposed and widely used, such as Tarantula [23], Jaccard [24], Ochiai [7],
Wong formulas [9,25,26], Naish formulas [13], and genetic programming (GP) formulas [14,27].
The program entity used in these formulas are at the statement level. The program statement with
greater risk value is more likely to contain fault. Debuggers then rank the program statements in
descending order of their risk values. As a result, debuggers should inspect those program statements
appearing on the top of the ranking list. Therefore, it is fundamental to choose the most effective
formula to make faulty statements rank as high as possible.

In order to analyze the effectiveness of various formulas, both empirical and theoretical studies
have been conducted by many researchers. However, the empirical analysis strongly depends on the
experimental setup, in which subject programs, fault types, and the size of test suite are the most
effective threats to experimental results. Therefore, to solve the inaccuracy problem in empirical study,
some theoretical analysis are proposed to investigate the performance of risk evaluation formulas.

In [11,14,15], the investigation is on comparing two risk evaluation formulas and identifying
maximal risk evaluation formula in a group of risk evaluation formulas. Please be reminded that the
risk evaluation formula is used by the debugger to generate a ranking list of program spectra. If a
formula can “put” the faulty spectrum in a higher position in the ranking list than that of another
formula, the former formula is said to perform better than the latter formula. In the first aspect,
the study of Xie et al. [14] divides program statements in the program under test into three mutually
exclusive subsets: the subset that contains all statements with risk values greater than (denoted as SR

B),
equal to (denoted as SR

F), and smaller than (denoted as SR
A) that of the faulty statement in the program,

assuming the program only contains one faulty statement where R is the risk evaluation formula.
Please note that the faulty statement must be in SR

F because it contains all statements that have the
same risk value as the faulty statement. Loosely speaking, these three subsets divide the ranking list
into three parts: the top part being SR

B because its statements appear “before” the faulty statement,
since its risk values are greater than that of the faulty statement; the middle part being SR

F ; and the
bottom part being SR

A because it appears “after” the faulty statement. Given any two formulas R1 and
R2, a program with a faulty statement and a test suite, R1 is said to be equivalent to R2 (denoted by
R1 ↔ R2) when SR1

B = SR2
B , SR1

F = SR2
F and SR1

A = SR2
A . While in [12,13], two equivalent risk evaluation

formulas require strictly identical ranking lists. Furthermore, R1 is said to be better than R2 (denoted
by R1 → R2) if SR1

B ⊆ SR2
B and SR2

A ⊆ SR1
A . This is because R1 will place the faulty statement earlier

in the ranking list than R2. As a result, debugger using the ranking list from R1 will get to reach the
faulty statement earlier than using R2. As can be seen from the definition of “better”, the set of all risk
evaluation formulas equipped with the “better” relation becomes a partially ordered set (poset). As a
result, the maximal elements in this poset will then be referred to as “maximal risk evaluation formulas”

Appl. Sci. 2020, 10, 398 5 of 17

or simply “maximal formulas”, if it is clear from the context. Following the definition in [14], a formula
R1 is said to be a maximal formula in a set S of formulas, if for any formula R2 ∈ S, R2 is better than
R1 implies R2 is equivalent to R1 because no other formulas can outperform a maximal formula.

The theoretical analysis in [11,14,15] shows that among 30 risk evaluation formulas, there are five
maximal formulas with the assumption that only one fault is in the program. Moreover, these five
formulas can be grouped into two groups in which all formulas in the same group have the same
performance. These two maximal groups are ER1 and ER5. Formulas in ER1 are Naish1 (abbreviated
as N1) and Naish2, both are from [13], whereas formulas in ER5 are Wong1 (abbreviated as W1)
from [9], Russel & Rao from [28], and Binary from [13]. In the follow-up work [16,17], the researchers
proposed to use genetic programming (GP) techniques to come up with 30 GP-evolved risk evaluation
formulas. Among these 30 GP-evolved formulas, they further identified four more maximal formulas;
namely, GP02, GP03, GP13, and GP19 [27]. Moreover, GP13 was proven to be equivalent to those
maximal formulas in the ER1 group [16]. As a result, the ER1 group is now denoted as ER

′
1, which

also includes GP13. The other three GP-evolved formulas form three new groups of maximal formulas.
In summary, among 60 risk evaluation formulas, there are nine maximal formulas which can be
grouped into five maximal formula groups. All five maximal formula groups are listed in Table 1.

Since no other formulas can outperform the formulas in these five maximal risk evaluation
formula groups, it is intuitively appealing to do more research work on comparing the performance
across these five maximal formula groups. Furthermore, Yoo et al. [18] showed that there never exists
a greatest formula outperforming all other formulas.

Table 1. Maximal risk evaluation formula groups.

Group Risk Evaluation Formula Expression

ER
′
1

Naish1 (abbr. N1)

{
−1 if e f < F
np if e f = F

Naish2 e f −
ep

ep+np+1

GP13 e f (1 +
1

2ep+e f
)

ER5

Wong1 (abbr. W1) e f

Russel & Rao e f
e f +n f +ep+np

Binary

0 if e f < F

1 if e f = F

GP02 2(e f +
√np) +

√ep

GP03
√
|e2

f −
√ep|

GP19 e f

√
|ep − e f + n f − np|

3. A Condition with Which to Compare Risk Evaluation Formulas

3.1. Comparing Two Risk Evaluation Formulas

In this section, we propose a new approach to compare between two risk evaluation formulas.
Let us discuss the approach used to judge whether a risk evaluation formula is better than another in
previous work.

As mentioned previously, given a risk evaluation formula R, the ranking list can be divided
into three mutually exclusive subsets, SR

B , SR
F , and SR

A, in which statements are ranked with their
suspiciousness. Empirical or theoretical comparison of two risk evaluation formulas R1 and R2 is

Appl. Sci. 2020, 10, 398 6 of 17

then judged by the possible situations arising from six subsets: SR1
B , SR1

F , SR1
A , SR2

B , SR2
F , and SR2

A .
For empirical study, researchers use the exact locations of the faulty statement appearing in the ranking
lists of R1 and R2 to compare. So, the faulty statement will be in SR1

F and in SR2
F . For R1 to be better

than R2, the exact location of the faulty statement in R1’s ranking list should be higher than that in R2.
On the other hand, for theoretical comparison of two risk evaluation formulas R1 and R2, R1 is

said to perform better than R2 if “SR1
B ⊆ SR2

B and SR1
A ⊇ SR2

A ” [14]. Figure 2 depicts this situation. In fact,
when SR1

B = SR2
B and SR1

A = SR2
A , R1 and R2 have the same performance. In addition, readers may

argue the fact that this may not be very accurate. For example, after the ranking, if the “actual faulty
statement” is located at the end of SR1

F for R1 and is located in the front of SR2
F for R2, R2 can perform

better than R1. The concept of consistent tie-breaking scheme is assumed in the theoretical study.
This assumption of using consistent tie-breaking to compare the performance between two formulas
seems reasonable without further information.

SB SF SA

SB SF SA

R1

R2

Figure 2. Criteria of R1 performs better than R2 in theoretical study (e.g., [14]).

Based on this idea, we propose a new condition for comparing two risk evaluation formulas
R1 and R2. We first define our notations. For a risk evaluation formula R, we use nR

B , nR
F and nR

A to
denote the number of statements in SR

B , SR
F , and SR

A. Let n denote the total number of statements in a
program. Please observe that n = nR

B + nR
F + nR

A. We now define the expected faulty location, EFL, of a
risk evaluation formula R by

EFL(R) = nR
B +

1
2

nR
F (1)

where nR
B and nR

F are the numbers of statements in SR
B and SR

F respectively. This is, in fact, the expected
location of the faulty statement in the ranking list generated by the risk evaluation formula R. Please
observe that EFL(R) = nR

B + 1
2 nR

F = nR
B + 1

2 (n− nR
B − nR

A) =
1
2 (n + nR

B − nR
A). By assuming that the

faulty statement is at the middle of SR
F , we can then calculate the ranking of the faulty statement.

We now formally define our condition for comparing two risk evaluation formulas. For two risk
evaluation formulas R1 and R2, we said that R1 performs better than R2 if the expected faulty location
of R1 is in front of that of R2; that is, EFL(R1) < EFL(R2). We have the following proposition.

Proposition 1. For any two risk evaluation formulas R1 and R2, if nR1
B − nR1

A < nR2
B − nR2

A , then R1 performs
better than R2.

Proof. For any two risk evaluation formulas R1 and R2, the expected faulty locations of R1 and R2

are EFL(R1) =
1
2 (n + nR1

B − nR1
A) and EFL(R2) =

1
2 (n + nR2

B − nR2
A) respectively. Since nR1

B − nR1
A <

nR2
B − nR2

A , the expected faulty location for R1 is in front of that for R2; that is, EFL(R1) < EFL(R2).
Hence, R1 performs better than R2.

3.2. Five Scenarios for One Formula Better Than Another

In a previous study [14], formula R1 is said to be better than R2 with the condition “SR1
B ⊆ SR2

B
and SR1

A ⊇ SR2
A ”, which means that the number of statements in SR1

B is smaller than that in SR2
B , and the

number of statements in SR1
A is larger than that in SR2

A . However, our experimental results show that
this is not the only scenario for one formula better than another. In the following, we present five
scenarios when a risk evaluation formula R1 performs better than R2. We denote them as B(<)A(>),
B(<)A(=), B(<)A(<), B(=)A(>), and B(>)A(>), where (1) B indicates the comparison pair between the

number of statements in the subsets SR1
B and SR2

B ; (2) A represents the comparison pair between the

Appl. Sci. 2020, 10, 398 7 of 17

number of statements in the subsets SR1
A and SR2

A ; and (3) <, =, and > respectively mean the former
number is smaller than, equal to, and larger than the latter one. They are

1. B(<)A(>): When nR1
B < nR2

B and nR1
A > nR2

A , we have nR1
B − nR1

A < nR2
B − nR1

A < nR2
B − nR2

A .
2. B(<)A(=): When nR1

B < nR2
B and nR1

A = nR2
A , we have nR1

B − nR1
A < nR2

B − nR1
A = nR2

B − nR2
A .

3. B(<)A(<): When nR1
B < nR2

B , nR1
A < nR2

A and nR1
B − nR1

A < nR2
B − nR2

A , it is obvious that nR1
B − nR1

A <

nR2
B − nR2

A .
4. B(=)A(>): When nR1

B = nR2
B and nR1

A > nR2
A , we have nR1

B − nR1
A = nR2

B − nR1
A < nR2

B − nR2
A .

5. B(>)A(>): When nR1
B > nR2

B , nR1
A > nR2

A and nR1
B − nR1

A < nR2
B − nR2

A , it is obvious that nR1
B − nR1

A <

nR2
B − nR2

A .

Figure 3 depicts these five different scenarios, which cover all possible cases when one risk
evaluation formula performs better than another one.

SB SF SA

SB SF SA

R1

R2

(a) Scenario B(<)A(>)

SB SF SA

SB SF SA

R1

R2

(b) Scenario B(<)A(=)

SB SF SA

SB SF SA

R1

R2

(c) Scenario B(<)A(<)

SB SASF

SB SF SA

R1

R2

(d) Scenario B(=)A(>)

SB SF SA

SB SF SA

R1

R2

(e) Scenario B(>)A(>)

Figure 3. Five scenarios for R1 performs better than R2.

4. Empirical Study

4.1. Subject Programs and Test Suite

Eleven C programs whose number of executable statements (eLOC) range from 135 to 9932 with
an average of 3137.8 eLOC were selected for our study. The eLOCs of these programs were counted by
SLOCCount 2.26 [29]. These programs were selected because they have been used in fault localization
experiments performed by other researchers [25,30–32]. These programs were downloaded from the
Software-artifact Infrastructure Repository (SIR) [33]. These 11 programs are (1) three UNIX utilities,
namely, flex, grep, and sed; (2) one real life application space; and (3) seven small programs usually
referred to as the Siemens suite. The following is a description of these 11 programs.

Appl. Sci. 2020, 10, 398 8 of 17

• Flex is an UNIX utility to generate lexical analyzer by scanning a lex file with definitions,
rules, and user code contained. The generated analyzer then transforms the input stream into a
sequence of tokens.

• Grep is a pattern matching engine. Given one or more patterns and some input files for searching,
it outputs the lines that match one or more of the patterns.

• Sed is a stream editor to perform operations on the input stream, such as replacement, deletion,
and insertion on a specific line or the global text.

• Space is an interpreter for an array definition language (ADL) to check the ADL grammar and
specific consistency rules. If the ADL file is correct, space outputs an array data file; otherwise,
the program outputs error messages.

• Print_tokens and print_tokens2 are two lexical parsers used to group input strings into tokens
and identify the token categories. The main difference between these two programs is that
print_tokens uses a hard-coded DFA, while print_tokens2 does not.

• Replace is a program of regular expression matching and substitution. It replaces any substring
matched by the input regular expression with a replacement string, and outputs a new file.

• Schedule and schedule2 are used to schedule the priority in three job lists. Schedule is
non-preemptive and schedule2 is preemptive.

• Tcas is used to avoid air accident by detecting on-board conflict through radar system and
providing a resolution advice, such as climb, descend, or remain on the current trajectory.

• Tot_info takes a set of tables as input and outputs the Kullbacks information measure, degrees
of freedom, and possibility density of a χ2 distribution for each table and the summary of the
entire set.

Since previous fault localization investigations on the effectiveness of risk evaluation formulas
have the assumption that the faulty program contains one fault, e.g., [14], we used the same assumption
in our empirical study. Related to the faulty versions of these 11 programs on SIR, some of them
have multiple faults, and hence, were excluded from our experiments. For the three UNIX utilities,
it is unfortunate that all their faulty versions contain multiple faults. Hence, we manually generated
five faulty versions for each of these UNIX utilities and each faulty version contained only one single
fault. The space program has 38 faulty versions with real faults. Only seven out of these 38 faulty
versions contain single faults, and hence were selected for our experiments. The Siemens suite includes
seven small C programs with various seeded faults in their faulty versions. Some of these faulty
versions were excluded from our experiments as they contain more than one fault. Most of the faulty
statements are conditional statements and assignment statements. For example, the faulty statement
of print_tokens2 v6 is “if (isdigit(*(str+i+1)))”, which should be “if (isdigit(*(str+i)))”.
A faulty version that is selected or manually generated for our empirical study is referred to as a
“selected faulty version” whenever it is clear from the context.

Table 2 summarizes the information of these programs for our empirical study. As discussed
earlier, the eLOC column reports the number of executable statements collected by SLOCCount
2.26 [29]. The mutants generated from the UNIX utilities, the selected faulty versions of space and the
Siemens suite, the number of manually mutated or selected faulty versions, and the total number of
faulty versions provided in SIR are listed in the third column. The size of each test suite is listed in the
second to last column—obtained from the individual “universe” test plan. In summary, our empirical
study had 15 mutants for the three UNIX utilities, seven faulty versions for the space program, and 26
faulty versions for the Siemens suite. The size of the corresponding test suite ranged from 441 to 13,550
test cases, with an average of 3782.9 test cases per selected faulty version.

Appl. Sci. 2020, 10, 398 9 of 17

Table 2. Subject programs and test suite.

Program eLOC Faulty Versions Selected for Empirical Study (Number/Total) Test Suite Size Description

flex 1.1 9932 m1, m2, m3, m4, m5 (5 / 5) 670 lexical scanner
grep 1.2 7306 m1, m2, m3, m4, m5 (5 / 5) 806 pattern match
sed 2.0 9205 m1, m2, m3, m4, m5 (5 / 7) 441 stream editor

Space 2.0 5902 v14, v15, v18, v20, v23, v26, v33 (7 / 38) 13,550 ADL interpreter

print_tokens 2.0 342 v5, v7 (2 / 7) 4130 lexical analyzer
print_tokens2 2.0 355 v4, v5, v6, v7, v8, v9, v10 (7 / 10) 4115 lexical analyzer
replace 2.1 512 v1, v15, v30 (3 / 32) 5542 pattern match
schedule 2.0 292 v3, v4 (2 / 9) 2650 priority scheduler
schedule2 2.0 262 v6, v7, v10 (3 / 10) 2710 priority scheduler
tcas 2.0 135 v1 (1 / 41) 1608 altitude separation
tot_info 2.0 273 v5, v7, v8, v15, v16, v17, v20, v23 (8 / 23) 1052 information measure

4.2. The Empirical Process

We performed an empirical study to compare the effectiveness of five maximal formula groups,
ER

′
1, ER5, GP02, GP03 and GP19. It has been proven by Xie et al. [14] that all formulas in the same

maximal formula group have the same performance. Therefore, it is sufficient to select only one
representative formula from each group for study. In other words, if another formula is chosen,
we would still observe the same results. We chose Naish1 (abbreviated as N1) from ER

′
1 and Wong1

(abbreviated as W1) from ER5 because they are the simplest formulas in their own groups. We chose
GP02, GP03, and GP19 from the last three groups because there is only one maximal formula contained
in each group.

The empirical study aimed to compare the performance of these formulas in a pairwise manner.
As a result, we have 10 comparison pairs. For ease of reference, we use CP1–CP10 to denote these 10
pairs, in which CP1 denotes the comparison pair between N1 and W1, CP2 for N1 and GP02, CP3 for
N1 and GP03, CP4 for N1 and GP19, CP5 for W1 and GP02, CP6 for W1 and GP03, CP7 for W1 and
GP19, CP8 for GP02 and GP03, CP9 for GP02 and GP19, and finally, CP10 for GP03 and GP19.

For the selected 11 C programs, there were, altogether, 48 faulty versions selected for the empirical
study. For each selected faulty version, it was executed with respect to its corresponding test suite.
All of the executions of faulty programs with respect to their test suites were performed using Fedora
20 64-bit virtual machine with one processor and 4GB of memory. After the execution, all information
related to the program spectrum was recorded; namely, ei

f , ei
p, ni

f , and ni
p, for every statement si in the

selected faulty version. Once all information had been collected, we then applied the five maximal risk
evaluation formulas, each from its own formula group, to calculate the risk values for each statement
and get the corresponding ranking lists. As a reminder, statements with the same risk value were
then ordered according to their corresponding statement IDs in the faulty program. For each maximal
formula R in {N1, W1, GP02, GP03, and GP19}, we then divided its ranking list into three mutually
exclusive subsets; namely, SR

B , SR
F , and SR

A. We then calculated the expected faulty location, EFL, of the
risk evaluation formula R using the formula EFL(R) = nR

B + 1
2 nR

F .
Once we calculated all the expected faulty locations of these five formulas, we performed our

analysis on the pairwise comparison between these formulas. For each comparison pair of formulas
R1 and R2, we conclude that R1 performs better than R2 on that instance of the selected faulty version
when EFL(R1) < EFL(R2). When EFL(R1) = EFL(R2), the two formulas have the same performance.
When EFL(R2) < EFL(R1), we conclude that R2 performs better than R1.

4.3. Experimental Results and Analysis

Table 3 lists all the results of these 10 comparison pairs. For example, “N1” in the cell of row
“tcas v1” and column “CP1” indicates that “N1 performs better than W1”. Some cells in Table 3 have
“same” meaning that the two risk formulas in the comparison pair have the same performance.

Since the performance of maximal formulas in each comparison pair varies with different
programs, Table 4 summarizes the results as the percentage of “R1 which performs better than R2”,
“R1 which performs the same as R2”, and “R2 which performs better than R1” for each comparison

Appl. Sci. 2020, 10, 398 10 of 17

pair and each individual subject program. For example, in the row of “CP1” and the column of
flex, out of the five mutant programs, there are four mutants for which N1 performs better than W1
and there is only one mutant for which W1 performs better than N1. Hence, we can conclude that,
among these five mutants of flex, N1 performs better than W1 more often. For ease of reference,
we use the term more-frequently-better to reflect this situation. In other words, we conclude that
N1 performs more-frequently-better than W1. Formally, for two risk evaluation formulas R1 and
R2, we say that R1 performs more-frequently-better than R2, denoted as R1 99K R2, if, among all
selected faulty versions, the number of times that “R1 performs better than R2” is higher than that
of “R2 performs better than R1”.

Table 3. Performances of various comparisons of the five maximal formulas.

Subject Program CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9 CP10
N1,W1 N1,GP02 N1,GP03 N1,GP19 W1,GP02 W1,GP03 W1,GP19 GP02,GP03 GP02,GP19 GP03,GP19

flex m1 N1 N1 N1 N1 W1 W1 W1 GP02 GP02 same
flex m2 W1 N1 N1 GP19 W1 W1 GP19 GP03 GP19 GP19
flex m3 N1 GP02 N1 N1 GP02 W1 same GP02 GP02 GP19
flex m4 N1 same N1 N1 GP02 W1 W1 GP02 GP02 GP19
flex m5 N1 same same same GP02 GP03 GP19 same same same

grep m1 N1 N1 N1 N1 GP02 GP03 W1 GP03 GP02 GP03
grep m2 W1 N1 same GP19 W1 W1 GP19 GP03 GP19 GP19
grep m3 N1 N1 same N1 W1 GP03 W1 GP03 GP19 GP03
grep m4 W1 GP02 GP03 GP19 same same same same same same
grep m5 W1 GP02 GP03 GP19 W1 GP03 GP19 GP03 GP19 GP03

sed m1 W1 GP02 GP03 GP19 W1 W1 GP19 GP03 GP19 GP19
sed m2 N1 same same N1 GP02 GP03 W1 same GP02 GP03
sed m3 N1 N1 same N1 GP02 GP03 W1 GP03 GP02 GP03
sed m4 W1 N1 same GP19 W1 W1 GP19 GP03 GP19 GP19
sed m5 W1 N1 same GP19 W1 W1 GP19 GP03 GP19 GP19

space v14 N1 N1 N1 N1 W1 same W1 GP03 GP02 GP03
space v15 N1 same N1 N1 GP02 same W1 GP02 GP02 GP03
space v18 N1 N1 same N1 GP02 GP03 W1 GP03 GP02 GP03
space v20 N1 N1 GP03 N1 GP02 GP03 W1 GP03 GP02 GP03
space v23 N1 N1 N1 N1 GP02 W1 W1 GP02 GP02 GP03
space v26 W1 GP02 GP03 GP19 GP02 same same GP02 GP02 same
space v33 N1 N1 same N1 GP02 GP03 W1 GP03 GP02 GP03

print_tokens v5 N1 same same N1 GP02 GP03 W1 same GP02 GP03
print_tokens v7 N1 N1 same N1 GP02 GP03 W1 GP03 GP02 GP03

print_tokens2 v4 N1 N1 same N1 GP02 GP03 W1 GP03 GP02 GP03
print_tokens2 v5 N1 N1 same same GP02 GP03 GP19 GP03 GP19 same
print_tokens2 v6 N1 N1 same same GP02 GP03 GP19 GP03 GP19 same
print_tokens2 v7 N1 GP02 same N1 GP02 GP03 W1 GP02 GP02 GP03
print_tokens2 v8 N1 N1 same N1 GP02 GP03 W1 GP03 GP02 GP03
print_tokens2 v9 N1 same same N1 GP02 GP03 W1 same GP02 GP03
print_tokens2 v10 N1 GP02 same N1 GP02 GP03 W1 GP02 GP02 GP03

replace v1 N1 same same N1 GP02 GP03 W1 same GP02 GP03
replace v15 W1 N1 same GP19 W1 W1 GP19 GP03 GP19 GP19
replace v30 N1 GP02 same N1 GP02 GP03 W1 GP02 GP02 GP03

schedule v3 N1 same same N1 GP02 GP03 W1 same GP02 GP03
schedule v4 N1 same same N1 GP02 GP03 W1 same GP02 GP03

schedule2 v6 N1 N1 N1 N1 W1 W1 W1 GP02 GP19 GP19
schedule2 v7 W1 N1 same GP19 W1 W1 GP19 GP03 GP19 GP19
schedule2 v10 W1 N1 same GP19 W1 W1 GP19 GP03 GP19 GP19

tcas v1 N1 GP02 same N1 GP02 GP03 W1 GP02 GP02 GP03

tot_info v5 N1 N1 same N1 W1 GP03 W1 GP03 GP02 GP03
tot_info v7 N1 same same N1 GP02 GP03 W1 same GP02 GP03
tot_info v8 N1 N1 same same GP02 GP03 GP19 GP03 GP19 same
tot_info v15 N1 N1 same same GP02 GP03 GP19 GP03 GP19 same
tot_info v16 W1 same same GP19 W1 W1 GP19 same GP19 GP19
tot_info v17 N1 same same N1 GP02 GP03 W1 same GP02 GP03
tot_info v20 same N1 same same W1 same same GP03 GP19 same
tot_info v23 N1 same same N1 GP02 GP03 W1 same GP02 GP03

Appl. Sci. 2020, 10, 398 11 of 17

Table 4. Comparison results as percentages of one formula being better than another (%).

Comparison Pair Flex Grep Sed Space print_tokens print_tokens2 Replace Schedule schedule2 tcas tot_info Average

CP1 N1 better 80 40 40 85.7 100 100 66.7 100 33.3 100 75 74.6
same 0 0 0 0 0 0 0 0 0 0 12.5 1.1
W1 better 20 60 60 14.3 0 0 33.3 0 66.7 0 12.5 24.3

CP2 N1 better 40 60 60 71.4 50 57.1 33.3 0 100 0 50 47.4
same 40 0 20 14.3 50 14.3 33.3 100 0 0 50 29.3
GP02 better 20 40 20 14.3 0 28.6 33.3 0 0 100 0 23.3

CP3 N1 better 80 20 0 42.9 0 0 0 0 33.3 0 0 16.0
same 20 40 80 28.6 100 100 100 100 66.7 100 100 75.9
GP03 better 0 40 20 28.6 0 0 0 0 0 0 0 8.1

CP4 N1 better 60 40 40 85.7 100 71.4 66.7 100 33.3 100 50 67.9
same 20 0 0 0 0 28.6 0 0 0 0 37.5 7.8
GP19 better 20 60 60 14.3 0 0 33.3 0 66.7 0 12.5 24.3

CP5 W1 better 40 60 60 14.3 0 0 33.3 0 100 0 37.5 31.4
same 0 20 0 0 0 0 0 0 0 0 0 1.8
GP02 better 60 20 40 85.7 100 100 66.7 100 0 100 62.5 66.8

CP6 W1 better 80 20 60 14.3 0 0 33.3 0 100 0 12.5 29.1
same 0 20 0 42.9 0 0 0 0 0 0 12.5 6.9
GP03 better 20 60 40 42.9 100 100 66.7 100 0 100 75 64.0

CP7 W1 better 40 40 40 85.7 100 71.4 66.7 100 33.3 100 50 66.1
same 20 20 0 14.3 0 0 0 0 0 0 12.5 6.1
GP19 better 40 40 60 0 0 28.6 33.3 0 66.7 0 37.5 27.8

CP8 GP02 better 60 0 0 42.9 0 28.6 33.3 0 33.3 100 0 27.1
same 20 20 20 0 50 14.3 33.3 100 0 0 50 28.0
GP03 better 20 80 80 57.1 50 57.1 33.3 0 66.7 0 50 44.9

CP9 GP02 better 60 20 40 100 100 71.4 66.7 100 0 100 50 64.4
same 20 20 0 0 0 0 0 0 0 0 0 3.6
GP19 better 20 60 60 0 0 28.6 33.3 0 100 0 50 32.0

CP10 GP03 better 0 60 40 85.7 100 71.4 66.7 100 0 100 50 63.9
same 40 20 0 14.3 0 28.6 0 0 0 0 37.5 10.2
GP19 better 60 20 60 0 0 0 33.3 0 100 0 12.5 26.0

From Table 4, we have the following observations.

(1) N1 has a higher chance to perform better than W1, GP02, GP03, and GP19.

a. For CP1, we observe that N1 has a higher chance to perform better than W1 for all programs
except grep, sed, and schedule2. The percentage values of N1 99K W1 range from 33.3% to
100% with an average of 74.6%, whereas those of W1 99K N1 range from 0% to 66.7% with
an average of 24.3%. Hence, we can conclude that N1 performs more-frequently-better than
W1.

b. Similarly, for CP2, CP3 and CP4, we can also conclude that N1 has a higher chance to perform
better than GP02, GP03, and GP19, respectively. However, we have to point out an interesting
observation of the N1 and GP03 pair. For N1 and GP03, the percentages of N1 99K GP03
range from 0% to 80% with an average of 16.0%, whereas those of GP03 99K N1 range from
0% to 40% with an average of 8.1%. In fact, N1 and GP03 have the same performance with
an average of 75.9%.

(2) GP03 has a higher chance to perform better than W1, GP02 and GP19.

a. For CP8, GP03 has a higher chance to perform better than GP02 for all programs except
flex, replace, schedule, and tcas. In fact, for replace and schedule, the chances for
GP03 99K GP02 and that of GP02 99K GP03 are the same; both are 0% for schedule and
33.3% for replace. The percentage values of GP03 99K GP02 range from 0% to 80% with an
average of 44.9%, whereas those of GP02 99K GP03 range from 0% to 100% with an average
of 27.1%. Hence, we can conclude that GP03 performs more-frequently-better than GP02.

b. Similarly, for CP6 and CP10, we can also conclude that GP03 performs more-frequently-better
than W1 and GP19 since the average percentage values of GP03 99K W1 and GP03 99K GP19
are 64.0% and 63.9% respectively.

(3) GP02 has a higher chance to perform better than W1 and GP19.

Appl. Sci. 2020, 10, 398 12 of 17

a. For CP5, we observe that GP02 performs more-frequently-better than W1 for all programs
except grep, sed and schedule2. The percentage values of GP02 99K W1 range from 0% to
100% with an average of 66.8% whereas those of W1 99K GP02 range from 0% to 100% with
an average of 31.4%. Hence, we can conclude that GP02 performs more-frequently-better
than W1.

b. Similarly, for CP9, we can also conclude that GP02 performs more-frequently-better than
GP19.

(4) W1 has a higher chance to perform better than GP19.

a. For CP7, W1 performs more-frequently-better than GP19 for all programs except flex, grep,
sed and schedule2. In fact, for flex and grep, the chances for W1 99K GP19 and that of
GP19 99K W1 are the same; both are 40% for flex and 40% for grep. The percentage values
of W1 99K GP19 range from 33.3% to 100% with an average of 66.1% whereas those of
GP19 99K W1 range from 0% to 66.7% with an average of 27.8%. Hence, we can conclude
that W1 performs more-frequently-better than GP19.

In summary, it is very likely to observe that N1 99K GP03 99K GP02 99K W1 99K GP19.
An interested reader may argue that the result of “N1 99K GP03 99K GP02 99K W1 99K GP19”

is based on the percentage of the selected faulty versions per individual program, and we compare
them by taking the average of these percentages. This may be unfair because, for tcas, there is only
one selected faulty version. Only tcas v1 was selected as the faulty version since the scale of tcas
subject program is too small, and most of the faulty versions are of the same type. Hence, a 100%
of N1 99K W1 in tcas may actually add some advantages to N1 compared with other individual
programs. So, one may then ask what the result would be if we used the total number of selected
faulty versions to compare between these risk evaluation formulas. The answer to this question is,
“We would have the same result.” We are going to discuss this in the rest of this paragraph. Table 5
shows, for each comparison pair R1 and R2, the total number of selected faulty versions that fall into
the results of “R1 better”, “R2 better”, and “R1 same as R2”. For example, in the row of CP3 (the pair
of N1 and GP03), there are nine selected faulty versions that fall into “N1 better”, five in “GP03 better”,
and 34 in “N1 same as GP03”. Hence, N1 performs more-frequently-better than GP03. From Table 5,
we have the following observations:

(1) For CP1–CP4, N1 has a higher chance to perform better than W1, GP02, GP03, and GP19.
(2) For CP8, CP6, and CP10, GP03 has a higher chance to perform better than GP02, W1, and GP19.
(3) For CP5 and CP9, GP02 has a higher chance to perform better than W1 and GP19.
(4) For CP7, W1 has a higher chance to perform better than GP19.

As a result, we have the same observation. That is, N1 99K GP03 99K GP02 99K W1 99K GP19.
Since N1 and W1 are representative formulas from their original maximal formula groups ER

′
1

and ER5 respectively, we can conclude further that any maximal formula in the ER
′
1 group performs

more-frequently-better than GP03, which in turns performs more-frequently-better than GP02, which in
turns performs more-frequently-better than any maximal formula in the ER5 group, which in turns
performs more-frequently-better than GP19. That is, we have ER

′
1 99K GP03 99K GP02 99K ER5 99K

GP19. Here, we extend the meaning of “99K” to compare between two maximal formula groups.
In other words, if GpA and GpB are two maximal risk evaluation formula groups, GpA 99K GpB
means Ra 99K Rb where Ra is a risk evaluation formula in GpA and Rb is in GpB. Please be remindeded
that all risk evaluation formulas in the same maximal formula group have the same performance.

Appl. Sci. 2020, 10, 398 13 of 17

Table 5. Comparison results as number of selected faulty versions that one formula is better than another.

Comparison Pair (R1 vs. R2) R1 Better R2 Better R1 Same as R2

CP1 (N1 vs. W1) 35 12 1
CP2 (N1 vs. GP02) 26 9 13
CP3 (N1 vs. GP03) 9 5 34
CP4 (N1 vs. GP19) 30 12 6
CP5 (W1 vs. GP02) 16 31 1
CP6 (W1 vs. GP03) 14 29 5
CP7 (W1 vs. GP19) 29 15 4
CP8 (GP02 vs. GP03) 11 25 12
CP9 (GP02 vs. GP19) 29 17 2
CP10 (GP03 vs. GP19) 27 12 9

As discussed in Section 3.2, when comparing between two risk evaluation formulas R1 and
R2, there are five scenarios to characterize all possible cases of R1 performs better than R2. Table 6
summarises the scenarios covered by each subject program. For example, for the case of “flex”,
among totally 50 comparison results (10 comparison pairs × 5 mutants of flex), there are 22
comparison results of R1 99K R2 obtained from Scenario B(<)A(>), six from Scenario B(<)A(=),
five from Scenario B(<)A(<), six from Scenario B(=)A(>), two from Scenario B(>)A(>), and nine
comparison results indicating R1 = R2. As shown in Table 6, 51.7% cases of R1 99K R2 fall in Scenario
B(<)A(>), 3.8% in Scenario B(<)A(=), 11.5% in Scenario B(<)A(<), 13.9% in Scenario B(=)A(>), and
19.1% in Scenario B(>)A(>). According to the observation, Scenario B(<)A(>) covers the majority of
cases that R1 99K R2.

Table 6. Scenarios covered by individual subject program.

Scenarios Flex Grep Sed Space print_tokens print_tokens2 Replace Schedule schedule2 tcas tot_info Total

B(<)A(>) 22 18 23 27 9 28 14 8 20 5 29 203
B(<)A(=) 6 2 2 3 0 2 0 0 0 0 0 15
B(<)A(<) 5 5 6 10 1 2 4 0 5 1 6 45
B(=)A(>) 6 7 6 2 5 9 4 3 0 1 12 55
B(>)A(>) 2 10 7 20 1 16 3 3 3 2 8 75
R1 = R2 9 8 6 8 4 13 5 6 2 1 25 87

total 50 50 50 70 20 70 30 20 30 10 80 480

4.4. Discussion

Yoo et al. [17] achieved a conclusion to some extent different from the conclusion in our experiment.
Their results concluded that ER

′
1 is the best performer, ER5 is the worst in most cases, and the other

three formula groups GP02, GP03, and GP19 perform similarly, but with GP03 being better than GP02
and GP19. The difference between their study and our study is probably because different metrics
and experimental setups were used. Yoo et al. used the expense metric to measure the number of
statements should be examined before the faulty statement is found. In this paper, we utilized the
expected faulty location to measure the expected location of faulty statement in the faulty program.
Additionally, Yoo et al. conducted an empirical study with five subject programs from SIR, including
flex, grep, gzip, sed, and space. In our experiment, we performed the empirical study with 11 subject
programs in which flex, grep, sed, and space were used as well. Nevertheless, their conclusion is
slightly different to that of our study of ER

′
1 99K GP03 99K GP02 99K ER5 99K GP19. Most importantly,

Yoo et al. and ourselves both observed that ER
′
1 is the best performer followed by GP03; that is,

we have the same recommendation of using ER
′
1.

Appl. Sci. 2020, 10, 398 14 of 17

4.5. Threats to Validity

4.5.1. Test Suite

There are two threats related to the test suite used in our empirical study. First is the size of the
test suite. In our empirical study, we treated all test cases as one single test suite for fault localization
purposes as in previous empirical study. This has been referred to as the “universe” plan in benchmarks.
As mentioned in Naish et al. [13], the performance of a risk evaluation formula “may” be dependent
on the actual number of test cases used in the test suite. Hence, readers should not over-generalize
our results without further research. Second, it is related to the composition of test cases in a test
suite. Intuitively speaking, different test cases may have different fault detection capabilities. Hence,
the performance of the same risk evaluation formula may be different if two different test suites having
the same number of test cases are used. It may be more interesting to investigate the diversity of test
cases in a test suite to detect different types of faults in our future work.

4.5.2. Fault Type

In order to adapt to our experiment and localize the faulty statement, we excluded those faulty
versions which deleted or inserted some statements in the original programs. Also, we performed our
experiments on those programs with single faults. For future work, we can extend our experimental
study using programs with multiple faults.

5. Related Work

The effectiveness of different SBFL techniques strongly depends on the input test suite and
corresponding execution results. In contrast to the assumption of the existence of test oracles in
conventional SBFL techniques, Xie et al. [34,35] presented an alleviation approach to solve the test
oracle problem by using the metamorphic slice and Zhang et al. [31] used the unlabelled test cases.
Additionally, a kind of test case prioritization technique is presented to improve the effectiveness of
fault localization process and reduce the testing cost [36–38]. The FLINT has been proven to outperform
similar localization techniques in 52% of the cases in [39]. Yu et al. [40] investigated different test suite
reduction strategies as well for SBFL effectiveness increase.

More empirical comparisons of the performance between various formulas were also reported
in [10,17]. Pearson et al. [10] compared the performances of seven different formulas on artificial faults
and real faults from Defects4J and indicated that the artificial faults were not as useful as the real
faults to predicate the best formula. Xu et al. [32] found that labeling perturbations influenced the
robustness of risk evaluation formulas significantly, especially the impacts of mislabeling passed cases
as failed cases.

6. Conclusions and Future Work

Various empirical and theoretical research works on SBFL risk evaluation formulas have been
proposed to compare the performance between different formulas. Five maximal formula groups—ER

′
1,

ER5, GP02, GP03 and GP19—have been proven and it was also proven that there does not exist a
greatest risk evaluation formula in terms of fault localization effectiveness. From the experimental
observation, we notice that some maximal formulas can perform better than others more frequently.
Hence, we propose a notion of “more-frequently-better” to compare between two maximal formulas
R1 and R2 in this paper.

To verify our proposition that there exists one maximal formula performs more-frequently-better
than another one, an empirical study on 11 C programs with real and seeded faults has been conducted.
According to the experimental results, we conclude that ER

′
1 99K GP03 99K GP02 99K ER5 99K GP19.

This means, ER
′
1 performs more-frequently-better than any of the other four. Therefore, we have

Appl. Sci. 2020, 10, 398 15 of 17

provided a way to compare the performance between any two maximal formulas using the notion of
more-frequently-better, and illustrated the feasibility of our approach with an empirical study.

Since we make the assumption that there is a single fault in the faulty program, more experimental
studies using programs with multiple faults should be conducted to investigate the effectiveness of
our approach.

Author Contributions: Conceptualization, T.W. and M.F.L.; data curation, T.W.; formal analysis, T.W., M.F.L.,
and T.Y.C.; funding acquisition, Y.D.; investigation, T.W. and M.F.L.; methodology, T.W. and M.F.L.; project
administration, Y.D.; supervision, Y.D. and T.Y.C.; validation, T.W., Y.D., M.F.L., and T.Y.C.; writing—original
draft, T.W. and M.F.L.; writing—review and editing, T.W., Y.D., M.F.L., S.N., T.Y.C., and M.J. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by National Power Grid Company science and technical plan project (Research
on System Protection Test and Verification Technology Based on Multi-mode Real-time Co-simulation and Flexible
Reconfiguration of Control Strategy) and the National Natural Science Foundation of China under grant number
61772423.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Harrold, M.J.; Rothermel, G.; Wu, R.; Yi, L. An empirical investigation of program spectra. In Acm Sigplan
Notices; ACM: New York, NY, USA, 1998; Volume 33, pp. 83–90.

2. Jones, J.A.; Harrold, M.J. Empirical evaluation of the tarantula automatic fault-localization technique.
In Proceedings of the 20th IEEE/ACM international Conference on Automated Software Engineering, Long
Beach, CA, USA, 7–11 November 2005; pp. 273–282.

3. Wong, W.E.; Gao, R.; Li, Y.; Abreu, R.; Wotawa, F. A survey on software fault localization. IEEE Trans. Softw.
Eng. 2016, 42, 707–740. [CrossRef]

4. Abreu, R.; Zoeteweij, P.; Van Gemund, A.J. On the accuracy of spectrum-based fault localization.
In Proceedings of the Testing: Academic and Industrial Conference Practice and Research Techniques-
MUTATION (TAICPART-MUTATION 2007), Windsor, UK, 10–14 September 2007; pp. 89–98.

5. Chen, Y.; Probert, R.L.; Sims, D.P. Specification-based regression test selection with risk analysis.
In Proceedings of the 2002 Conference of the Centre for Advanced Studies on Collaborative Research,
Toronto, ON, Canada, 30 September–3 October 2002; p. 1.

6. Jones, J.A.; Harrold, M.J.; Stasko, J.T. Visualization for fault localization. In Proceedings of the ICSE 2001
Workshop on Software Visualization, Toronto, ON, Canada, 13–14 May 2001.

7. Abreu, R.; Zoeteweij, P.; Van Gemund, A.J. An evaluation of similarity coefficients for software fault
localization. In Proceedings of the 2006 12th Pacific Rim International Symposium on Dependable Computing
(PRDC’06), Riverside, CA, USA, 18–20 December 2006; pp. 39–46.

8. Abreu, R.; Zoeteweij, P.; Golsteijn, R.; Van Gemund, A.J. A practical evaluation of spectrum-based fault
localization. J. Syst. Softw. 2009, 82, 1780–1792. [CrossRef]

9. Wong, W.E.; Qi, Y.; Zhao, L.; Cai, K.Y. Effective fault localization using code coverage. In Proceedings of
the 31st Annual International Computer Software and Applications Conference (COMPSAC 2007), Beijing,
China, 24–27 July 2007; Volume 1, pp. 449–456.

10. Pearson, S.; Campos, J.; Just, R.; Fraser, G.; Abreu, R.; Ernst, M.D.; Pang, D.; Keller, B. Evaluating and
improving fault localization. In Proceedings of the 39th International Conference on Software Engineering,
Buenos Aires, Argentina, 20–28 May 2017; pp. 609–620.

11. Xie, X. On the Analysis of Spectrum-Based Fault Localization. Ph.D. Thesis, Swinburne University of
Technology, Melbourne, Australia, 2012.

12. Lee, H.J.; Naish, L.; Ramamohanarao, K. Study of the relationship of bug consistency with respect to
performance of spectra metrics. In Proceedings of the 2009 2nd IEEE International Conference on Computer
Science and Information Technology, Beijing, China, 8–11 August 2009; pp. 501–508.

13. Naish, L.; Lee, H.J.; Ramamohanarao, K. A model for spectra-based software diagnosis. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 2011, 20, 11. [CrossRef]

14. Xie, X.; Chen, T.Y.; Kuo, F.C.; Xu, B. A theoretical analysis of the risk evaluation formulas for spectrum-based
fault localization. ACM Trans. Softw. Eng. Methodol. (TOSEM) 2013, 22, 31. [CrossRef]

http://dx.doi.org/10.1109/TSE.2016.2521368
http://dx.doi.org/10.1016/j.jss.2009.06.035
http://dx.doi.org/10.1145/2000791.2000795
http://dx.doi.org/10.1145/2522920.2522924

Appl. Sci. 2020, 10, 398 16 of 17

15. Chen, T.Y.; Xie, X.; Kuo, F.C.; Xu, B. A revisit of a theoretical analysis on spectrum-based fault localization.
In Proceedings of the 2015 IEEE 39th Annual Computer Software and Applications Conference, Taichung,
Taiwan, 1–5 July 2015; Volume 1, pp. 17–22.

16. Xie, X.; Kuo, F.C.; Chen, T.Y.; Yoo, S.; Harman, M. Provably optimal and human-competitive results in
sbse for spectrum based fault localisation. In International Symposium on Search Based Software Engineering;
Springer: Berlin, Germany, 2013; pp. 224–238.

17. Yoo, S.; Xie, X.; Kuo, F.C.; Chen, T.Y.; Harman, M. Human competitiveness of genetic programming in
spectrum-based fault localisation: Theoretical and empirical analysis. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 2017, 26, 4. [CrossRef]

18. Yoo, S.; Xie, X.; Kuo, F.C.; Chen, T.Y.; Harman, M. No pot of gold at the end of program spectrum rainbow:
Greatest risk evaluation formula does not exist. RN 2014, 14, 14.

19. Wong, W.E.; Sugeta, T.; Qi, Y.; Maldonado, J.C. Smart debugging software architectural design in SDL.
J. Syst. Softw. 2005, 76, 15–28. [CrossRef]

20. Harrold, M.J.; Rothermel, G.; Sayre, K.; Wu, R.; Yi, L. An empirical investigation of the relationship between
spectra differences and regression faults. Softw. Test. Verif. Reliab. 2000, 10, 171–194. [CrossRef]

21. Agrawal, H.; Horgan, J.R.; London, S.; Wong, W.E. Fault localization using execution slices and dataflow
tests. In Proceedings of the Sixth International Symposium on Software Reliability Engineering, ISSRE’95,
Toulouse, France, 24–27 October 1995; pp. 143–151.

22. Wong, W.E.; Qi, Y. Effective program debugging based on execution slices and inter-block data dependency.
J. Syst. Softw. 2006, 79, 891–903. [CrossRef]

23. Jones, J.A.; Harrold, M.J.; Stasko, J. Visualization of test information to assist fault localization. In Proceedings
of the 24th International Conference on Software Engineering, ICSE 2002, Orlando, FL, USA, 25 May 2002;
pp. 467–477.

24. Chen, M.Y.; Kiciman, E.; Fratkin, E.; Fox, A.; Brewer, E. Pinpoint: Problem determination in large, dynamic
internet services. In Proceedings of the International Conference on Dependable Systems and Networks,
Washington, DC, USA, 23–26 June 2002; pp. 595–604.

25. Wong, W.E.; Debroy, V.; Choi, B. A family of code coverage-based heuristics for effective fault localization.
J. Syst. Softw. 2010, 83, 188–208. [CrossRef]

26. Wong, E.; Wei, T.; Qi, Y.; Zhao, L. A crosstab-based statistical method for effective fault localization.
In Proceedings of the 2008 1st International Conference on Software Testing, Verification, and Validation,
Lillehammer, Norway, 9–11 April 2008; pp. 42–51.

27. Yoo, S. Evolving human competitive spectra-based fault localisation techniques. In International Symposium
on Search Based Software Engineering; Springer: Berlin, Germany, 2012; pp. 244–258.

28. Russell, P.F.; Rao, T.R. On habitat and association of species of anopheline larvae in south-eastern Madras.
J. Malar. Inst. India 1940, 3, 153–178.

29. SLOCCOUNT. Available online: http://www.dwheeler.com/sloccount/sloccount.html (accessed on
15 April 2019).

30. Mao, X.; Lei, Y.; Dai, Z.; Qi, Y.; Wang, C. Slice-based statistical fault localization. J. Syst. Softw. 2014, 89, 51–62.
[CrossRef]

31. Zhang, X.Y.; Zheng, Z.; Cai, K.Y. Exploring the usefulness of unlabelled test cases in software fault localization.
J. Syst. Softw. 2018, 136, 278–290. [CrossRef]

32. Xu, Y.; Yin, B.; Zheng, Z.; Zhang, X.; Li, C.; Yang, S. Robustness of spectrum-based fault localisation in
environments with labelling perturbations. J. Syst. Softw. 2019, 147, 172–214. [CrossRef]

33. SIR. Available online: https://sir.csc.ncsu.edu/portal/index.ph (accessed on 15 April 2019).
34. Xie, X.; Wong, W.E.; Chen, T.Y.; Xu, B. Spectrum-based fault localization: Testing oracles are no longer

mandatory. In Proceedings of the 2011 11th International Conference on Quality Software, Madrid, Spain,
13–14 July 2011; pp. 1–10.

35. Xie, X.; Wong, W.E.; Chen, T.Y.; Xu, B. Metamorphic slice: An application in spectrum-based fault localization.
Inf. Softw. Technol. 2013, 55, 866–879. [CrossRef]

36. Jiang, B.; Zhang, Z.; Tse, T.; Chen, T.Y. How well do test case prioritization techniques support statistical
fault localization. In Proceedings of the 2009 33rd Annual IEEE International Computer Software and
Applications Conference, Seattle, WA, USA, 20–24 July 2009; Volume 1, pp. 99–106.

http://dx.doi.org/10.1145/3078840
http://dx.doi.org/10.1016/j.jss.2004.06.026
http://dx.doi.org/10.1002/1099-1689(200009)10:3<171::AID-STVR209>3.0.CO;2-J
http://dx.doi.org/10.1016/j.jss.2005.06.045
http://dx.doi.org/10.1016/j.jss.2009.09.037
http://www.dwheeler.com/sloccount/sloccount.html
http://dx.doi.org/10.1016/j.jss.2013.08.031
http://dx.doi.org/10.1016/j.jss.2017.07.027
http://dx.doi.org/10.1016/j.jss.2018.09.091
https://sir.csc.ncsu.edu/portal/index.ph
http://dx.doi.org/10.1016/j.infsof.2012.08.008

Appl. Sci. 2020, 10, 398 17 of 17

37. Jiang, B.; Chan, W. On the integration of test adequacy, test case prioritization, and statistical fault
localization. In Proceedings of the 2010 10th International Conference on Quality Software, Zhangjiajie,
China, 14–15 July 2010; pp. 377–384.

38. Jiang, B.; Chan, W.; Tse, T. On practical adequate test suites for integrated test case prioritization and fault
localization. In Proceedings of the 2011 11th International Conference on Quality Software, Madrid, Spain,
13–14 July 2011; pp. 21–30.

39. Yoo, S.; Harman, M.; Clark, D. Fault localization prioritization: Comparing information-theoretic and
coverage-based approaches. ACM Trans. Softw. Eng. Methodol. (TOSEM) 2013, 22, 19. [CrossRef]

40. Yu, Y.; Jones, J.; Harrold, M.J. An empirical study of the effects of test-suite reduction on fault localization.
In Proceedings of the 2008 ACM/IEEE 30th International Conference on Software Engineering, Leipzig,
Germany, 10–18 May 2008; pp. 201–210.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2491509.2491513
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Spectrum-Based Fault Localization (SBFL)
	Risk Evaluation Formulas

	A Condition with Which to Compare Risk Evaluation Formulas
	Comparing Two Risk Evaluation Formulas
	Five Scenarios for One Formula Better Than Another

	Empirical Study
	Subject Programs and Test Suite
	The Empirical Process
	Experimental Results and Analysis
	Discussion
	Threats to Validity
	Test Suite
	Fault Type

	Related Work
	Conclusions and Future Work
	References

