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Abstract: Object detection has been playing a significant role in computer vision for a long time,
but it is still full of challenges. In this paper, we propose a novel object detection framework based
on relationship among different objects and the scene-level information of the whole image to cope
with the problem that some strongly correlated objects are difficult to be recognized. Our motivation
is to enrich the semantics of object detection feature by a scene-level information branch and a
relationship branch. There are three important changes of our framework over traditional detection
methods: representation of relationship, scene-level information as the prior knowledge and the
fusion of the above two information. Extensive experiments are carried out on PASCAL VOC and MS
COCO databases. The experimental results show that the detection performance can be improved
by introducing relationship and scene-level information, and our proposed model achieve better
performance than several classical and state-of-the-art methods.
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1. Introduction

Object detection is a hot topic in the field of computer vision and machine learning due to their
widely applications in autonomous driving, robots, video surveillance, pedestrian detection, and so on.
The classical object detection techniques are mainly based on the use of manual features, which can be
divided into three steps: (1) target area selection; (2) feature extraction; (3) classification. In the first
step, sliding-window strategy [1] which utilizes the sliding-windows with different dimensions and
length-width ratios is widely adopted to search for candidate regions exhaustively. In the second step,
the candidate regions obtained in the first step are analyzed. Several techniques can be used in this
step for feature extraction, such as scale-invariant feature transform (SIFT) [2], histogram of oriented
gradients (HOG) [3] and speeded-up robust features (SURF) [4]. In the third step, the candidate regions
are classified according to the features extracted in the previous step by using classifiers such as support
vector machine (SVM) [5] and AdaBoost [6]. Although the classical methods have been adopted in
some object detection problems, there are still some limitations that hinder their breakthrough in speed
and accuracy. Firstly, since the sliding-window strategy will capture many candidate regions in the
original image, and the feature of regions needs to be extracted one by one, the classical object detection
approaches are time-consuming. Secondly, the classical object detection methods may lack robustness
because artificially designed features are sensitive to the variance in morphology, illumination and
occlusion of object.
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Recently, some deep learning techniques have been applied to object detection to overcome the
limitations of traditional approaches [7–13]. The current state-of-the-art detector based on the deep
learning can be roughly divided into two categories. One is two-stage methods which first form a series
of candidate object proposals by Selective Search [8], EdgeBoxes [9], DeepMask [12] or region proposal
network (RPN) [7], and then input the proposals into convolutional neural network for classification.
The other is one-stage methods which straightforwardly predict confidences and locations of multiple
objects on the whole feature map without generating candidate object proposals.

Region-based convolutional network (R-CNN) [14], as the beginning of combining object detection
and deep learning, is a representative two-stage based approach. It achieves excellent object detection
accuracy by extracting CNN features from the candidate regions and applies linear SVMs as the classifier.
However, since the ConvNet forward pass is performed for each object proposal independently, the
computational cost of R-CNN is high. Furthermore, the multi-stage training strategy which contains
feature extraction, fine-tuning network, training SVMs, and bounding-box regression also makes
the training of R-CNN be slow. In [15], a spatial pyramid pooling network (SPPNet) was proposed.
Although SPPNet can speed up R-CNN by sharing computation, its training is also a multi-stage
pipeline. Besides, the fine-tuning algorithm proposed in SPPNet cannot update the convolutional
layer, which limits its accuracy when the networks are very deep. For the sake of further decreasing
the computational cost and improving the accuracy of object detection, Ross et al. proposed a fast
region-based convolutional network (Fast R-CNN) [16]. The Fast R-CNN utilizes a novel RoI-pooling
operation to extract feature vectors for each candidate region from shared convolutional feature map,
which greatly improves the processing speed. In Fast R-CNN, the detection accuracy can also be
enhanced by updating all network layers during training. Although SPPNet and Fast R-CNN have
effectively reduced the training time of object detection networks, the region proposal computation is
still considered as a bottleneck in them. To deal with this issue, Ren et al. proposed a Faster R-CNN [7]
which replaces the Selective Search method with RPN to achieve end-to-end training. RPN is a kind
of fully convolutional network (FCN) [17]. By sharing full-image convolutional features with the
detection network, RPN enables nearly cost-free region proposals to solve the time-consuming problem
of Fast R-CNN. However, the multiple scale proposals generated by sliding a fixed set of filters over a
fixed set of convolutional feature maps in RPN may be inconsistent with the sizes of objects. Thus,
Cai et al. proposed a multi-scale CNN (MS-CNN) [18] to match the receptive fields to different scales
of objects and employed a multiple output layer for object detection. Recently, for the purpose of
improving the detection performance, some more state-of-the-art techniques (such as Resnet [19] and
Inception series [20–22]) were employed to replace the standard CNN as the backbone networks of
the two-stage based object detection methods, which can be found in the object detection API from
google [23].

Different from the aforementioned methods, the one-stage approaches can achieve complete
single network training under the premise of guaranteeing a certain accuracy rate. You only look once
(YOLO) [24], YOLO9000 [25], an iterative grid based object detector (G-CNN) [26], and single shot
multibox detector) [27] are representative techniques in this category. Through treating the object
detection task as a regression problem, YOLO spatially separates bounding boxes and associated
class probabilities. Since the whole detection pipeline of YOLO is a single network, an end-to-end
optimization of the network can be directly performed. SSD combines predictions of multiple
feature maps with different resolutions to detect objects of various sizes. Since the proposal generation,
subsequent pixel and feature resampling stages are eliminated in SSD, it can be easily trained. Although
the running speed of one-stage methods can be significantly improved, their accuracy is always inferior
to the two-stage approaches [27]. To address this issue, the Resnet and Inception have also been
utilized [23]. Furthermore, Lin et al. replaced the standard cross entropy loss with a novel Focal loss
and proposed a RetinaNet to solve the class imbalance problem in one-stage based object detection [28].

No matter the approach belongs to one-stage or two-stage, most the aforementioned algorithms
do not effectively utilize the relationship among objects, but only use the feature associated with the
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object itself for detection. Recently, some researchers have realized the importance of relation, and
proposed some methods [29–31] to achieve better detection results by exploring the relationships
between objects. In ION [32], Bell et al. proposed a spatial recurrent neural networks (RNNs) for
exploring contextual information across the entire image. Xu et al. put forward a scene graph
generation approach by iterative message passing [33]. The network regards a single object as a point
in topology, and the relationships of objects are considered as edges connecting points. Through
passing information between the edges and points, it is proved that the relationship between objects
has a positive impact on detection. Georgia et al. proposed a human-centric based model called
InteractNet [34], in which human is regarded as the main clue to establish a relationship with other
surrounding objects. The InteractNet indicates that a person’s external behavior can provide powerful
information to locate the objects they are interacting with. Liu et al. proposed a structure inference net
(SIN) [35] which explores the structure relationship between objects for detection. However, SIN only
takes the spatial coordinates of object proposals into account, while the appearance feature of object
proposals is neglect. Han et al. presented a relation network [36], which considers both the appearance
and geometry feature of object proposals for relation construction. Nevertheless, the scene-level feature
which could provide a lot of context information for object detection [37] is ignored in relation Nntwork.

This paper proposes a novel object detection algorithm based on multiple information fusion
net (MIFNet). Compared with the existing techniques, our algorithm not only adaptively establishes
relationships between objects through attention mechanism [38], but also introduces scene-level
information to make the proposed approach richer in semantics. In MIFNet, the relationships
between an object and all other objects are got by relation channel modules. Besides, by introducing
the scene-level context [21,39,40], the proposed network can enrich the object feature with scene
information. The experimental results on PASCAL VOC [41] and MS COCO [42] databases demonstrate
the effectiveness of the proposed algorithm.

The paper is structured as follows. The related work is introduced in Section 2. The proposed
MIFNet is described in Section 3. The experimental results are given in Section 4. The conclusion is
provided in Section 5.

2. Related Work

Context information: In real life, it is unlikely that an object can exist alone. Visual objects occur
in particular environments and usually coexist with other related objects [43]. When the object’s
appearance feature is insufficient because of small object size, object occlusion, or poor image quality,
a proper modeling of context will facilitate object detection and recognition task. Context information
has been applied in many methods to enhance the performance of object detection [44–49], which can
be roughly divided into two categories [49,50]: global information [32,51] (refers to the image level or
scene level information), local information [35,36] (considers the object relationship or the interaction
between the object and its surrounding area). It is proved that both the global and local context
information have a positive impact on the object detection. Our proposed MIFNet has the capability of
utilizing both global context (scene-level information) and local information (object relationship) to
make the object’s appearance feature richer.

Attention mechanism: The attention mechanism in deep learning is inspired by the mode of
human attention thinking and has been widely used in natural language processing [52]. In attention
module, an individual element can be influenced by aggregating information from other elements and
the dependency between elements is modeled without excessive assumptions on their locations and
feature distributions. The aggregation weights can be learned automatically, which is driven by the
task goal. Recently, attention mechanism has been successfully applied in vision problems [37,53].

Attention mechanism can be represented as follows:

Attention (Q, K, V) = softmax
(

QKT
√

d
V
)
, (1)
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where Q, K, V are three feature matrices with the same shape. In natural language processing, Q, K,
V represent sets of queries, keys, and values, respectively. In our work, Q denotes the object feature,
K denotes all surrounding object feature, V represents the all image feature (with object feature and
location feature). In Equation (1), given a query q ∈ Q and all keys K, the dot products of q with K will
be calculated to get the similarity between them. Then we divide dot products by a scaling factor
√

d and the softmax function is applied to obtain the weights on all image feature (i.e., it can obtain
the influence of each object on the current object). For more detailed information about the attention
mechanism, the readers can refer to [38]. In our work, the attention mechanism is utilized to get the
relationship between objects.

3. The Proposed Method

The framework of proposed multiple information fusion net (MIFNet) is shown in Figure 1. In our
MIFNet, the feature map of an input image is first obtained through a feedforward convolutional
network (VGG or Resnet). In the next stage, the network feature map is divided into two parts. One is
as a part of the input of the first branch and the other is utilized to get the region proposals through
RPN and then served as the input of the second branch. In the first branch network (I), a series of
operations is performed on the feature map of the entire image to get the scene-level information as the
input of scene GRU (Gated Recurrent Unit in III up). In the second branch network (II), the attention
mechanism is utilized to establish object relationships adaptively. For the purpose of classifying and
regressing regions of interest (RoIs), the second branch network not only utilizes the appearance feature
extracted by convolutional layers and the coordinate information of the object, but also the information
of all surrounding objects as the input of relation GRU (in III below). In the message passing module
(III), scene GRUs and relation GRUs communicate information to each other in order to keep up with
new information. In the last stage, we concatenate the information obtained by these two GRUs to
refine the position of the corresponding RoI and predict the category of objects.
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3.1. Scene-Level Information Processing Module

Contextual information is important for accurate object recognition. To extract the scene-level
information, the image feature is firstly obtained by convolutional network (VGG or Resnet) as the
input of the first branch. Secondly, the image feature obtained by RoI-pooling layer and the feature
obtained by RPN (without scene information) are concatenated as the input of a convolutional layer.
By concatenation, the information of potential object is richer. Besides, the weight of potential object
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can also be increased by training. In the end, the output fs of the first network branch, which called
scene feature, is input to the scene GRU to choose information and update object feature.

3.2. Relationship Module

In most previous object detection methods based on the convolutional neural network [7,16],
each object is identified independently, and the relationship of objects is neglected. To overcome this
limitation, the proposed approach models the relationship of objects by groups. That is, the feature
vector of an object is obtained by fusing the features of itself and other objects to enrich the information,
as shown in Figure 2.
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In Figure 2, given an input set of N objects
{(

f n
t , f n

c

)}N

n = 1
, in which f n

t is the original appearance
feature of the nth object extracted by convolutional neural network, f n

c denotes the location feature of
the nth object composed by the 4-dimensional feature of object bounding box. The bounding box feature
comprises width (w), height (h) and the center coordinates (x, y) of the box in our study. The relationship
channel is a module that handles relationships among different objects, Nr is the number of channels
(Nr = 64). By object relation module, the f 1

c (n), f 2
c (n) . . . f Nr

c (n) which fuse the location information of
all surrounding objects can be gained. For the purpose of obtaining the output f n′

t that is finally sent
into the relation GRU, we concatenate the vectors on all channels f 1

c (n), f 2
c (n) . . . f Nr

c (n). Because the
processing mechanisms of relation channel modules are the same, we take one relation channel module
as an example to explain how relation channel works.

Figure 3 shows the process of one relation channel module. Firstly, the dot product operation is
applied to obtain the appearance weight wmn

t between the mth and nth objects, as shown in Equation (2).

wmn
t =

(WK f m
t )·(WQ f n

t )
√

d
, (2)

where WK, WQ are matrices which map the original appearance f m
t and f n

t into subspaces, · denotes
the operation of dot product to obtain the degree of matching between WK f m

t and WQ f n
t .
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Secondly, the location weight wmn
g is calculated by Equation (3).

wmn
g = Relu

(
Wg·εg( f m

c , f n
c )

)
, (3)

where f m
c and f n

c are geometry features that contain six relative position information (log
(
|xm−xn |

wn

)
,

log
(
|ym−yn|

hn

)
, log

(
wm
wn

)
, log

(
hm
hn

)
,
√

xm−xn
wn

,
√

ym−yn
hn

), in which wn, hn, xn and yn are the width, height and

center coordinates of the nth object, εg is a function based on sine and cosine to embed the geometry
features into high-dimensional space [38]. Then we use Wg to convert the embedded vector to scalar
weight. The Relu activation function is utilized to ensure that only objects with certain geometric
relationship can participate in this relationship calculation.

Next, the relationship weight is obtained by Equation (4).

wmn = softmax
(
wmn

g · exp
(
wmn

t

))
, (4)

where the relationship weight wmn represents the impact of the mth object to the nth object, softmax is
employed for normalization. Finally, Equation (5) can be utilized to get a feature f Nr

c (n) that has the
influence of surrounding objects on it.

f Nr
c (n) =

∑
m

wmn
·

(
Wv f n

t

)
, (5)
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where Wv is used to transform the original appearance feature f n
t linearly. Equation (5) is the

process of integrating the information of the object and other objects into the original appearance
feature. The output f Nr

c (n) is the weighted sum of the initial appearance features from other objects,
which contains both its original appearance feature and the feature of all objects around it.

In the end, by the relation channel module, the feature f n′
t which merges features of multiple

channels can be gained by Equation (6).

f n′
t = f n

t + [ f 1
c (n), . . . , f Nr

c (n)], f or all n. (6)

where the fusion feature f n′
t includes the extracted original appearance feature f n

t (the initial appearance
feature after convolutional layers) and the relationship feature ( f 1

c (n), . . . , f Nr
c (n)) (fusing the location

information of all surrounding objects under a particular channel). In the relation channel, the feature
of other objects can be mixed together to identify the relationship between the current object and other
objects, and finally merged with the original appearance feature through the fully connected network.
The final output f n′

t is the input of the Relation GRU.

3.3. Message Passing Module

As we have discussed previously, context information is important for accurate object detection.
For example, in Figure 4a, if road is considered as the global or scene-level information, the objects
in this image are hardly to be detected as ships and planes since it is generally impossible for them
to appear in the road scene. Similarly, in Figure 4b, when a dinner table appears, the probability of
detecting chairs increases, because the dinner tables and chairs always appear in pairs. Thus, the Gated
Recurrent Unit (GRU) [54] is utilized in this study. Similar to the long short-term memory (LSTM)
model [55], GRU unit also has the function of adjusting the information flow in the unit, but it is
lightweight and effective [35]. In the message passing module, information is continuously passed
between the scene GRU and the relation GRU so that the useful information can be preserved.
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GRU only has two gates. It combines the input gate and the forget gate in the LSTM into one, and
the combined gate is called update gate, which determines how much information from the previous
time and the current time is to be passed on. The other gate in GRU is reset gate, which controls how
much past information is forgotten.

In our work, two parallel GRUs are applied to pass information to each other, one is the scene
GRU and the other is the relation GRU. The scene GRU receives the whole image information fs as the
input. The input of relation GRU is the integrated object information f n′

t , which includes the object’s
own information and the influence of surrounding objects on it. We represent the initial state hi of the
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network with the original appearance feature (without any scene information or relation information).
Here, since the processing mechanisms of scene GRU and relation GRU are identical, we take the
relation GRU as an example to show how GRU works. Firstly, the reset gate of the tth moment rt is
calculated as follows:

rt = σ
(
Wr

[
f n′
t , hi

])
, (7)

where σ is the logistic sigmoid function, [,] denotes the concatenation of vectors, and Wr is a weight
matrix learned through the convolutional neural network. The output of reset gate rt determines
whether the previous state is forgotten. When rt is close to zero, the status information hi of the
previous moment will be forgotten, and the hidden status is reset to the current input. Similarly, the
update gate of the tth moment zt is computed by

zt = σ
(
Wz

[
f n′
t , hi

])
, (8)

where zt is used to determine how much past information can continue to be passed on, Wz is a weight
matrix. If the value of the update gate is larger, the state information introduced at the previous
moment is more, and vice versa. In GRU, the new hidden state h̃t can be obtained through Equation (9):

h̃t = tanh(W
[
rt ∗ hi, f n′

t

]
), (9)

where the new hidden state h̃t is determined by the value of the reset gate, W is a weight matrix,
∗ denotes the element-wise multiplication. The actual output hi+1 is then computed by

hi+1 = 1− zt ∗ hi + zt ∗ h̃t, (10)

where some of the previous state hi will be passed, and the new hidden state h̃t will be selectively
updated. Through GRU, the scene module and the relation module can pass information to each other
and constantly update new information. In this way, useful information will continue to be passed, and
useless information will be ignored. Finally, richer information can be obtained through Equation (11).

h′i =

[
hs

i+1, hr
i+1

]
2

, (11)

where hs
i+1 represents the information obtained by the scene GRU, and hr

i+1 denotes the information
obtained by the relation GRU. The integrated information h′i will be sent into the next GRUs as the new
initial state.

4. Experimental Results

4.1. Experimental Settings

Databases and evaluation metrics: Our model was evaluated on two databases: PASCAL
VOC [41] and MS COCO [42]. PASCAL VOC is a widely used image database for object detection
and classification. In our work, VOC 2007 and VOC 2012 subsets were utilized. VOC 2007 data
set contained 9963 annotated images and 24,640 annotated objects, which were composed of three
parts: train, validation (val), and test sets. VOC 2012 is an updated version of VOC 2007 data set,
which included 11,530 pictures with 20 categories including people, animals (such as cats, dogs and
birds), vehicles (such as cars, ships and planes), and furniture (such as chairs, tables, and sofas). Some
examples of PASCAL VOC database can be seen in Figure 5. MS COCO database is built by Microsoft,
which contained 328,000 images with 2000 object labels. Compared with PASCAL VOC, MS COCO
includes natural images and common object images in daily life with more complex background,
larger number of targets and smaller size. Thus, the object detection task on MS COCO database
was more difficult and challenging. The sample images in MS COCO are shown in Figure 6. In this
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study, we followed Ref. [35] to adopt average precision (AP) and mean of average precision (mAP)
as our evaluation metrics to compare the performances of different approaches. AP, which derived
from precision and recall, is one of the popular metrics to measure the accuracy of object detectors.
It computes the average precision value for recall value over 0 to 1. The precision and the recall rates
are defined as follows:

precision =
TP

TP + FP
, (12)

recall =
TP

TP + FN
, (13)

where TP represents the number of true positive examples, FP represents the number of fault positive
examples, and FN represents the number of fault negative examples. mAP is the average of AP on
all categories.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 20 
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Implementation details: In our experiments, the proposed model was implemented based on
Faster R-CNN [7], an open-source framework for object detection built on Tensorflow [56] platform.
The VGG-16 [57] and Resnet-101 [19] pre-trained on ImageNet [58] were adopted as backbone networks
in our model to extract image feature. When adding the newly fully connected and convolutional layers,
they were randomly initialized with a zero-mean Gaussian distribution with standard deviations of
0.01 and 0.001. The message passing module contained two parallel GRU units with shared parameters.
All the parameters of the GRU units were initialized based on SIN [35]. Non-maximum suppression
(NMS) with intersection over union (IOU) were used for duplicate removal in all experiments.

Stochastic gradient descent (SGD) was applied to fine tune our network. Each SGD mini batch
was composed of 256 randomly sampled object proposals from two randomly chosen images. In each
mini-batch, 25% of the RoIs were selected as foreground from object proposals, which had IOU
overlapped with a ground-truth bounding box of at least 0.5. We sampled the remaining RoIs from
object proposals which had a maximum IOU with ground truth in the interval [0:1; 0:5]. We trained
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our model on a single NVIDIA GeForce GTX TITAN X GPU with 12 GB memory. The experimental
parameters, training and test time of our MIFNet can be seen in Table 1.

Table 1. Experimental parameter setting.

Train
Database

Test
Database Backbone Iterations

Setting
Learning

Rate
Run Time
(Sec/Img)

Test Time
(Sec/Img)

VOC 2007
trainval +
VOC 2012

trainval

VOC 2007
test

VGG16
first 80k

iterations 0.0005
0.35 0.17

last 50k
iterations 0.00005

Resnet-101
first 80k

iterations 0.001
0.46 0.19

last 30k
iterations 0.0001

VOC 2007
trainval +
VOC 2012
trainval +
VOC 2007

test

VOC 2012
test

VGG16
first 100k
iterations 0.0005

0.35 0.15
last 70k

iterations 0.00005

Resnet-101
first 100k
iterations 0.001

0.46 0.18
last 50k

iterations 0.0001

MS COCO
2014 train +
MS COCO

2014 val

MS COCO
2014 minival

VGG16
first 350k
iterations 0.0005

0.32 0.16
last 200k
iterations 0.00005

Resnet-101
first 350k
iterations 0.001

0.46 0.19
last 150k
iterations 0.0001

4.2. Performance Comparisons

PASCAL VOC Database: The performance of our MIFNet was compared with some classical
and state-of-the-art object detection methods, including Fast R-CNN [16], Faster R-CNN [7], SIN [35],
ION [32], CPF [40], and so on. The experimental results on data set VOC 2007 test and VOC 2012 test
are shown in Tables 2 and 3 respectively. All the experimental results of comparison approaches are
quoted from their corresponding literatures. From these tables, the following points can be observed.
Firstly, Fast R-CNN and Faster R-CNN are classical two-stage approaches, while SSD is a classical
one-stage approach. Since the relationship between objects and context information were neglected in
them, their performances were inferior to other approaches. Secondly, by utilizing the spatial recurrent
neural networks and semantic segmentation, ION and CPF took global contextual information into
account. Therefore, they outperformed the classical approaches such as Fast R-CNN, Faster R-CNN,
and SSD. Thirdly, SIN considered both the scene context information and object relationships. However,
the relationship in SIN was established only by geometric structure of the objects, which neglected
the objects’ appearance information. As a result, its performance was still worse than the proposed
MIFNet. At last, the proposed approach leveraged the attention mechanism to adaptively establish the
relationship between objects, which considered both geometric and appearance information. Besides,
the scene-level information was also introduced into the model. Thus, our MIFNet greatly improved
the detection accuracy of some small and highly correlated objects (such as chair, boat, plant, tv) and
achieved the best performance on PASCAL VOC database.
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Table 2. Detection results on PASCAL VOC 2007 test. Train set: 07 trainval + 12 trainval. “V” and “R”
denote the model uses VGG-16 and Resnet-101 as backbone networks, respectively. The bold characters
represent the best result for each column.

Method Net mAP Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person PLANT Sheep Sofa Train Tv

Fast R-CNN
[16] V 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

Faster R-CNN
[7] V 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

SSD500 [24] V 75.1 79.8 79.5 74.5 63.4 51.9 84.9 85.6 87.2 56.6 80.1 70.0 85.4 84.9 80.9 78.2 49.0 78.4 72.4 84.6 75.5

ION [32] V 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87.0 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4

SIN [35] V 76.0 77.5 80.1 75.0 67.1 62.2 83.2 86.9 88.6 57.7 84.5 70.5 86.6 85.6 77.7 78.3 46.6 77.6 74.7 82.3 77.1

Faster R-CNN
[19] R 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0

SSD321 [24] R 77.1 76.3 84.6 79.3 64.6 47.2 85.4 84.0 88.8 60.1 82.6 76.9 86.7 87.2 85.4 79.1 50.8 77.2 82.6 87.3 76.6

MIFNet(ours) V 77.6 79.2 79.8 77.4 71.4 63.3 86.3 87.1 89.4 63.1 85.1 72.4 86.7 86.8 78.2 79.0 50.7 77.9 75.4 84.8 77.6

MIFNet(ours) R 80.6 81.6 86.4 80.9 72.6 70.2 87.7 88.5 88.5 66.8 87.1 73.8 89.0 87.5 83.8 82.5 55.2 83.1 79.6 85.5 81.6

Table 3. Detection results on PASCAL VOC 2012 test. Train set: 07trainval + 12trainval + 07test. “V”
and “R” denote the model uses VGG-16 and Resnet-101 as backbone networks, respectively. The bold
characters represent the best result for each column.

Method Net Map Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train Tv

Fast R-CNN
[16] V 68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2

SSD300 [24] V 70.3 84.2 76.3 69.6 53.2 40.8 78.5 73.6 88.0 50.5 73.5 61.7 85.8 80.6 81.2 77.5 44.3 73.2 66.7 81.1 65.8

Faster R-CNN
[7] V 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5

CPF [40] V 72.6 84.0 81.2 75.9 60.4 51.8 81.2 77.4 90.9 50.2 77.6 58.7 88.4 83.6 82.0 80.4 41.5 75.0 64.2 82.9 65.1

SIN [35] V 73.1 84.8 79.5 74.5 59.7 55.7 79.5 78.8 89.9 51.9 76.8 58.2 87.8 82.9 81.8 81.6 51.2 75.2 63.9 81.8 67.8

SSD321 [24] R 75.4 87.9 82.9 73.7 61.5 45.3 81.4 75.6 92.6 57.4 78.3 65.0 90.8 86.8 85.8 81.5 50.3 78.1 75.3 85.2 72.5

R-FCN [17] R 77.6 86.9 83.4 81.5 63.8 62.4 81.6 81.1 93.1 58.0 83.8 60.8 92.7 86.0 84.6 84.4 59.0 80.8 68.6 86.1 72.9

MIFNet(ours) V 74.4 86.2 81.9 76.4 60.3 58.0 80.2 78.4 90.4 53.8 78.5 58.3 88.3 83.0 83.7 82.7 53.0 76.3 66.5 82.6 70.5

MIFNet(ours) R 78.4 87.7 84.3 82.8 66.5 60.4 86.0 82.2 93.7 59.0 76.5 62.2 91.3 87.6 84.8 85.9 58.3 81.3 72.1 86.4 79.2

MS COCO database: In order to further verify the effectiveness of our proposed method, MS
COCO database was utilized. The object detection results of different methods on this database
are tabulated in Table 4. In this table, AP was averaged precision across all object categories and
multiple intersection over union (IOU) values from 0.5 to 0.95, AP50 denotes the mAP at IOU = 0.50,
AP70 denotes the mAP at IOU = 0.70, average recall (AR) represents the average recall rate averaged
over all categories and IOU thresholds. AR1, AR10 and AR100 denote the maximum recall rate of the
fixed number (1, 10, 100) of objects detected in each image, ARS, ARM and ARL represent the recall
rate of small (area smaller than 322), medium (area between 322 and 962) and large (area bigger than
962) objects respectively. From Table 4, we can get the following observations. Firstly, since ION takes
global context information into consideration, its performance is better than the classical approaches
such as Fast R-CNN, Faster R-CNN and YOLOv2. Secondly, SIN outperforms ION, which indicates
the object relationship is important for object detection. Finally, the proposed MIFNet performs best
on MS COCO database because it establishes the relationship between objects by both geometric and
appearance information adaptively and takes the scene-level information into account. In summary,
these observations are consistent with the experimental results of PASCAL VOC database.
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Table 4. Detection results on MS COCO 2014 minival. Train set: trainval35k: MS COCO train +

35k val. “V” and “R” denote the model uses VGG-16 and Resnet-101 as backbone networks, respectively.
The bold characters represent the best result for each column.

Method Net AP AP50 AP70 APS APM APL AR1 AR10 AR100 ARS ARM ARL

Fast R-CNN [16] V 20.5 39.9 19.4 4.1 20.0 35.8 21.3 29.5 30.1 7.3 32.1 52.0
Faster R-CNN [7] V 21.1 40.9 19.9 6.7 22.5 32.3 21.5 30.4 30.8 9.9 33.4 49.4

YOLOv2 [27] V 21.6 44.0 19.2 5.0 22.4 35.5 20.7 31.6 33.3 9.8 36.5 54.4
ION [32] V 23.0 42.0 23.0 6.0 23.8 37.3 23.0 32.4 33.0 9.7 37.0 53.5
SIN [35] V 23.2 44.5 22.0 7.3 24.5 36.3 22.6 31.6 32.0 10.5 34.7 51.3

SSD321 [24] R 28.0 45.4 29.3 6.2 28.3 49.3 25.9 37.8 39.9 11.5 43.3 64.9
DSSD321 [24] R 28.0 46.1 29.2 7.4 28.1 47.6 - - - - - -

R-FCN [17] R 29.9 51.9 - 10.8 32.8 45.0 - - - - - -
SSD513 [24] R 31.2 50.4 33.3 10.2 34.5 49.8 28.3 42.1 44.4 17.6 49.2 65.8

MIFNet(ours) V 29.3 53.6 29.2 10.3 34.7 46.6 26.3 36.9 37.5 13.5 43.7 59.3
MIFNet(ours) R 32.1 55.3 33.5 15.8 36.8 47.7 28.4 42.4 43.4 24.2 49.0 61.6

Effectiveness of scene-level information: For the purpose of verifying the effectiveness of each
part in our proposed method, some ablation experiments are carried out. Here, we employ the VGG-16
as the backbone of our MIFNet. In the first experiment, only the scene-level information is considered
to update the object feature. As shown in Tables 5 and 6, applying scene-level information achieves
a better mAP of 75.8% compared with the baseline (Faster R-CNN without scene-level information
and object relationships) on PASCAL VOC 2007. On the bigger database MS COCO, a better mAP of
23.5% can be obtained. We find that introducing the scene-level information can improve the detection
performances in certain categories, including bike, bottle, chair, plant, TV, and so on. Especially, the
average accuracy of plant has increased by more than 10%. These results are not surprising since these
categories are usually highly relevant to the context of scene. From Figure 7, we can clearly see that the
detection result in (b) with scene-level information is more accurate than the detection result in (a)
without scene-information. This may because the probability of plant appearing increases with the
introducing of balcony information.
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Table 5. Ablation study on PASCAL VOC 2007 test. All methods are trained on PASCAL VOC
2007trainval+2012trainval. Baseline: faster region-based convolutional network (faster R-CNN). Scene:
only using scene information. The bold characters represent the best result for each column.

Method Map Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train Tv

Baseline 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

scene 75.8 75.9 79.8 76.8 61.8 63.2 84.9 87.1 87.2 59.8 81.3 73.4 86.3 85.9 78.6 77.9 47.9 75.8 75.9 82.3 75.1
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Table 6. Ablation study on MS COCO 2014 minival. All methods are trained on MS COCO train set.
Baseline: Faster R-CNN trained. Scene: only using scene information. The bold characters represent
the best result for each column.

Method AP AP50 AP70 APS APM APL AR1 AR10 AR100 ARS ARM ARL

Baseline 21.1 40.9 19.9 6.7 22.5 32.3 21.5 30.4 30.8 9.9 33.4 49.4
scene 23.5 46.0 22.1 8.2 28.1 37.5 22.7 32.5 33.1 11.8 38.0 52.2

Effectiveness of Relation and Relation Settings: In the second ablation experiment, the validity of
relationship information is evaluated. Here, the scene-level information is ignored in our model and
we only use a set of Relation GRUs for object detection. Experiments are performed on the PASCAL
VOC and MS COCO databases, respectively. From the experimental results shown in Tables 7 and 8,
we can see that the performance of our model with only relationship information is still superior to
the baseline (Faster R-CNN), especially for highly correlated objects. Taking the detection results in
Figure 8 as an example. It is clear that due to the introduction of relation information, the tables and
chairs which are strongly correlated with each other can be more accurately detected. This indicates
the object relationship is very important for detection.

Table 7. Ablation study on PASCAL VOC 2007 test. All methods are trained on PASCAL VOC
2007trainval + 2012trainval. Baseline: Faster R-CNN. Relation: only using object-object relationships.
The bold characters represent the best result for each column.

Method Map Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train Tv

Baseline 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6
Relation 76.4 77.9 80.0 75.1 67.2 62.5 86.0 86.4 88.6 61.0 84.7 72.9 86.8 87.3 77.4 78.7 46.6 76.3 72.9 82.2 76.7

Table 8. Ablation study on MS COCO 2014 minival. All methods are trained on MS COCO train
set. Baseline: Faster R-CNN our trained. Relation: only using object-object relationships. The bold
characters represent the best result for each column.

Method AP AP50 AP70 APS APM APL AR1 AR10 AR100 ARS ARM ARL

Baseline 21.1 40.9 19.9 6.7 22.5 32.3 21.5 30.4 30.8 9.9 33.4 49.4
Relation 24.5 47.4 23.1 8.7 29.7 38.5 23.1 33.3 33.9 12.6 39.5 52.5
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Through the above experiments, we can clearly know that both the scene-level information
and object relationship are beneficial for detection, and they are indispensable. Figure 9 shows the
detection results of some algorithms and our model. It can be seen that our model performs better
when detecting small and highly correlated objects (such as driver, table, chair) due to the message
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passing between scene-level information and object relationship. At the same time, for some objects
with strong correlation with the scene, the detection result is also well (such as the boats in the sea
scene and aeroplanes in the sky scene).
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In order to test whether the number of relation modules will influence the detection result of
our MIFNet, we also conduct an experiment to compare the performances of the proposed model
with different numbers of relation modules. As shown in Table 9, we find that with the increase of the
number of relation modules, the detection accuracy of our model will gradually decrease. This may
because too many relation modules will make the network over-associate two objects. For example,
once an object appears near the table, it will be detected as a chair regardless its feature. Therefore,
we choose one module in the experiment.

Table 9. Comparison of different relation module settings. K × Relation denotes with K connected
relation modules. The bold characters represent the best result for each column.

Database GRU Settings mAP

PASCAL VOC
1 × Relation 77.6
2 × Relation 75.2
3 × Relation 74.7

MS COCO
1 × Relation 29.3
2 × Relation 24.0
3 × Relation 24.0

Effectiveness of GRU Settings and the inputs of GRU: In our network, multiple parallel GRU
units are used to fuse the information of scene-level context and object relationship. In order to study
the effectiveness of different GRU settings, several experiments are conducted. Firstly, we build the
message passing module with different numbers (1 to 3) of GRU units and test their performances.
From the experimental results in Table 10, it can be found that when the number of stacked GRU units
increases from 1 to 2, the mAP decreases. In addition, when the number of stacked GRU units increases
from 2 to 3, no significant performance change can be observed. This indicates that one stacked GRU is
enough for our proposed MIFNet.



Appl. Sci. 2020, 10, 418 17 of 20

Table 10. Comparison of different GRU settings utilized in the attention-based global context
sub-module. The experiments are conducted on PASCAL VOC 2007. (K × GRU) denotes that
there are K stacked GRU units. The bold characters represent the best result for each column.

GRU
Settings mAP Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train Tv

1 ×
GRU 77.6 79.2 79.8 77.4 71.4 63.3 86.3 87.1 89.4 63.1 85.1 72.4 86.7 86.8 78.2 79.0 50.7 77.9 75.4 84.8 77.6

2 ×
GRU 76.9 77.4 79.8 76.8 68.5 63.7 85.6 87.2 87.1 60.4 85.0 70.8 86.3 86.2 79.3 79.3 48.3 76.4 76.7 85.3 77.2

3 ×
GRU 76.9 76.5 80.1 77.2 67.9 62.8 86.7 86.5 87.2 63.1 84.0 71.9 87.0 86.1 77.8 78.7 47.8 76.8 77.6 84.1 76.1

Then, for the purpose of verifying the effectiveness of the message passing module in our MIFNet,
we compare the experimental performances of two methods. The first method uses the scene-level
information and the object relationship information as inputs to the different GRUs, which is the
strategy employed in our approach. The second method is to concatenate the scene-level information
and the object relationship information as one vector and then input this vector to only one GRU.
From the experimental results in Table 11, the detection performances of two different methods are
77.6% and 76.2%, respectively. It is clear that the first method obtains better detection results since
different information can be effectively transmit to each other through the two groups of GRUs in it.
Nevertheless, the second method which directly concatenates different information cannot accomplish
information transmission.

Table 11. Comparison of different inputs of GRU. The experiments are conducted on PASCAL VOC
2007. All methods are trained on PASCAL VOC 2007 trainval + 2012 trainval. GRU1 represents the
inputs are the scene-level information and relationship with objects. GRU2 represents the mixed
information. The bold characters represent the best result for each column.

Settings mAP Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train Tv

GRU1 77.6 79.2 79.8 77.4 71.4 63.3 86.3 87.1 89.4 63.1 85.1 72.4 86.7 86.8 78.2 79.0 50.7 77.9 75.4 84.8 77.6

GRU2 76.2 76.4 80.7 74.9 65.9 62.1 83.7 87.3 87.8 61.6 82.4 67.7 87.2 84.7 78.7 78.4 49.9 77.6 77.2 81.6 77.1

5. Conclusions

This paper proposed a network that fuses both the scene-level and relationship information for
object detection in images. Compared with other methods, the most important advantage of our
approach is that we leverage the attention mechanism to model the relationship between objects
adaptively. Besides, the relationship weights are obtained using not only the geometric structure, but
also the appearance feature of the objects. At last, the scene-level information is also considered in our
model. Two widely used databases are employed in our experiment. From the experimental results,
we can see that through fusing the scene-level and object relationship information, our proposed
MIFNet outperforms some classical and state-of-the-art approaches. Furthermore, some ablation
experiments are also carried out to test the effectiveness of our MIFNet.
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