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Abstract: For micro-grid cost-benefit analyses, both energy production and demand must be estimated
on the long-term of one year. However, there remains a scarcity of studies predicting energy production
and demand simultaneously and in the long-term. By means of programming in R and applying linear,
non-linear, and support vector regression, we show the in depth analysis of the data of a micro-grid on
solar power generation and building energy demand and its potential to be modeled simultaneously
on the term of one year, in relation to electricity costs. We found solar power generation is linearly
related to solar irradiance, but the effect of temperature on total output was less pronounced than
anticipated. Building energy demand was found to be related to multiple parameters of both time and
weather, and could be estimated through a quadratic function in relation to temperature. Models for
both solar power generation and building energy demand could predict electricity costs within 8% of
actual costs, which is not yet the ideal accuracy, but shows potential for future studies. These results
provide important statistics for future studies where building energy consumption of any building
type is correlated in detail to various time and weather parameters.

Keywords: energy demand; long-term forecasting; machine learning; R programming; solar power
generation; support vector regression

1. Introduction

Increasing the share of renewable energy is crucial to overcome climate change, and to target 7.2
of the sustainable development goals to be reached by 2030. Micro-grids are increasingly becoming
more popular as solutions for helping to reach renewable energy goals [1]. Micro-grids allow for local
energy production, often combined with local energy storage, and often combined with an awareness
or ambition to reduce overall energy demand. As micro-grids involve the management of both energy
production and demand, both of these sides need to be predicted simultaneously in order to generate
future cost benefit analyses. What we have found is that there is still a wide gap between predicting
energy production and demand, in terms of scale, time, methodology, and software.

In this study we aim to determine the potential of long-term forecasting (at least one year) of
energy production and demand on the scale of a research building by means of programming with
the software R and applying linear, non-linear, and support vector regression. The research building
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in question is the National Institute of Materials Science (NIMS) NanoGREEN/WPI-MANA building
in Tsukuba, Japan, which has a micro-grid consisting of four arrays of solar panels and has been in
operation since 2013. The raw data per second of this micro-grid contained gaps and erroneous data,
which have been cleansed in a previous study as described [2]. Using the improved data records from
2015 to 2017, we evaluated the potential of predicting future energy demand and energy generation.

Published studies on optimizing building energy consumption have increased 10 fold in the
past 10 years [3]. This has included numerous variations of machine learning studies, which have
explored either the forecasting of building energy demand [4], or renewable energy generation and
weather patterns (for solar irradiance) [5], separate from each other. However, for micro-grid costs
estimations it is necessary to consider these two factors simultaneously. A second shortcoming of
previous studies is that they tend to focus on short term predictions and neglect long-term predictions.
For micro-grid cost and benefit analyses we require long-term future predictions of the amount of solar
power generated and the energy demand of the building. What is considered long- and short-term is
defined differently for energy demand and weather prediction, as seen in Appendix A. According to
the sources in Appendix A, the long-term for solar irradiance, our main weather parameter of interest,
ranges from one day to two months, whereas for energy demand this is 1-10 years. Ideally it would
be useful to predict the costs and benefits of the micro-grid one year ahead, with monthly averages
and hourly estimates, as the electricity price varies per hour. We expect to see reduced solar power
generation over time as the efficiency of the solar panels decreases, and an increase in building energy
demand due to higher occupancy and laboratory use over the years. So far no study has considered
how to incorporate both energy demand and solar power generation by means of machine learning for
the long-term of one year. To reach this, it is important to consider not just the optimum results from
higher-level regression analysis, but also the underlying physical and chemical mechanisms causing
the found results in the actual data and suggest practical solutions based on these principles.

The hypotheses for solar power generation are the following. Larson et al. [6] showed a linear
relationship between solar power generation and solar irradiance. However, it is also shown by
Dupré et al. [7] that temperatures higher than 25 degrees Celsius negatively affect the capability
of crystalline silicon to generate electricity. Similarly, it should perform between 1 and 1.1 times
the normalized efficiency between 25 and 0 degrees Celsius, and presumably even high at colder
temperatures. It is therefore expected to see an influence of temperature as well. Degradation is
expected to lead to reduced efficiency in 2017 as compared to 2015.

The hypotheses for building energy demand are the following: the total building energy demand
consists of purchased electricity, solar power generation, and battery discharging. The amount of
generated solar power is at most around 10% of the total building energy demand and is immediately
consumed by the building [8]. To accurately link back to electricity prices, only purchased electricity
is considered as it is the main contributor. It is expected that building energy demand depends on
building occupancy as well as weather circumstances, with colder and warmer temperatures leading
to higher use of air-conditioning.

2. Materials and Methods

2.1. Data Description

An overview of the parameter names and units is given in Table 1.

e  Micro-grid data, two parameters. An initial cost analysis was performed on the hourly data from
the micro-grid by [8] from April 2013 to March 2018. These data were recorded and obtained
from a different data storage point in the Energy Management System and not yet cleansed.
The data used in this study concerns per second data, from January 2015 to December 2017,
which was obtained from the micro-grid data storage point and was cleansed as described in [9].
It was converted into hourly data to enable analysis with hourly weather data by means of
averaging. Parameters of interest are purchased electricity and total solar power generation.
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For the purpose of this study, battery charging and discharging is ignored as it is of negligible
proportions. The electricity amount and cost reduction function of the battery is active only during
July, August, and September. Previous studies showed this amount is maximally 4.86% of the
total building energy demand [10].

Japan Meteorology Agency (JMA) data, six parameters. The hourly weather parameters for the
corresponding time period of January 2015 to December 2017 were downloaded in csv files from
the JMA website (freely accessible) [11] in batches of one month due to size restrictions. Parameters
of interest are temperature, precipitation, sunlight, wind speed, solar irradiation, and humidity.
Time parameters (6): year (note that due to the total data volume each year is calculated separately),
month, day of month, day of week, hour, holiday.

Electricity cost data, one parameter (see Figure 1). These data were obtained from the Facility
Management Office of NIMS, based on the yearly renewed contract with the Tokyo Electric Power
Company. The Feed in Tariff surcharge for renewable energy is included. Other factors such as
fuel regulatory costs, basic connection to the electricity grid and spare line fees are not included
since these are shared by the entire site and independent of building electricity use.

Table 1. Parameter names and units.

Data Source Parameter Name Parameter Unit
. . total_pv_ac kWHh (alternating current)
REE PI-MANA -
NanoG N/WPE-MANA micro-grid purchased_electricity_kwh kWh
temperature °C
precipitation mm
Japan Meteorological Agency (JMA) §unl1ght numeral (between 0-1 h)
wind_speed m/s
solar_irradiation W/m2
humidity %
month month (1-12)
day_of_month day (1-31)
Time parameters hour_end hour (1-24)
day_of_week day (1-7, starting on Monday)
holiday numeral (0 for no holiday, 1 for holiday)
National Institute of Materials Science electricity price JPY (Japanese Yen)

(NIMS) Facility Management Office

010203040506 07 0809 10 11 12 01 02 03 04 05 06 07 08 09 10 11 1201 02 03 04 05 06 07 08 09 10 11 12
2015 2016 2017

Summer daytime ~ —==Summer peaktime Daytime  =—e=Nighttime

Figure 1. Electricity costs per time period (Japanese Yen/kWh).

2.2. Approach

Machine learning is the ability of a computer to learn from data without explicit programming.

The machine learns from the existing data and predicts future data. In supervised learning, algorithms
build a mathematical model of a set of data that contains both the inputs and the desired outputs,
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so their classification is known [12]. Supervised machine learning can be applied to the data in
two forms:

e Predictive modeling to determine what would be the output if a new (future) input is applied
(to estimate future demand and solar power generation)

e  Prescriptive modeling to optimization what actions should be taken given the data (to estimate
the impact of additional storage devices)

In this study we want to examine the potential of predicting two parameters: solar power
generation and building energy use. We endeavor to evaluate the prediction potential of both
parameters with one model using the same input parameters for weather and time, to see to which
extent accurate electricity cost forecasts can be achieved.

2.3. Motivation for Software Choice

Various software is available for performing machine learning. Given the overview of advantages
and disadvantages shown in Appendix B, we chose the software R (R version 4.0.1) mainly as it deals
efficiently with large datasets, is freely available, and has high data analysis and visualization potential.

2.4. Data Cleansing

After the initial cleansing and averaging of the per second micro-grid data as per [9], additional
cleansing steps were required. The JMA weather data similarly required cleansing. The cleansing of
both datasets are described below. In all cases of missing data, the entire row of data was removed so
as not to lead to invalid correlations.

1.  Removing missing values from the micro-grid data and replacing negative values with 0. For the
micro-grid, this concerned the maintenance days in November (2015: November 14, 8:00-20:00,
2016: November 19, 8:00-19:00, 2017: November 18, 8:00-18:00). Two additional instances were
found to have missing values (2015/11/13 12:00, 2017/09/25 21:00). For solar power generation,
269 negative values were recorded during nighttime in 2017, which were replaced with 0.

2. Removing JMA data with poor data quality. The JMA has excellent record keeping concerning
data quality. Most values have the data quality value of “8: There are no missing data on the
statistical basis (normal value)”. The number of instances when the data quality was less than
this are described in Table 2. Values with data quality values of 4 (10 instances) or 5 (2 instances)
were kept. There were several instances where data was missing for multiple parameters at the
same time.

3. Removing outliers (see SM1: R code for outlier removal). Note that the parameter (relative)
humidity is in % unit, and sunlight is relative to one full hour (1), and therefore these parameters
should not have outliers removed. The hourly electricity price is given based on predetermined
conditions and cannot have outliers. Precipitation occurs intermittently and in irregular amounts,
meaning it is prone to outliers. This leaves three weather parameters and the two micro-grid
parameters to remove outliers for. For the parameters “solar irradiation” and “total pv ac” outliers
were calculated without taking the values of 0 into account. Extreme outliers were removed by
calculating three times the interquartile range (iqr) using the following code:

extreme_threshold_upper = (iqr * 3)+ upperq (1)
extreme_threshold_lower = lowerq — (iqr * 3) )

Boxplot results were used to show the difference before and after outlier removal. As an example,
Figure 2 shows the data before and after removing outliers for the parameter wind speed,
using data from 2015. Outliers were checked for overlap between parameters and consequently
removed. Before outlier removal the standard deviation, mean, minimum and maximum values
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were calculated for the five parameters: wind speed, temperature, solar irradiation, total pv ac,
and purchased electricity, for each year. Table 3 gives an overview of the found outliers.

4. Removing additional outliers occurring around maintenance days. After removal of the values
in steps 1-3, we observed several remaining uncharacteristic data values occurring around the
maintenance days. As example, from November 13 to 16 in 2015 the values for purchased
electricity from the micro-grid were uncharacteristically low. The cause of these low values is
most likely the shutdown of electricity dependent equipment in anticipation of and in reaction to
the maintenance procedures, during which all electricity through the main power line is stopped.
This led to the removal of 47 rows of data in 2015; 47 in 2016 and 49 in 2017. After this final
removal step the standard deviation, mean, minimum and maximum values were calculated
for the five parameters wind speed, temperature, solar irradiation, total pv ac, and purchased
electricity, for each year.

Table 2. Overview of data quality values of JMA parameters.

Year 2015 2016 2017 2015 2016 2017 2015 2016 2017
JMA weather 5: There is a deﬁci_t of 20% or less 4: There is a deficit exce'eding 1: There is no statistical
. of the data that is the basis of 20% in the data underlying the .
parameter data quality statistics (quasi-normal value) statistics (lack of data) value (missing)
1 Temperature - - - - - - - - 2
2 Precipitation - - - - - - - - -
3 Sunlight - - 1 - 1 3 - - 22
4 Wind speed - - - - - - 1 2
5 Solar irradiance 1 - - 2 2 2 1 - 2
6 Humidity - - - - - - - 2

new
|
_—

Wind speed

Figure 2. Data points before and after removing outliers of the parameter “Wind speed” in data
from 2015.

Table 3. Outliers removed per parameter and per year.

Parameter Name 2015 2016 2017
wind_speed 88 68 100
temperature 0 0 0

solar_irradiation 0 0 0
total_pv_ac 0 0 0

purchased_electricity_kwh 2 0 0

2.5. Data Exploration (See SM2: R Code for Data Exploration Graphs)

The main exploration of the relationships between the different parameters was performed
through means of plotting different combinations of parameters:

e  Generated solar power/building energy demand in relation to various individual parameters per
month and hour of the day, with values color coded by e.g., temperature, based on Boeye [13].
e  All parameters correlated to each other through the ggpairs package, based on [14].
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2.6. Solar Power Generation—Linear Regression and Support Vector Regression (See SM3: R Code for Linear
Regression and SVR (Support Vector Regression))

To test the relationship of solar power generation (parameter name: total_pv_ac) and solar
irradiation, the SVM package 1701 for R was applied as described in [15]. This procedure first
calculated the root square mean error by means of a linear regression model, after which improvement
was attempted through support vector regression, leading to a non-linear model. As is standard,
the parameter epsilon (margin band width) should be higher than 0 to prevent overfitting, but not too
high as then too few support vectors are selected. Similarly, the parameter c (cost) should be higher
than 0 in order to penalize some points, but not too high which would have all points within the margin
penalized. The calculated ideal epsilon and cost values were plotted in a graph. The initial models
took just over 1 h to generate per year. Tuning the models took around 3 h for each year. The total
calculation time was over 12 h. For those readers interested in designing similar methods in greater
detail, we refer to Karatzoglou [16].

2.7. Building Energy Demand—Non-Linear Regression (See SM4: R Code for Plotting Nonlinear Regression)

Data exploration showed that purchased electricity was not directly linearly related to any one
parameter. It was linked to temperature through a quadratic equation obtained through non-linear
regression as described by Sagar [17].

The temperature/month was seen to have a U shaped relationship to building energy demand.
Closer inspection revealed two concentrated superimposed curves. Therefore, the influence of
combinations each of the different time parameters was checked by splitting the data into a series of
8 test cases as described in Table 4. Day time was defined as 5-19 h and night time was defined as 14,
and 20-24 h. This was based on the parameter sunlight over the course of a year, as values higher than
0 were recorded from hours 5-19. Similar graphs were prepared as during data exploration using the

ggpairs package.

Table 4. Details of eight cases of data splitting to examine the effects on purchased electricity.

Case# Dayof Week  Time of Day Holiday
1 Weekday Day time No holiday
2 Weekday Day time Holiday
3 Weekday Night time No holiday
4 Weekday Night time Holiday
5 Weekend Day time No holiday
6 Weekend Day time Holiday
7 Weekend Night time No holiday
8 Weekend Night time Holiday

2.8. Electricity Prices

To calculate the price per hour to correspond to specific time periods, a formula in Excel was used
(Appendix C). This formula initially checks if it is either a holiday or Sunday, subsequently if it is not
summer and which time of day it is (two corresponding price categories), and finally if it is summer
and which time of day it is (three corresponding price categories). The monthly electricity prices per
time category (summer daytime, summer peak time, day time, and holiday/night time, all including
the Feed in Tariff surcharges) were stored in a separate sheet, as were the known holidays.

Note that special care should be taken when applying the known electricity prices per hour
during the days surrounding maintenance in November for two reasons: the total electricity use is
uncharacteristically low, and the micro-grid is also disconnected during at least one day, which means
that solar power generation is missing during that day. This leads to abnormal total prices for both
parameters if these values are not excluded from the datasets.
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To check the validity of the found relationships for the two micro-grid parameters, the average of
the two equations found in previous steps were entered into the actual data to calculate hypothetical
values for both solar power generation and purchased electricity, which were consequently linked to
electricity price. Given the uncertainty of the improvement of SVR, the linear regression equation was
applied to solar power generation. Due to the negative intercept (a) negative values for solar power
generation were changed to 0. The results were compared with the actual data from 2015 to 2017,
and their differences described.

3. Results

3.1. Data Cleansing (See SM5: R Code for Data Rows Graph)

Both 2015 and 2017 had 365 (days)*24 (hours) = 8,760 rows of parameters for hourly data. However,
2016 was a leap year and therefore included February 29, which led to 366 (days)*24 (hours) = 8,784
rows of parameters. After data cleansing the amount of data remaining from 2015, 2016, and 2017 was
98.54%, 98.36%, and 97.93% respectively. (See Figure 3, based on code from [18]).

2017 o . e Data rows before cleansing
® Data rows after cleansing

2016 L .

year

2015 . .
8600 8650 8700 8750
Data rows before and after data cleansing

Figure 3. Amount of data before and after cleansing.

The differences in the standard deviation (SD), mean, minimum and maximum values of five
parameters before outlier removal and after the final removal of uncharacteristic values are shown
in Table 5.

Table 5. Standard deviation, mean, minimum and maximum values of five parameters before outlier
removal and after the final data cleansing step.

Parameter 2015 2016 2017
Pre-Cleansing Post-Cleansing Pre-Cleansing Post-Cleansing Pre-Cleansing Post-Cleansing
Wind speed SD 1.304764 1.188131 1.266143 1.167836 1.267896 1131123
Mean 2.285958 2.233074 2.265922 2.226386 2.235808 2.174749
Min 0 0 0 0 0 0
Max 10 6.9 10.5 6.9 11.1 6.6
Temperature SD 8.567907 8.599083 8.737433 8.760915 9.043145 9.069151
Mean 14.9803 14.98214 14.95232 14.96025 14.28081 14.32673
Min -6.3 -6.3 —-6.0 -6.0 -6.5 -6.5
Max 35.6 35.6 35.5 35.5 344 34.4
Solar irradiation SD 0.9289794 0.9274603 0.9168617 0.9157871 0.9353226 0.9356301
Mean 1.058775 1.049586 1.058818 1.056141 1.103574 1.094547
Min 0.01 0.01 0.01 0.01 0.01 0.01
Max 3.54 3.54 3.64 3.64 3.63 3.63
Total pv ac SD 18.35157 18.27055 17.2445 17.20114 17.07312 17.04483
Mean 23.1429 22.89964 22.08021 22.02548 22.62292 22.40334
Min  0.000466667 0.000466667 0.000466667 0.000466667 0.000466667 0.000466667
Max 66.8908 66.8908 66.43907 66.43907 63.05009 63.05009
Purchased electricity ~ SD 111.1321 109.3086 122.9744 120.7636 1155117 113.9781
Mean 597.4223 598.4304 648.3106 649.815 692.5064 693.0694
Min 212.8308 377.3867 218.2507 409.1167 276.9287 459.414
Max 1138.182 1045.367 1105.39 1105.39 1133.443 1133.443
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These results show that removing outliers of wind speed, total pv ac and purchased electricity
does not greatly affect the standard deviation of all five parameters. It is interesting to note that whereas
the maximum of solar irradiation has increased from 2015 to 2016 and stayed nearly the same between
2016 and 2017, the maximum solar power generated (total pv ac) is decreasing every year.

3.2. Data Exploration

The top of Figure 4 shows the amount of generated solar power per month and hour of the day,
with values color coded by temperature; the bottom shows the amount of building energy demand for
the same criteria; both for the year 2015. The top shows the expected relation of more solar power
being generated during hours of sunlight. The bottom shows a clear baseline of energy demand related
to storage and other research related equipment in the building, with peaks in energy demand in
winter and summer months for the heating, ventilation, and air-conditioning system.

Temperature (°C)

1

z
o
>
2

b}

0 5 10 15 20 250 5 0 15 20 250 5
Hour of day (h)

LU 09| ggaeior? Live || seqen

] 5 10 15 20 250 5 10 15 20 250 5 10 15 20 250 5 10 15 20 25
Hour of day (h)

Figure 4. Generated solar power/building energy demand per month and hour of the day, with values
color coded by temperature; 2015 data.

Figure 5 shows a cross comparison between 13 tested factors for correlation, with the data from 2015.
For all years, solar power generation and solar irradiance were found to be highly correlated to each
other (0.988-0.991), and both were found to be highly correlated to sunlight, and inversely correlated
to humidity. They were both weakly correlated to temperature and wind speed. Other weather
factors were also correlated in various degrees to each other and to the time parameters month
and hour. Purchased electricity (building energy demand without micro-grid contributions) was
found to be highly correlated to the day of the week, hour of the day, and temperature extremes
(high from July to September, and especially in the morning hours of December to February). It is
weakly correlated to holidays and other weather parameters sunlight, wind speed, solar irradiation,
and humidity (inversed).
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Figure 5. All parameters correlated to each other through the ggpairs package; 2015 data.
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3.3. Solar Power Generation

The linear model had the format of (y = a + b * x). Smoothing the curve through means of support
vector regression (red line, formed by x symbols, in Figure 6) shows a better fit than through the linear
model (LM) (blue line, formed by x symbols, in Figure 6). Table 6 shows the difference in Root Square
Mean Errors (RSME) for each year, proving the worth of applying support vector regression for 2015
and 2016, though it takes some computing time. For 2017, surprisingly the linear regression model
showed less error than the SVR. This means that SVR cannot be applied haphazardly but must be
tested against linear regression models. The values for epsilon and cost in Table 6 and Figure 7 show
the epsilon parameters were all low, leaning towards overfitting of the models. The cost parameter
found in 2016 was rather high, which also creates allows for few errors during classification. As SVR
generates new models randomly, it may be necessary to compare the results of several runs repetitively
even though one execution already creates dozens of models, in order to examine the differences.

50 60
| | |

30

Total pv ac (kWh)
40

0.0 05 10 15 20 25 30 35
Solar irradiation (W/m?)

Figure 6. Linear (blue line) and Support Vector (red line) Regression of two parameters for 2015 data.

Table 6. Coefficients and Root Square Mean Errors (RSME) and parameters of Linear Models (LM)
(y = a + b *x), Support Vector Regression (SVR), and tuned SVR models.

Year Intercept (a) Slope(b) LMRSME SVRRSME Tuned SVRRSME Epsilon Cost

2015 -0.5101 19.2985 2.527038 2.37958 2.263242 0.08 8

2016 —-0.5088 18.4918 2.204646 1.974913 1.888035 0.06 128

2017 —-0.4922 18.0549 2.181584 2.37958 2.263037 0.08 4
Average -0.5037 18.61506667

Performance of ‘'svm®

cost

0.00 0.05 0.10 0.15 020 0.25 0.30

epsilon
Figure 7. Epsilon and costs factors by SVR; 2015 data.
3.4. Building Energy Demand

Figure 8 shows the equation found through non-linear regression to best describe the
relationship between purchased energy and temperature for 2015. This equation has the format
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of y=a—-b*x+c*x? where y is purchased electricity, x is temperature, a is the intercept, b is
the slope, and c the exponential curve. Results from all years are shown in Table 7, including the
error difference between linear and non-linear models. The non-linear model error is lower than
the linear model error for all cases. However, the data seem to show two superimposed u-shaped
curves, suggesting a third parameter is affecting the results and it may be possible to generate two
equations to better model the data. To enable this, the data were separated into 8 cases as described
in Table 4. The subsequent results showed no clear effect of any combination of parameters on the
purchased electricity. Figure 9 shows the effect of temperature, month, and hour on the purchased
electricity from 2015. This illustrates there is no distinguishable repetitive difference in effects between
temperature and hours of the day during which the building is occupied on the purchased electricity,
which was expected.

900 1000
1

800

500
1

Purchased electricity (kWh)
700

Temperature (°C)

Figure 8. Quadratic equation relating purchased electricity to temperature; 2015 data.

Table 7. Parameters for the quadratic equation (6) describing the relationship between temperature
and purchased electricity. All had 1 iteration to convergence.

Year LM Error  NLM Error  Intercept(a)  Slope (b) Curve (¢)  Residual Sum of Squares Tolerance

2015 107.3204 99.04455 633.1747 12.7784 0.5251 84,442,961 1.83 x 1077
2016 113.8353 103.4177 660.1028 13.3542 0.6305 92,577,853 4283 x 1070
2017 109.8714 102.973 698.3077 9.8411 0.4722 90,956,240 8.543 x 107°
Average 663.8617333  11.99123333 0.5426
hour_end
o1 6 12 1@ 0 24
1 2 4
200
700 [ oo gl B o
e % e, TR L,
i;goo
é 700 : %

900

700

500 %I

Temperature (C)

Figure 9. Purchased electricity per month, temperature, and hour of the day; 2015 data.
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3.5. Electricity Prices

Table 8 shows the results of applying the predicted equations for solar power generation and
purchased electricity to the electricity price totals in comparison to the actual electricity price totals.
The equations” accuracy varied from +6 to —8% of actual prices, with purchased energy showing the
greatest variation.

Table 8. Electricity prices in 1000 JPY and % correctly modeled per micro-grid parameter (costs saved
vs. remaining costs) for both actual data and estimated data based on modeled equations.

Parameter 2015 2015 % 2016 2016 % 2017 2017 %

total_pv_ac (costs saved) 1579 1557 —-1.36% 1594 1643 +3.08% 1651 1740  +5.41%
purchased_electricity_kwh (costs made) 86,669 92,049 +6.21% 99,253 97,304 -1.96% 107,646 99,142 -7.90%

4. Discussion

Two different types of models were used to estimate the relationships between the micro-grid
parameters on the one hand, and weather and time parameters on the other. This is due to the
dependencies found in the exploratory data analysis phase.

This analysis showed a linear relationship between solar power generation and solar irradiance,
which was not always improved by applying support vector regression. The effects of temperature
on solar power generation were different than anticipated. Figure 4 shows that whereas higher
temperatures of 30-35 degrees Celsius indeed lead to less produced solar power (a maximum of around
60 kWh whereas colder temperatures showed higher production); lower temperatures of —5-0 degrees
Celsius lead to far less produced solar power of 40 kWh. Although the efficiency may be higher,
the lack of solar irradiation has a far greater effect than temperature. The electricity costs saved by
generated solar power were overestimated by 3% in 2016 and 5% in 2017, suggesting that degradation
has a considerable effect on the total generated solar power and, although hidden, should be taken into
account in future models.

To examine the hypothesis that temperature could have a large influence on purchased energy,
a quadratic equation was found to describe this relationship. At times when the building was occupied,
temperature extremes did show a higher effect on purchased electricity (Figure 4). Applying the
equation to hourly electricity costs led to over- and underestimations of the actual costs of 6% and 8%
respectively. With annual costs running up to around 100,000,000 JPY, it is desirable to have an accuracy
within 1% or less, which this simplified equation has not yet achieved. Purchased energy was found to
be dependent on numerous other variables, namely, month, hour of day, day of week, holiday or not,
and other weather parameters. Splitting the data into groups as per table IV did not lead to a clear
distinction, as the month of the year still had a substantial influence as shown in Figure 9. A more
inclusive approach incorporating all of these parameters might produce better results, especially if
the hidden factor of building occupancy, or of purchased electricity base demand, is estimated for
each hour.

To enable predictions of up to one year into the future by means of machine learning, the first
step in improving these equations are to incorporate solar power generation efficiency degradation
on the one hand, and the complex interactions of time parameters leading to building occupancy on
the other hand. If these improvements can lead to more accurate cost predictions within 1% error
margin, the second step is to predict associated weather parameters for up to one year, mainly solar
irradiance and temperature. As these two parameters influence each other, and this study showed that
purchased electricity had a higher correlation to solar irradiance than to temperature (Figure 5), it may
even be possible to have a single weather parameter predict both micro-grid parameters. This would
simplify the number of unknowns that have to be predicted. Alternatively, if many weather factors
can be predicted with great accuracy, the reverse approach may be taken. Sharma et al. [5] found
that solar irradiance can be inferred from the parameters day of the year, temperature, dew point,
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wind speed, sky cover (alternatively sun hours), precipitation, and humidity. If the input weather
parameters can be predicted with sufficient accuracy, it is worthwhile to compare the results to using
only solar irradiance as input.

Although linear, non-linear, and support vector regression were adequate in uncovering the
relationships and the strength of relationship between the various parameters, it was not yet successful
in defining the complex interplay that leads to purchased electricity. A future study applying principal
component regression, such as done by Davo et al. [19], may resolve how to best model purchased
electricity with the greatest accuracy combined with the least number of parameters.

5. Conclusions

The equations resulting from linear, non-linear, and support vector regression allowed for
long-term (one year) predictions of related electricity costs that were within 7.9% accuracy of actual
costs. This study further found evidence supporting the potential to model both solar power generation
and building energy consumption simultaneously, based on the parameter of solar irradiance and in
combination with known time parameters affecting building occupancy.

This study is the first to attempt to predict both energy demand and production on a long-term scale
using R software in combination with actual micro-grid data records. The cross correlations generated
between all input parameters and generated equations provide important indications as to how to
integrate energy demand and production into one model with potentially one weather parameter,
solar irradiance, as input. For future studies on building energy consumption and solar power
generation, this study provides an important basis for evaluating which weather and time parameters
to consider during data exploration, as well as correlation methods. It furthermore shows how applying
actual data records can assist directly in improving model accuracy. Finally, all the documentation
on R codes used during the data exploration and analysis phases is provided as appendices and
Supplementary Materials, which facilitates replicating the steps taken with other datasets.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/13/4462/s1,
SM1: R code for outlier removal, SM2: R code for data exploration graphs, SM3: R code for linear regression
and SVR, SM4: R code for plotting nonlinear regression; SM5: R code for data rows graph. Datasets related
to this article can be found at https://doi.org/10.6084/m9.figshare.c.4176698, hosted at figshare (2018), or https:
//doi.org/10.11503/nims.1003, hosted at NIMS IMEJI (2018).
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Appendix A
Table A1. Differing forecasting horizons from previous prediction studies.
Parameter Long Term Medium Term  Short Term  Reference
Solar irradiance 1-3 days 1-6h 15 min-2 h [20]
Solar irradiance 28-45h (1 day) 1-6h - [21]
Solar irradiance 1 month 1 day 1 min [22]
Building energy demand 1-10 years 1 month-1year 1h-1week [23]

Building energy demand > 1 year 1 week-1 year 1 h-1 week [24]
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Table A2. Advantages and disadvantages of different software for supervised machine learning [25,26].

Software R Python Java SAS SPSS
General purpose
programming Programming -
D?V? lopeq by language, simple to language and Statistical Analysis Statistical Pac_kage
statisticians, aimed at for the Social
handling numerical read, used for computer platform; System, developed Sciences, the first
Description values: procedural websites; object object oriented for analyzing large statiétical
languzzlge (step by oriented (bundles (bundles procedures quantities of programming
step subroutines) procedures and data  and data together as agriculture data language for the PC

together as parts
of objects)

parts of objects)

Free, easy to learn,
many options for
data visualization,

Free, easy to learn,

Easy to handle large

Good user interface,
official support, easy

Advantages suited for S fatistical built-in debugging High speed datasets to learn and write
analysis and L
code, similar to Excel

explanatory and

predictive modeling

No official support Slow with large Not strong in Slow with large

Disadvantages . statistical modeling ~ High learning curve

or user interface datasets datasets

and visualization

Appendix C

Excel formula for electricity prices:

IF(OR(K3 = 1,I3 = “Sunday”), VLOOKUP(C3,electricityprice!C$2:H$74,5, FALSE),
IF(AND(J3<>"Summer”,P3 > = 8,P3 < = 21),VLOOKUP(C3electricityprice!C$2:H$74,4,FALSE),
IF(AND(J3<>"Summer”,P3<=7),VLOOKUP(C3,electricityprice!C$2:H$74,5, FALSE),
IF(AND(J3<>"Summer”,P3>=22), VLOOKUP(C3,electricityprice! C$2:H$74,5 FALSE),
IF(AND(J3 = “Summer”,P3 > = 13,P3 < = 15),VLOOKUP(C3, electricityprice!C$2:H$74,3, FALSE),
IF(AND(J3 = “Summer”,P3 > = 16,P3 < = 21), VLOOKUP(C3,electricityprice! C$2:H$74,2, FALSE),
IF(AND(J3 = “Summer”,P3 > = 8,P3 < = 12), VLOOKUP(C3,electricityprice! C$2:H$74,2, FALSE),
IF(AND(J3 = “Summer”,P3 < = 7), VLOOKUP(C3 electricityprice!C$2:H$744,5, FALSE),
IF(AND(J3 = “Summer”,P3 > = 22), VLOOKUP(C3 electricityprice!C$2:H$74,5,FALSE),
-999999)))))))
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