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Abstract: A spillway is a structure used to regulate the discharge flowing from hydraulic structures
such as a dam. It also helps to dissipate the excess energy of water through the still basins.
Therefore, it has a significant effect on the safety of the dam. One of the most serious problems
that may be happening below the spillway is bed scouring, which leads to soil erosion and
spillway failure. This will happen due to the high flow velocity on the spillway. In this study,
an alternative to the conventional methods was employed to predict scour depth (SD) downstream of
the ski-jump spillway. A novel optimization algorithm, namely, Harris hawks optimization (HHO),
was proposed to enhance the performance of an artificial neural network (ANN) to predict the SD.
The performance of the new hybrid ANN-HHO model was compared with two hybrid models,
namely, the particle swarm optimization with ANN (ANN-PSO) model and the genetic algorithm
with ANN (ANN-GA) model to illustrate the efficiency of ANN-HHO. Additionally, the results of
the three hybrid models were compared with the traditional ANN and the empirical Wu model
(WM) through performance metrics, viz., mean absolute error (MAE), root mean square error
(RMSE), coefficient of correlation (CC), Willmott index (WI), mean absolute percentage error (MAPE),
and through graphical interpretation (line, scatter, and box plots, and Taylor diagram). Results of the
analysis revealed that the ANN-HHO model (MAE = 0.1760 m, RMSE = 0.2538 m) outperformed
ANN-PSO (MAE = 0.2094 m, RMSE = 0.2891 m), ANN-GA (MAE = 0.2178 m, RMSE = 0.2981 m),
ANN (MAE = 0.2494 m, RMSE = 0.3152 m) and WM (MAE = 0.1868 m, RMSE = 0.2701 m) models in
the testing period. Besides, graphical inspection displays better accuracy of the ANN-HHO model
than ANN-PSO, ANN-GA, ANN, and WM models for prediction of SD around the ski-jump spillway.

Keywords: artificial neural networks; genetic algorithm; particle swarm optimization; harris hawks
optimization; scour depth; ski-jump spillway
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1. Introduction

Dams are among the superstructures that require very precise studies to explore every part of
them from many aspects of safety, performance, and environment. The main part of these structures is
their spillway, which enables operators to dispose of excess inflows to reservoirs in a controlled or
uncontrolled manner. When water with high velocity is passing through the spillway, it should be
designed with energy dissipaters downstream. Ski jumps taking away water from the bucket and into
the air in the form of a water jet are among widely used energy dissipaters in spillways. At the outlet
of these spillways where water jets to the riverbed, a plunge pool is formed due to the energy of the
high-velocity water, which is often capable of excavating holes into even hard rocks and soil. In order
to prevent any possible erosion and to control the stability of the dam body and other structures
accurately, and to have a safe design facing the dynamic process of this phenomena, precise prediction
of this scouring is critical.

Physical hydraulic models and mathematical simulation are among practices employed in studying
hydraulic related phenomena including erosion and scour. Being time and cost-inefficient, physical
hydraulic models are merely employed in the final phases of studies. In addition, the reliability of
these models is still questionable [1]. With advances in computer science, computational fluid dynamics
(CFD) methods have been broadly used in these studies [2]. However, complexities and computational
limitations are still drawbacks of these methods. Therefore, researchers are still investigating an easy
and immediate technique for initial estimates of scour in the feasibility study phase.

In this regard, due to the growing interest in using soft computing practices recently in several
disciplines [3], researchers used these techniques to estimate scour depth for different hydraulic
structures [1,4–13]. Artificial neural networks (ANN) is a branch of artificial intelligence (AI), which are
capable of perceiving complex nonlinear behavior of phenomena [6]. This approach, which is inspired
by human brains’ functions, is employed in prediction studies of several hydraulic parameters [14–20].
Moreover, it has been used in the estimation of equilibrium bridge pier scour effectively [21,22].
Recently, Sharafati et al. [23] predicted scour depth downstream of weirs by employing the adaptive
neuro-fuzzy inference system (ANFIS) coupled with biogeography based optimization (ANFIS-BBO),
invasive weed optimization (ANFIS-IWO) and teaching-learning based optimization (ANFIS-TLBO)
algorithms. They found better performance with the ANFIS-IWO model (RMSE = 0.148) over the
other models. Table 1 summarizes a brief review of the application of soft computing techniques in
hydraulic structures studies.

Due to uncertainties in soft computing modeling techniques, including the topology of the
network and training algorithms, scientists have employed a broad range of techniques to improve
the performance of these approaches. Applying different optimization tools has been among these
solutions. To this end, ANNs and then other standalone intelligent models were combined with
evolutionary algorithms such as genetic algorithms (GA) or particle swarm optimization (PSO) as
optimization tools by numerous researchers to estimate scour depth at bridge piers [24]. Varaki et
al. [25] evaluated the ability of a hybrid intelligent model (ANFIS-GA) in the estimation of scour
depth around inclined bridge piers. Karkheiran et al. [26] developed two hybrid models, namely,
ANN-APSO and ANN-GA, to predict scour depth at bridge piers and concluded that the models
were more reliable in terms of precision and time consumption. Sreedhara and Mandal [27] developed
a hybrid swarm intelligence-based support vector machine (PSO-SVM) method for the prediction of
scour depth around bridge pier with different kernel functions. It was found that PSO-SVM with the
radial basis function (RBF) kernel function model was more reliable in predicting scour depth around
bridge piers. Dang et al. [28] applied hybrid models of particle swarm optimization (PSO) and firefly
algorithms (FFA) with ANN to optimize the parameters of the ANN model to improve estimating the
pier scour depth. The results of these hybrid models were compared with the results of the standalone
ANN model trained by the Levenberg–Marquardt (LM) algorithm and with an empirical formula.
Results showed a better performance of the developed hybrid models.
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In a related context, recently intense application of soft computing techniques (simple and hybrid)
has been found in civil engineering for modeling various aspects such as prediction of safety factor
values of retaining walls [29], prediction of the critical buckling load of structural members under
compression [30], estimation of surface treatment effects on the tribological performance of steel
tools [31], modeling the Marshall stability of stone matrix asphalt materials [32], estimation of soil
compression coefficient [33], rock tensile strength prediction [34], and forecasting pile settlement [35].

This study employs a novel hybrid optimization tool, namely, Harris hawks optimization (HHO)
algorithm, for finding the most appropriate parameters of an ANN model for estimating scour depth
downstream of a ski-jump spillway. To the best knowledge of the authors, there is no literature on
the application of this hybrid ANN-HHO model in hydraulics and especially for the prediction of
scouring depth downstream of hydraulic structures. The hybrid ANN-HHO model was employed
in some cases in other disciplines such as Moayedi et al. [36] used ANN-HHO in predicting the soil
compression coefficient and Essa et al. [37] applied it in a prediction of the productivity of distilling
systems. Therefore, in the present research, three hybrid intelligent models ANN-HHO, ANN-PSO,
and ANN-GA with the standalone ANN technique, and the Wu model were employed to predict
scour depth downstream of a ski-jump spillway. The effectiveness of these models during training
and testing was evaluated using five performance metrics (i.e., mean absolute error: MAE, root mean
square error: RMSE, coefficient of correlation: CC, Willmott index: WI, and mean absolute percentage
error: MAPE) and graphical interpretation (line, scatter, and box plots, and Taylor diagram).
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Table 1. Review of application of soft computing techniques in hydraulic structures studies.

Scholar(s)

Soft Computing Techniques

Highlight
Regression

Genetic
Programming

(GP)
Neuro-Fuzzy ANN ANN-GA ANN-PSO Other

Techniques

Azamathullah et al. [38] × × GP models are more accurate than ANN

Bateni et al. [21] × ×
Multilayer perception with back-propagation algorithm

(MLP/BP) provides better prediction than ANFIS

Muzzammil [6] × ×
ANN has been found better than the conventional

regression models

Guven et al. [12] × × ×

Linear genetic programming (LGP) models were
observed to be quite better than ANFIS and

regression-based equation

Adarsh [13] × × ×

GP shows remarkably good performance in capturing
nonlinear relationship between the predictors and

predictands

Bonakdari et al. [5] × ×
GA was a little better than back-error propagation (BEP)

technique

Azamathullah et al. [24] × ×
The performance of GP was found more effective when

compared to regression equations and ANNs

Emamgholizadeh [19] ×

The results of this research indicate that the
MLP/BP model can predict the scour cone volume and

length efficiently

Tahershamsi et al. [17] ×

Results show that the neural network can adequately
estimate and MLP with one hidden layer and eight

hidden neurons was selected as the optimum network to
predict the regime width

Onen [18] × × ×

The performance of GEP was found in slightly more
influential than the ANN approach and multiple

nonlinear regression (MNLR)

Najafzadeh and Azamathulla [22] × × ×

Application of evolutionary algorithms was used
successfully as powerful soft computing tools as the

other artificial intelligence methods
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Table 1. Cont.

Scholar(s)

Soft Computing Techniques

Highlight
Regression

Genetic
Programming

(GP)
Neuro-Fuzzy ANN ANN-GA ANN-PSO Other

Techniques

Najafzadeh et al. [10] × × Model tree approach yielded the most precise predictions

Noori et al. [11] ×
Multiple linear regression (MLR) results were also

superior to those of well-known empirical equations

Pourzangbar et al. [15] × ×

The results indicated that both the GP and ANNs models
functioned significantly better than the existing empirical
formulas. Furthermore, the capability of GP was used to

produce meaningful mathematical rules

Varaki et al. [25] × ×
Comparison of results indicated that optimization of

ANFIS parameters improved the accuracy of prediction

Parsaie et al. [9] × × ×

Comparing the accuracy of SVM with ANN and SVM
showed that the accuracy of SVM was a bit better than

ANN

Karkheiran et al. [26] × ×

It can be seen that the ANN-GA algorithm has the best
fitness values compared to those of the ANN-APSO

algorithm

Zounemat-Kermani et al. [39] × ×
Numerical tests indicate that feed-forward

backpropagation (FFBP) model provides better prediction
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2. Materials and Methods

2.1. Data Collection

Estimating scour depth downstream of ski-jump bucket spillways has been studied in hydraulics
laboratories over previous years. The Veronese formula, which suggests scouring as Equation (1),
has been most widely used in scouring studies of these spillways [40]:

ds = 1.90H1
0.225q0.54 (1)

where, ds represent the vertical depth of scour below tailwater (m), H1 shows the effective energy of jet
in tailwater (m), and q denotes the specific discharge passing through the spillway (m3/sec/m). Besides,
Wu [41] suggested Equation (2) and Martins [42] proposed Equation (3) for estimating relative scour in
ski-jump spillways:

SD = 2.11

 q√
qH3

1


0.51

(2)

where, SD =
(

ds
H1

)
ds = 1.5q0.6H1

0.1 (3)

2.2. Case Study

Experimental work conducted by previous studies was considered as a case study in this research.
Therefore, data collected by Azamathulla et al. [38] were employed to study selected algorithms and
their performance in SD estimation. In this study, scour depth (m) is taken as dependent variable and(

q
gH3

1

)
as independent variable of the ANN network. The data set of Azamathulla et al. [38] includes

82 experiment data, in which 68 numbers were selected as the training data set and the other 14 were
for testing the network’s performance. Figure 1 shows the cross-sectional view of ski-jump spillway
scour adopted by Azamathulla et al. [38]. In Figure 1, q is the discharge intensity, H1 height of fall, R is
the radius of the bucket, φ is the angle of bucket lip, ds represent the vertical depth of scouring, T.W.L
is tailwater level, dw is downstream water depth, and G.L. is the ground level. Table 2 presents the
statistical parameters of the dataset used in this study.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 19 

2. Materials and Methods 

2.1. Data Collection 

Estimating scour depth downstream of ski-jump bucket spillways has been studied in 
hydraulics laboratories over previous years. The Veronese formula, which suggests scouring as 
Equation (1), has been most widely used in scouring studies of these spillways [40]: 𝑑𝑠 = 1.90𝐻 . 𝑞 .  (1) 

where, ds represent the vertical depth of scour below tailwater (m), H1 shows the effective energy of 
jet in tailwater (m), and q denotes the specific discharge passing through the spillway (m3/sec/m). 
Besides, Wu [41] suggested Equation (2) and Martins [42] proposed Equation (3) for estimating 
relative scour in ski-jump spillways: 

𝑆𝐷 = 2.11 𝑞𝑞𝐻 .
 (2) 

where, SD =  𝑑𝑠 = 1.5𝑞 . 𝐻 .  (3) 

2.2. Case Study 

Experimental work conducted by previous studies was considered as a case study in this 
research. Therefore, data collected by Azamathulla et al. [38] were employed to study selected 
algorithms and their performance in SD estimation. In this study, scour depth (m) is taken as 
dependent variable and  as independent variable of the ANN network. The data set of 

Azamathulla et al. [38] includes 82 experiment data, in which 68 numbers were selected as the 
training data set and the other 14 were for testing the network’s performance. Figure 1 shows the 
cross-sectional view of ski-jump spillway scour adopted by Azamathulla et al. [38]. In Figure 1, q is 
the discharge intensity, H1 height of fall, R is the radius of the bucket, ϕ is the angle of bucket lip, ds 
represent the vertical depth of scouring, T.W.L is tailwater level, dw is downstream water depth, and 
G.L. is the ground level. Table 2 presents the statistical parameters of the dataset used in this study. 

 
Figure 1. A schematic cross-sectional view of ski-jump spillway scour. 

Table 2. Statistical parameters of data. 

 Dataset Mean Maximum Minimum Standard 
Deviation 

Coefficient of 
Variation 

Inputs 
Total  0.1669 4.4699 0.0040 0.5208 3.1208 

Training  0.1869 4.4699 0.0040 0.5700 3.0496 

Figure 1. A schematic cross-sectional view of ski-jump spillway scour.



Appl. Sci. 2020, 10, 5160 7 of 19

Table 2. Statistical parameters of data.

Dataset Mean Maximum Minimum Standard
Deviation

Coefficient
of Variation

Inputs(
q

gH3
1

) Total 0.1669 4.4699 0.0040 0.5208 3.1208
Training 0.1869 4.4699 0.0040 0.5700 3.0496
Testing 0.0696 0.1850 0.0088 0.0562 0.8073

Output
(SD)

Total 0.7146 6.3500 0.0572 0.8318 1.1641
Training 0.7315 6.3500 0.0572 0.8986 1.2285
Testing 0.6323 1.2936 0.1687 0.3747 0.5925

Note: g acceleration due to gravity (m/sec2).

2.3. Artificial Neural Network (ANN)

ANN is a technique, which provides a black-box model and could be used to solve
different complex problems [43]. Its network topologies and training algorithms have been
discussed and reviewed broadly by many scientists. Multilayer perceptron (MLP) neural networks
with the Levenberg–Marquardt algorithm (LMA), which is an efficient gradient-based network
training method [44], were used in this study. ANN was used to capture the relationship between the
inputs and output without any details about the internal process. The main concept of ANNs to handle
the data is inspired by biological nervous systems for information processing [45]. ANNs consist of an
uncounted number of neurons that have interconnected together to solve different problems (Figure 2).
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Figure 2. Structure of the artificial neural network (ANN) model.

The common structure of any neural network system consists of three layers. These layers are
known as the input, hidden, and output layers. Several studies proved that the ANN of one hidden
layer could estimate the relationship of complex nonlinear function with acceptable accuracy [46,47].
It is likewise proposed that the furthest point for the numbers of neurons in the hidden layer be lesser
than 2n + 1, where n is the input neurons number [48].

2.4. ANN-Particle Swarm Optimization (ANN-PSO) Model

PSO is a computational population-based method inspired by the social behavior of swarms in
their search space built on their own and neighbors’ past successful experiments. In PSO terminology,
swarm members are called “particles”, each one indicating a possible solution [49]. The immediate aim
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of particles in this algorithm is to find a better position in the search space based on past experiences of
flights they and their neighbors have had, to change their location and update their velocity.

In this algorithm, Xi = (xi1, xi2, . . . , xiD) represent particles, and the situation of these particles
with best-fitting function is shown as the best current position, which is Pi = (pi1, pi2, . . . , piD), and the
corresponding fitting function is Pbest, and Gbest is known as the best general position of records
Pg =

(
pg1, pg2, . . . , pgD

)
. Velocities of particles are denoted by Vi = (vi1, vi2, . . . , viD). Below equations

demonstrate how velocity and position of particles are updated in each iteration:

Vid(t + 1) = ω(Vid(t) + c1rand(0,ϕ1).(Pid(t) −Xid(t)) + c2rand(0,ϕ2).
((

Pgd(t) −Xid(t)
))

(4)

Xid(t + 1) = Xid(t) + Vid(t + 1) d = 1, 2, . . . , D (5)

in which ϕ1 and ϕ2 are constant acceleration values. In Equation (4), rand generates a random number
through the distance of its inputs, ω, c1 and c2 respectively denote inertia weight, cognitive parameter,
and social parameter. PSO is employed in an algorithm depicted in Figure 3a to explore the optimum
weight values for the designed ANN network.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 19 

corresponding fitting function is Pbest, and Gbest is known as the best general position of records 𝑃 = 𝑝 , 𝑝 , … , 𝑝 . Velocities of particles are denoted by 𝑉 = (𝑣 , 𝑣 , … , 𝑣 ). Below equations 
demonstrate how velocity and position of particles are updated in each iteration: 𝑉 (𝑡 + 1) = 𝜔(𝑉 (𝑡) + 𝑐 𝑟𝑎𝑛𝑑(0, 𝜑 ). 𝑃 (𝑡) − 𝑋 (𝑡)+ 𝑐 𝑟𝑎𝑛𝑑(0, 𝜑 ). 𝑃 (𝑡) − 𝑋 (𝑡)  (4) 

𝑋 (𝑡 + 1) = 𝑋 (𝑡) + 𝑉 (𝑡 + 1)      𝑑 = 1,2, … , 𝐷 (5) 

in which 𝜑  and 𝜑  are constant acceleration values. In Equation (4), rand generates a random 
number through the distance of its inputs, 𝜔 , 𝑐  and 𝑐  respectively denote inertia weight, 
cognitive parameter, and social parameter. PSO is employed in an algorithm depicted in Figure 3a to 
explore the optimum weight values for the designed ANN network. 

 
Figure 3. Flow chart of the hybrid algorithm of (a) ANN-PSO (ANN with particle swarm 

optimization), (b) ANN-HHO (ANN with Harris hawks optimization), and (c) ANN-GA (ANN with 
genetic algorithm). 

2.5. ANN-Harris Hawks Optimization (ANN-HHO) Model 

HHO is a new optimization algorithm developed by Heidari et al. [50], which employs a 
resemblance of Harris hawks cooperative behavior in optimization problems. In this algorithm, 
hawks aim to hunt the prey in three main phases of exploration, transferring, and exploiting. The 
exploration phase is consistent with waiting, seeking, and discovering possible prey. The position of 
hawks is located by the following equation: 

Figure 3. Flow chart of the hybrid algorithm of (a) ANN-PSO (ANN with particle swarm optimization),
(b) ANN-HHO (ANN with Harris hawks optimization), and (c) ANN-GA (ANN with genetic algorithm).

2.5. ANN-Harris Hawks Optimization (ANN-HHO) Model

HHO is a new optimization algorithm developed by Heidari et al. [50], which employs a
resemblance of Harris hawks cooperative behavior in optimization problems. In this algorithm,
hawks aim to hunt the prey in three main phases of exploration, transferring, and exploiting.
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The exploration phase is consistent with waiting, seeking, and discovering possible prey. The position
of hawks is located by the following equation:

Y(iter + 1) =

{
Yrand(iter) − r1

∣∣∣Yrand(iter) − 2r2Y(iter) i f n ≥ 0.5
(Yprey(iter)−Ym(iter)) − r3(LB + r4(UB− LB)) i f n < 0.5

(6)

in which Yrand is a randomly selected existing hawk, Yprey denotes the prey’s position,
and ri(i = 1, 2, 3, 4, n) is a random number that ranges between 0 and 1. The average position is
represented as Ym and computed as follows:

Ym(iter) =
1
N

N∑
1

Yi(iter) (7)

In the transition stage, the energy of prey is modeled as E = 2E0
(
1− iter

T

)
, in which T and E0

∈ (−1, 1), indicating the fact that the energy of prey falls as it escapes. By computing E, the hawk
decides whether to search for different regions or exploit the neighborhood of the solutions, in short,
starting the exploration phase when |E| ≥ 1, and exploiting the neighborhood when |E| < 1.0. Once
entering the exploiting phase, based on the value of |E|, hawks decide to apply a soft or hard besiege.
|E| ≥ 0.5 means the prey has enough energy to escape, but some misleading jumps result in it to fail
and thus, a soft besiege works. On the other hand, when |E| < 0.5, the prey is too fatigued to escape,
so Harris’ hawks hardly encircle it to finally perform the surprise pounce [50]. The flow chart of
the HHO algorithm employed to optimize the ANN network is depicted in Figure 3b. For detailed
information about the HHO’s functioning, readers can refer to Heidari et al. [50].

2.6. ANN-Genetic Algorithm (ANN-GA) Model

GA is an evolutionary optimization technique inspired by Darwin’s theory of natural evolution,
which highlights natural selection ideas [51,52]. This notion believes the fittest individuals survive
to finally reproduce offspring. GA is a heuristic method for exploring the solution space of a given
problem. Primary elements of natural genetics including reproduction, crossover, and mutation are
used in this algorithm.

The first step of working with optimization algorithms is selecting a proper objective function.
Afterward, in GA, a population should be initialized and its fitness is tested. The next step is selecting
strings to form the current population to mate, crossover, or mutate and produce a new population.
The procedure of how the GA algorithm optimizes ANN parameters is graphically shown in Figure 3c.

2.7. Performance Metrics

The prediction accuracy of optimized ANN models (i.e., ANN-HHO, ANN-PSO, and ANN-GA)
and traditional ANN and WM model for SD prediction was evaluated through mean absolute error
(MAE), root mean square error (RMSE), coefficient of correlation (CC), Willmott index (WI), mean
absolute percentage error (MAPE), and through graphical interpretation (line, scatter, and box plots,
and Taylor diagram). The MAE, RMSE, CC, WI, and MAPE performance metrics are expressed as
follows:

I. Mean absolute error [53,54]

MAE =
1
N

∑N

i = 1

∣∣∣SDpre,i − SDobs,i
∣∣∣ (0 < MAE < ∞) (8)

II. Root mean square error [55–57]

RMSE =

√
1
N

∑N

i = 1
(SDobs, i − SDpre,i)

2 (0 < RMSE < ∞) (9)
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III. Coefficient of correlation [58,59]

CC =

∑N
i = 1

(
SDobs,i − SDobs

)(
SDpre,i − SDpre

)
√∑N

i = 1 (SDobs,i − SDobs )
2 ∑N

i = 1 (SDpre,i − SDpre)
2

(−1 < CC < 1) (10)

IV. Willmott index [60,61]

WI = 1−


∑N

i = 1 (SDpre,i − SDobs, i)
2∑N

i = 1 (
∣∣∣SDpre,i − SDobs

∣∣∣+ ∣∣∣SDobs,i − SDobs
∣∣∣)2

 (0 < WI ≤ 1) (11)

V. Mean absolute percentage error [61]

MAPE =

∑N
i = 1

∣∣∣∣SDobs, i −SDpre,i
SDobs, i

∣∣∣∣
N

× 100 (0 < WAPE < ∞) (12)

where, where, N, SDobs, and SDpre are the data size, observed and predicted scour depth for the ith

observations, SDobs and SDpre are the average of observed and predicted scour depth,
∣∣∣SDpre,i − SDobs

∣∣∣
= absolute difference between predicted and observed mean, and

∣∣∣SDobs,i − SDobs
∣∣∣= absolute difference

between observed and mean of observed scour depth. By adopting the criteria of lower values of
MAE, RMSE, and MAPE, and higher values of CC and WI during training and testing periods,
the proposed models (i.e., ANN-HHO, ANN-PSO, and ANN-GA) and traditional ANN model are
evaluated under a fair basis for scour depth prediction.

3. Results

3.1. Scour Depth Prediction by Optimized ANN Models

Three different metaheuristic algorithms (HHO, PSO, and GA) were applied to train (68 data; 83%)
and test (14 data; 17%) an ANN for predicting scour depth around a ski-jump spillway. The controlling
parameters of the HHO, PSO, and GA algorithms used in this study are listed in Table 3. Table 4
enlists values of performance metrics (MAE, RMSE, CC, WI, and MAPE) of ANN-HHO, ANN-PSO,
ANN-GA, and ANN models during training and testing periods. Table 4 reveals that MAE, RMSE,
CC, WI, and MAPE range from 0.1791–0.2657 m, 0.2626–0.3537 m, 0.9557–0.9197, 0.9769–0.9554,
and 43.0994–80.9093% during training for ANN-HHO, ANN-PSO, ANN-GA, and ANN models,
respectively. Similarly, during testing, MAE, RMSE, CC, WI, and MAPE vary from 0.1760–0.2494 m,
0.2538–0.3152 m, 0.7765–0.7708, 0.8030–0.4597, and 30.5081–51.3543% for the ANN-HHO, ANN-PSO,
ANN-GA, and ANN models, respectively. According to the MAE, RMSE, CC, WI and MAPE
values, ANN-HHO model has better performance MAE = 0.1791/0.1760 m, RMSE = 0.2626/0.2538 m,
CC = 0.9557/0.7765, WI = 0.9769/0.8030, and MAPE = 43.0994/30.5081% during training/testing,
respectively. Likewise, the ANN-HHO model follows the criteria of lower values of MAE, RMSE,
MAPE, and higher values of CC and WI for both periods and is designated the first (or highest) rank for
scour depth prediction. The ANN-PSO model closely follows the ANN-HHO model in both periods
for scour depth prediction. The performance of a simple ANN and WM models was found to be the
worst in scour depth prediction in this research.



Appl. Sci. 2020, 10, 5160 11 of 19

Table 3. Optimal ANN parameters using HHO, PSO and GA algorithms.

Model Parameters

ANN-HHO

IW1 = [1.2702; −4.5789; −2.3216]
b1 = 4.2473; 4.2087; −3.5027]

LW2 = [−4.9710; −0.8578; −4.6376]
b2 = [1.0285]

ANN-PSO

IW1 = [0.3307; −2.3738; 0.4136]
b1 = [2.1814; −2.9212; 0.4245]

LW2 = [0.6612; −0.8655; 2.2048]
b2 = [−2.0182]

ANN-GA

IW1 = [1.5678; −2.4749; −0.5116]
b1 = [1.6005; −2.9850; 1.7257]

LW2 = [−1.9123; 0.7718; −1.7505]
b2 = [1.1099]

Table 4. Performance metrics of hybrid and simple ANN models during training and testing.

Model
Performance Metrics

MAE
(m)

RMSE
(m) CC WI MAPE

(%)

Training period

ANN-HHO 0.1791 0.2626 0.9557 0.9769 43.0994
ANN-PSO 0.1887 0.2845 0.9491 0.9737 41.6057
ANN-GA 0.2228 0.3268 0.9308 0.9618 54.2987

ANN 0.2657 0.3537 0.9197 0.9554 80.9093

Testing period

ANN-HHO 0.1760 0.2538 0.7765 0.8030 30.5081
ANN-PSO 0.2094 0.2891 0.7755 0.7323 32.7147
ANN-GA 0.2178 0.2981 0.7733 0.6544 37.3840

ANN 0.2494 0.3152 0.7708 0.4597 51.3543

The outcomes of ANN optimized by the HHO, PSO, and GA algorithms and traditional ANN and
WM models were compared over other studies conducted on SD prediction by employing the simple
and hybrid machine learning models [8,24,39,62–64]. Pourzangbar et al. [15] predicted maximum
scour depth at seawalls by employing GP, and ANNs models, and compared their results to empirical
equations through statistical measures. They found superior outcomes of GP and ANN models over
empirical equations. Parsaie et al. [65] applied support vector machine (SVM), ANN, and ANFIS models
to predict scour depth below the river pipeline system. Results of the comparison showed that a better
prediction was achieved by SVM models (RMSE = 0.103 and R2 = 0.94) over the ANN and ANFIS models.
Dang et al. [28] optimized ANN with PSO (ANN-PSO) and firefly algorithms (ANN-FFA) to predict
scour depths around circular piers and compared them with empirical formulas and the classical
ANN model trained with Levenberg–Marquardt (LM) algorithm. Results revealed better outcomes
yielded by ANN-PSO and ANN-FFA models than other models (i.e., empirical formulas and classical
ANN). These studies also confirmed the supremacy of soft computing techniques in SD prediction.

Figure 4a–d to Figure 5a–d displays the comparison among measured (observed) vs. predicted
scour depths by the ANN-HHO, ANN-PSO, ANN-GA, and ANN models during training and testing
periods. As noted from these figures, ANN-HHO, ANN-PSO, ANN-GA, and ANN models have
coefficients of determination (R2) = 0.9133, 0.9099, 0.8664 and 0.8459 for training, and 0.6030, 0.6014,
0.5979 and 0.5944 for testing, respectively. Similarly, as can be seen from the figures, ANN optimized
by the HHO algorithm has less scattering around the perfect line (1:1 line) than those PSO and
GA algorithms as well as the standalone ANN model. Figure 6a–b demonstrates the distribution
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of modeled (predicted) scour depth values by the ANN-HHO, ANN-PSO, ANN-GA, and ANN models
over the observed values during training and testing periods through the box plot. It can be seen
from Figure 6a–b that the distributional variations among predicted vs. observed scour depth values
are relatively minor. Therefore, the verdict based on performance measures (MAE, RMSE, CC, WI,
and MAPE) and graphical inspection (coefficients of determination of regression line, scatter, and box
plots) show a better scour depth prediction accuracy of ANN-HHO model than ANN-PSO, ANN-GA,
and ANN models.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 19 
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Besides, the Taylor diagram [66], which is a consortium of standard deviation, RMSE, and the
correlation coefficient, was employed to display the spatial variation of predicted scour depth by
the ANN-HHO, ANN-PSO, ANN-GA, and ANN models over the observed one in single topology,
as illustrated in Figure 7a,b. It can be seen from Figure 7a,b that the outcomes obtained by the
ANN-HHO model are close to the observed one for SD prediction, showing superior performance of
this model as discussed earlier in Table 4 and Figure 4a–d to Figure 5a–d.
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3.2. Comparison and Discussion

Accurate prediction of scour depth plays an important role in the optimal design of hydraulic
structures. So, the present study employs the application of three metaheuristic algorithms (i.e., HHO,
PSO, GA) integrated with ANN and traditional ANN for SD prediction around the experimental
setup of the ski-jump spillway. Their accuracy was evaluated through performance metrics and



Appl. Sci. 2020, 10, 5160 16 of 19

graphical interpretation. A comparison of results reveals better feasibility, suitability, and predictability
of the ANN-HHO model, closely tracked by the ANN-PSO and ANN-GA models. Additionally,
the outcomes of the best ANN-HHO model were compared with the existing Wu model (Equation (2))
as shown in Table 5. It can be seen from Table 5 that the ANN-HHO model had a better
prediction than the WM model for SD in terms of performance metrics. Furthermore, to validate
the reliability of models, the percentage of prediction accuracy is computed using MAE/RMSE
values, which reveals reductions of 5.1%/19.6%/32.6%, and 7.7%/19.6%/25.8% during training and
16.0%/19.2%/29.4%, and 12.2%/14.9%/19.5% during testing with ANN-HHO model over ANN-PSO,
ANN-GA, and ANN models, respectively. This analysis also confirms the viability of the Harris Hawks
Optimization (HHO) algorithm embedded with ANN over the Particle Swarm Optimization (PSO)
and Genetic algorithm (GA) in scour depth prediction.

Table 5. Comparison of performance metrics of hybrid ANN-HHO model with Wu Model (WM).

Model MAE RMSE CC WI MAPE

Training

ANN-HHO 0.1791 0.2626 0.9557 0.9769 43.0994

WM 0.2104 0.3558 0.9480 0.9463 35.2936

Testing

ANN-HHO 0.1760 0.2538 0.7765 0.8030 30.5081

WM 0.1868 0.2701 0.7821 0.7793 27.3691

4. Conclusions

One of the objectives of spillway design is to dissipate energy at high dams in order to prevent
downstream scouring. Therefore, it has a significant effect on the safety of dams. Scouring is
one of the most serious problems that may happen downstream of the spillway. In this study,
soft computing models are developed for the prediction of scouring depth downstream of the ski-jump
spillway. The novelty of the study lies in the use of a recently developed HHO algorithm for
the optimization of ANN parameters for the development of scouring depth prediction models
using the experimental data collected from the previous literature. The performance of the
hybrid ANN-HHO model was compared with ANN-PSO, ANN-GA, traditional ANN, and WM to
display the efficacy of the newly proposed hybrid model, i.e., ANN-HHO. The performance of the
ANN-HHO model was found to better in terms of all statistical metrics and graphical comparisons,
where results indicate that the ANN-HHO model can predict scouring depth with the lowest value of
RMSE, MAPE, and MAE and the highest CC and WI. The performance of ANN and WM was found to
be poor in SD prediction. These results undoubtedly establish the efficacy of the new algorithm in
the optimization of ANN model parameters and improve its prediction efficiency significantly. In the
future, a study can be conducted to optimize the parameters of other AI models using the newly
developed HHO algorithm for prediction of scour depth for other hydraulic structures.

Author Contributions: Conceptualization, S.S.S. and M.A.G.; methodology, Y.T. and M.A.; software, Y.T.;
validation, Y.T. and M.A.; formal analysis, Y.T., A.M. and S.S.S.; investigation, S.S.S., M.A.G., A.M., N.A.-A.,
and K.-W.C.; writing—original draft preparation, S.S.S., M.A.G., A.M., Y.T., M.A., N.A.-A., and K.-W.C.;
writing—review and editing, S.S.S., M.A.G., A.M., N.A.-A., and K.-W.C.; visualization, N.A.-A., and K.-W.C.;
supervision, N.A.-A., and K.-W.C.; project administration, N.A.-A.; funding acquisition, N.A.-A. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2020, 10, 5160 17 of 19

References

1. Haghiabi, A.H. Estimation of scour downstream of a ski-jump bucket using the multivariate adaptive
regression splines. Sci. Iran. 2017, 24, 1789–1801. [CrossRef]

2. Zhang, S.; Pang, B.; Wang, G. A new formula based on computational fluid dynamics for estimating maximum
depth of scour by jets from overflow dams. J. Hydroinform. 2014, 16, 1210–1226. [CrossRef]

3. Knüsel, B.; Zumwald, M.; Baumberger, C.; Hirsch Hadorn, G.; Fischer, E.M.; Bresch, D.N.; Knutti, R. Applying
big data beyond small problems in climate research. Nat. Clim. Chang. 2019, 9, 196–202. [CrossRef]

4. Azmathullah, H.M.D.; Deo, M.C.; Deolalikar, P.B. Estimation of scour below spillways using neural networks.
J. Hydraul. Res. 2006, 44, 61–69. [CrossRef]

5. Bonakdari, H.; Baghalian, S.; Nazari, F.; Fazli, M. Numerical Analysis and Prediction of the Velocity Field in
Curved Open Channel Using Artificial Neural Network and Genetic Algorithm. Eng. Appl. Comput. Fluid
Mech. 2011, 5, 384–396. [CrossRef]

6. Muzzammil, M. Application of Neural Networks To Scour Depth Prediction at The Bridge Abutments.
Eng. Appl. Comput. Fluid Mech. 2008, 2, 30–40. [CrossRef]

7. Ebtehaj, I.; Bonakdari, H. Evaluation of Sediment Transport in Sewer using Artificial Neural Network.
Eng. Appl. Comput. Fluid Mech. 2013, 7, 382–392. [CrossRef]

8. Sharafati, A.; Haghbin, M.; Motta, D.; Yaseen, Z.M. The Application of Soft Computing Models and Empirical
Formulations for Hydraulic Structure Scouring Depth Simulation: A Comprehensive Review, Assessment
and Possible Future Research Direction. Arch. Comput. Methods Eng. 2019, 26, 1–25. [CrossRef]

9. Parsaie, A.; Haghiabi, A.H.; Saneie, M.; Torabi, H. Prediction of Energy Dissipation of Flow Over Stepped
Spillways Using Data-Driven Models. Iran. J. Sci. Technol. Trans. Civ. Eng. 2018, 42, 39–53. [CrossRef]

10. Najafzadeh, M.; Tafarojnoruz, A.; Lim, S.Y. Prediction of local scour depth downstream of sluice gates using
data-driven models. ISH J. Hydraul. Eng. 2017, 23, 195–202. [CrossRef]

11. Noori, R.; Sheikhian, H.; Hooshyaripor, F.; Naghikhani, A.; Adamowski, J.F.; Ghiasi, B. Granular Computing
for Prediction of Scour Below Spillways. Water Resour. Manag. 2017, 31, 313–326. [CrossRef]

12. Guven, A.; Azamathulla, H.M.; Zakaria, N.A. Linear genetic programming for prediction of circular pile
scour. Ocean Eng. 2009, 36, 985–991. [CrossRef]

13. Adarsh, S. Prediction of longitudinal dispersion coefficient in natural channels using soft computing
techniques. Sci. Iran. 2010, 17, 363–371.

14. Abdollahpour, M.; Dalir, A.H.; Farsadizadeh, D.; Shiri, J. Assessing heuristic models through k-fold testing
approach for estimating scour characteristics in environmental friendly structures. ISH J. Hydraul. Eng. 2019,
25, 239–247. [CrossRef]

15. Pourzangbar, A.; Saber, A.; Yeganeh-Bakhtiary, A.; Ahari, L.R. Predicting scour depth at seawalls using GP
and ANNs. J. Hydroinform. 2017, 19, 349–363. [CrossRef]

16. Rajabi, E.; Kavianpour, M.R. Intelligent Prediction of Turbulent Flow over Backward-Facing Step using
Direct Numerical Simulation Data. Eng. Appl. Comput. Fluid Mech. 2012, 6, 490–503. [CrossRef]

17. Tahershamsi, A.; Majdzade Tabatabai, M.R.; Shirkhani, R. An evaluation model of artificial neural network
to predict stable width in gravel bed rivers. Int. J. Environ. Sci. Technol. 2012, 9, 333–342. [CrossRef]

18. Onen, F. Prediction of Scour at a Side-Weir with GEP, ANN and Regression Models. Arab. J. Sci. Eng. 2014,
39, 6031–6041. [CrossRef]

19. Emamgholizadeh, S. Neural network modeling of scour cone geometry around outlet in the pressure flushing.
Glob. Nest J. 2012, 14, 540–549.

20. Ebtehaj, I.; Bonakdari, H. Assessment of evolutionary algorithms in predicting non-deposition sediment
transport. Urban Water J. 2016, 13, 499–510. [CrossRef]

21. Bateni, S.M.; Borghei, S.M.; Jeng, D.-S. Neural network and neuro-fuzzy assessments for scour depth around
bridge piers. Eng. Appl. Artif. Intell. 2007, 20, 401–414. [CrossRef]

22. Najafzadeh, M.; Azamathulla, H.M. Neuro-Fuzzy GMDH to Predict the Scour Pile Groups due to Waves.
J. Comput. Civ. Eng. 2015, 29, 04014068. [CrossRef]

23. Sharafati, A.; Haghbin, M.; Haji Seyed Asadollah, S.B.; Tiwari, N.K.; Al-Ansari, N.; Yaseen, Z.M. Scouring Depth
Assessment Downstream of Weirs Using Hybrid Intelligence Models. Appl. Sci. 2020, 10, 3714. [CrossRef]

24. Azamathulla, H.M.; Ghani, A.A.; Zakaria, N.A.; Guven, A. Genetic Programming to Predict Bridge Pier
Scour. J. Hydraul. Eng. 2010, 136, 165–169. [CrossRef]

http://dx.doi.org/10.24200/sci.2017.4270
http://dx.doi.org/10.2166/hydro.2014.105
http://dx.doi.org/10.1038/s41558-019-0404-1
http://dx.doi.org/10.1080/00221686.2006.9521661
http://dx.doi.org/10.1080/19942060.2011.11015380
http://dx.doi.org/10.1080/19942060.2008.11015209
http://dx.doi.org/10.1080/19942060.2013.11015479
http://dx.doi.org/10.1007/s11831-019-09382-4
http://dx.doi.org/10.1007/s40996-017-0060-5
http://dx.doi.org/10.1080/09715010.2017.1286614
http://dx.doi.org/10.1007/s11269-016-1526-0
http://dx.doi.org/10.1016/j.oceaneng.2009.05.010
http://dx.doi.org/10.1080/09715010.2017.1408041
http://dx.doi.org/10.2166/hydro.2017.125
http://dx.doi.org/10.1080/19942060.2012.11015437
http://dx.doi.org/10.1007/s13762-012-0036-8
http://dx.doi.org/10.1007/s13369-014-1244-y
http://dx.doi.org/10.1080/1573062X.2014.994003
http://dx.doi.org/10.1016/j.engappai.2006.06.012
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000376
http://dx.doi.org/10.3390/app10113714
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000133


Appl. Sci. 2020, 10, 5160 18 of 19

25. Varaki, M.E.; Kanani, A.; Jamali, A. Prediction of scour depth around inclined bridge piers using optimized
ANFIS with GA. J. Hydrosci. Environ. 2017, 1, 34–45.

26. Karkheiran, S.; Kabiri-Samani, A.; Zekri, M.; Azamathulla, H.M. Scour at bridge piers in uniform and
armored beds under steady and unsteady flow conditions using ANN-APSO and ANN-GA algorithms.
ISH J. Hydraul. Eng. 2019, 25, 1–9. [CrossRef]

27. Sreedhara, B.M.; Manu Mandal, S. Swarm Intelligence-Based Support Vector Machine (PSO-SVM) Approach
in the Prediction of Scour Depth Around the Bridge Pier. In Advances in Intelligent Systems and Computing;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 455–463.

28. Dang, N.M.; Tran Anh, D.; Dang, T.D. ANN optimized by PSO and Firefly algorithms for predicting scour
depths around bridge piers. Eng. Comput. 2019, 35, 1–11. [CrossRef]

29. Chen, H.; Asteris, P.G.; Armaghani, D.J.; Gordan, B.; Pham, B.T. Assessing dynamic conditions of the retaining
wall: Developing two hybrid intelligent models. Appl. Sci. 2019, 9, 1042. [CrossRef]

30. Ly, H.B.; Le, L.M.; Duong, H.T.; Nguyen, T.C.; Pham, T.A.; Le, T.T.; Le, V.M.; Nguyen-Ngoc, L.; Pham, B.T.
Hybrid artificial intelligence approaches for predicting critical buckling load of structural members under
compression considering the influence of initial geometric imperfections. Appl. Sci. 2019, 9, 2258. [CrossRef]

31. Cavaleri, L.; Asteris, P.G.; Psyllaki, P.P.; Douvika, M.G.; Skentou, A.D.; Vaxevanidis, N.M. Prediction of
surface treatment effects on the tribological performance of tool steels using artificial neural networks. Appl.
Sci. 2019, 9, 2788. [CrossRef]

32. Nguyen, H.L.; Le, T.H.; Pham, C.T.; Le, T.T.; Ho, L.S.; Le, V.M.; Pham, B.T.; Ly, H.B. Development of
hybrid artificial intelligence approaches and a support vector machine algorithm for predicting the marshall
parameters of stone matrix asphalt. Appl. Sci. 2019, 9, 3172. [CrossRef]

33. Samui, P.; Hoang, N.D.; Nhu, V.H.; Nguyen, M.L.; Ngo, P.T.T.; Bui, D.T. A new approach of hybrid bee colony
optimized neural computing to estimate the soil compression coefficient for a housing construction project.
Appl. Sci. 2019, 9, 4912. [CrossRef]

34. Huang, L.; Asteris, P.G.; Koopialipoor, M.; Armaghani, D.J.; Tahir, M.M. Invasive weed optimization
technique-based ANN to the prediction of rock tensile strength. Appl. Sci. 2019, 9, 5372. [CrossRef]

35. Armaghani, D.J.; Asteris, P.G.; Fatemi, S.A.; Hasanipanah, M.; Tarinejad, R.; Rashid, A.S.A.; Van Huynh, V.
On the use of neuro-swarm system to forecast the pile settlement. Appl. Sci. 2020, 10, 1904. [CrossRef]

36. Moayedi, H.; Gör, M.; Lyu, Z.; Bui, D.T. Herding Behaviors of grasshopper and Harris hawk for hybridizing
the neural network in predicting the soil compression coefficient. Measurement 2020, 152, 107389. [CrossRef]

37. Essa, F.A.; Abd Elaziz, M.; Elsheikh, A.H. An enhanced productivity prediction model of active solar still
using artificial neural network and Harris Hawks optimizer. Appl. Therm. Eng. 2020, 170, 115020. [CrossRef]

38. Azamathulla, H.M.; Ghani, A.A.; Zakaria, N.A.; Lai, S.; Chang, C.; Leow, C.; Abuhasan, Z. Genetic
programming to predict ski-jump bucket spill-way scour. J. Hydrodyn. 2008, 20, 477–484. [CrossRef]

39. Zounemat-Kermani, M.; Beheshti, A.-A.; Ataie-Ashtiani, B.; Sabbagh-Yazdi, S.-R. Estimation of
current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference
system. Appl. Soft Comput. 2009, 9, 746–755. [CrossRef]

40. Yildiz, D.; Uzucek, E. Prediction of scour depth from free falling flip bucket jets. Int. Water Power Dam Constr.
1994, 46, 50–56.

41. Wu, C. Scour at downstream end of dams in Taiwan. Int. Symp. River Mech. Bangkok Thail. 1973, 1, 1–6.
42. Martins, R.B. Scouring of rocky river beds by free jet spillways. Int. Water Power Dam Constr. 1975, 27,

152–153.
43. Dawson, C.W.; Wilby, R.L. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. Earth

Environ. 2001, 25, 80–108. [CrossRef]
44. Piotrowski, A.P.; Napiorkowski, J.J. Optimizing neural networks for river flow forecasting—Evolutionary

Computation methods versus the Levenberg-Marquardt approach. J. Hydrol. 2011, 407, 12–27. [CrossRef]
45. Sammen, S.S.; Mohamed, T.A.; Ghazali, A.H.; El-Shafie, A.H.; Sidek, L.M. Generalized Regression Neural

Network for Prediction of Peak Outflow from Dam Breach. Water Resour. Manag. 2017, 31, 549–562. [CrossRef]
46. Malik, A.; Kumar, A.; Ghorbani, M.A.; Kashani, M.H.; Kisi, O.; Kim, S. The viability of co-active fuzzy

inference system model for monthly reference evapotranspiration estimation: Case study of Uttarakhand
State. Hydrol. Res. 2019, 50, 1623–1644. [CrossRef]

http://dx.doi.org/10.1080/09715010.2019.1617796
http://dx.doi.org/10.1007/s00366-019-00824-y
http://dx.doi.org/10.3390/app9061042
http://dx.doi.org/10.3390/app9112258
http://dx.doi.org/10.3390/app9142788
http://dx.doi.org/10.3390/app9153172
http://dx.doi.org/10.3390/app9224912
http://dx.doi.org/10.3390/app9245372
http://dx.doi.org/10.3390/app10061904
http://dx.doi.org/10.1016/j.measurement.2019.107389
http://dx.doi.org/10.1016/j.applthermaleng.2020.115020
http://dx.doi.org/10.1016/S1001-6058(08)60083-9
http://dx.doi.org/10.1016/j.asoc.2008.09.006
http://dx.doi.org/10.1177/030913330102500104
http://dx.doi.org/10.1016/j.jhydrol.2011.06.019
http://dx.doi.org/10.1007/s11269-016-1547-8
http://dx.doi.org/10.2166/nh.2019.059


Appl. Sci. 2020, 10, 5160 19 of 19

47. Malik, A.; Kumar, A.; Kisi, O. Monthly pan-evaporation estimation in Indian central Himalayas using
different heuristic approaches and climate based models. Comput. Electron. Agric. 2017, 143, 302–313.
[CrossRef]

48. Malik, A.; Kumar, A.; Salih, S.Q.; Kim, S.; Kim, N.W.; Yaseen, Z.M.; Singh, V.P. Drought index prediction
using advanced fuzzy logic model: Regional case study over Kumaon in India. PLoS ONE 2020, 15, e0233280.
[CrossRef]

49. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference
on Neural Networks Vol. IV, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.

50. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm
and applications. Futur. Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

51. Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley Longman
Publ. Co. Inc: Boston, MA, USA, 1989; p. 372.

52. Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
53. Tikhamarine, Y.; Souag-Gamane, D.; Kisi, O. A new intelligent method for monthly streamflow prediction:

Hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO). Arab. J. Geosci. 2019,
12, 540. [CrossRef]

54. Pham, Q.B.; Abba, S.I.; Usman, A.G.; Linh, N.T.T.; Gupta, V.; Malik, A.; Costache, R.; Vo, N.D.; Tri, D.Q.
Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall. Water Resour.
Manag. 2019, 33, 5067–5087. [CrossRef]

55. Singh, A.; Malik, A.; Kumar, A.; Kisi, O. Rainfall-Runoff modeling in hilly watershed using heuristic
approaches with gamma test. Arab. J. Geosci. 2018, 11, 261. [CrossRef]

56. Malik, A.; Kumar, A.; Singh, R.P. Application of Heuristic Approaches for Prediction of Hydrological Drought
Using Multi-Scalar Streamflow Drought Index. Water Resour. Manag. 2019, 33, 3985–4006. [CrossRef]

57. Tikhamarine, Y.; Malik, A.; Kumar, A.; Souag-Gamane, D.; Kisi, O. Estimation of monthly reference
evapotranspiration using novel hybrid machine learning approaches. Hydrol. Sci. J. 2019, 64, 1824–1842.
[CrossRef]

58. Adnan, R.M.; Malik, A.; Kumar, A.; Parmar, K.S.; Kisi, O. Pan evaporation modeling by three different
neuro-fuzzy intelligent systems using climatic inputs. Arab. J. Geosci. 2019, 12, 606. [CrossRef]

59. Malik, A.; Kumar, A. Meteorological drought prediction using heuristic approaches based on effective
drought index: A case study in Uttarakhand. Arab. J. Geosci. 2020, 13, 276. [CrossRef]

60. Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [CrossRef]
61. Malik, A.; Kumar, A.; Kim, S.; Kashani, M.H.; Karimi, V.; Sharafati, A.; Ghorbani, M.A.; Al-Ansari, N.;

Salih, S.Q.; Yaseen, Z.M.; et al. Modeling monthly pan evaporation process over the Indian central Himalayas:
Application of multiple learning artificial intelligence model. Eng. Appl. Comput. Fluid Mech. 2020, 14,
323–338. [CrossRef]

62. Rashki Ghaleh Nou, M.; Azhdary Moghaddam, M.; Shafai Bajestan, M.; Azamathulla, H.M. Estimation of
scour depth around submerged weirs using self-adaptive extreme learning machine. J. Hydroinform. 2019,
21, 1082–1101. [CrossRef]

63. Zahiri, A.; Azamathulla, H.M.; Ghorbani, K. Prediction of local scour depth downstream of bed sills using
soft computing models. In Computational Intelligence Techniques in Earth and Environmental Sciences; Springer:
Berling/Heidelberg, Germany, 2014; ISBN 9789401786423.

64. Azamathulla, H.M.; Mohd Yusoff, M.A. Soft computing for prediction of river pipeline scour depth. Neural
Comput. Appl. 2013, 23, 2465–2469. [CrossRef]

65. Parsaie, A.; Haghiabi, A.H.; Moradinejad, A. Prediction of Scour Depth below River Pipeline using Support
Vector Machine. KSCE J. Civ. Eng. 2019, 23, 2503–2513. [CrossRef]

66. Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos.
2001, 106, 7183–7192. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compag.2017.11.008
http://dx.doi.org/10.1371/journal.pone.0233280
http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1007/s12517-019-4697-1
http://dx.doi.org/10.1007/s11269-019-02408-3
http://dx.doi.org/10.1007/s12517-018-3614-3
http://dx.doi.org/10.1007/s11269-019-02350-4
http://dx.doi.org/10.1080/02626667.2019.1678750
http://dx.doi.org/10.1007/s12517-019-4781-6
http://dx.doi.org/10.1007/s12517-020-5239-6
http://dx.doi.org/10.1080/02723646.1981.10642213
http://dx.doi.org/10.1080/19942060.2020.1715845
http://dx.doi.org/10.2166/hydro.2019.070
http://dx.doi.org/10.1007/s00521-012-1205-x
http://dx.doi.org/10.1007/s12205-019-1327-0
http://dx.doi.org/10.1029/2000JD900719
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data Collection 
	Case Study 
	Artificial Neural Network (ANN) 
	ANN-Particle Swarm Optimization (ANN-PSO) Model 
	ANN-Harris Hawks Optimization (ANN-HHO) Model 
	ANN-Genetic Algorithm (ANN-GA) Model 
	Performance Metrics 

	Results 
	Scour Depth Prediction by Optimized ANN Models 
	Comparison and Discussion 

	Conclusions 
	References

