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Abstract: In this work, we generated a set of random representative volume elements (RVEs) of
unidirectional composites considering actual noncircular cross-sections and positions of fibers with
the aid of a shape-library approach. The cross-section of the noncircular carbon fiber was extracted
from the M55J/M18 composite using image processing and a signed-distance-based mesh trimming
scheme, and they were stored in a particle-shape library. The obtained noncircular fibers randomly
chosen from the particle-shape library were applied to random fiber array generation algorithms to
generate RVEs of various fiber volume fractions. To check the randomness of the proposed RVEs,
we calculated spatial and physical metrics, and concluded that the proposed method is sufficiently
random. Furthermore, to compare the effective elastic properties and the maximum von Mises
stress in the matrix, it was applied to composite materials with different relative ratios of elastic
moduli of M55J/M18 and T300/PR319. In the case of T300/PR319 having a high RRT (relative ratio of
the transverse elastic moduli), simulation results were deviated up to about 5% in the effective elastic
properties and 13% in the maximum von Mises stress in the matrix according to the fiber shapes.

Keywords: particle-shape library; actual noncircular fiber; stress concentration; representative volume
elements (RVEs)

1. Introduction

Random fiber generators can provide arbitrary arrangements of fibers or fillers in
a two-dimensional (2D) or three-dimensional (3D) space, which approximate the shape of
the microstructure of a composite material. As a result, the representative volume elements
(RVEs) simulating the real microstructure can be constructed; they have been commonly used
in studying the mechanical behavior of composite materials and structures. RVEs can be an excellent
micromechanical-based model that predicts equivalent physical properties, such as the strength,
stiffness, coefficient of thermal expansion, and so forth of composites. However, for efficient modeling
of these RVE models, there are some situations in which the shape of the fiber/filler is excessively
simplified into a circle, sphere, cylinder, or disc. Sometimes, these approximations could distort the effect
of stress concentration between fibers, resulting in less accurate prediction of the equivalent stiffness
and strength. In addition, the actual fiber has a more complex shape due to various manufacturing
defects such as waviness [1,2], misalignment [3,4], crater, and so forth [5–7]. In particular, in the case of
unidirectional composites, unlike the cross-sections of glass fibers, which are almost circular, those
of carbon fibers have been reported to have various shapes, such as circular, triangular, C-shaped,
kidney-shaped, and so forth, so that the stress concentration between the fibers is complicated [8–16].
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Moreover, it has a larger specific surface area due to its irregular shape; therefore, better mechanical
properties are attained [17]. It has also been found that it is not appropriate to simplify circular fibers
using the popular Hough transform when having irregular fiber shapes [18].

To construct more actual RVEs, various fiber shapes were proposed to see the effect of the shape of
fibers for the mechanical properties. However, their shape was still regular because it was derived from
the mathematical equation, not real experimental data [13,14]. Thus, an algorithm based on the shape
from the experimental data is urgently required to generate realistic RVEs. Recently, a shape-library
approach was introduced to generate the carbon nanotube morphology from a database constructed
from the experimental data through micro-computed tomography (CT) analyses to predict the electrical
resistivity [19], and it turned out that a prediction with the shape-library approach was accurate as well
as promising because it can reflect the experimental data into a prediction model. Similarly, 3D particle
shapes were extracted from CT analysis; they were used to reconstruct many RVE samples [20,21].
However, no studies have been reported on the generation of RVEs using a shape library composed of
2D particle shapes of unidirectional composites.

The objective of this work is to generate RVEs considering the actual fiber shape of unidirectional
composites with the aid of a shape-library approach. A particle-shape library was constructed by
extracting fiber shapes from real microscopic images of M55J/M18 composites whose fiber shape is
rather irregular using the signed-distance-based mesh trimming scheme, which we proposed in our
previous work [18,22]. Then, random sequential expansion (RSE) [23] and random fiber removal
(RFR) [24,25] algorithms were applied to generate many RVE samples with various volume fractions
(V f ). The spatial and physical statistical metrics were calculated to confirm the randomness of the actual
noncircular fiber arrangements. In addition, to compare the performance of the proposed RVEs with
that of conventional RVEs with circular fibers, the effective elastic properties were compared by
applying the properties of M55J/M18 and T300/PR319 composites, which are unidirectional composites
showing transverse isotropy. Finally, the trend of the maximum von Mises stress in the matrix was
investigated to determine the effect of shapes of fibers on the fracture strength of the material. To
the best of our knowledge, predicting the mechanical properties considering complex actual fiber
shapes by a shape-library approach has never been attempted yet despite its importance in the society
of the composites.

The remaining sections of this paper are organized as follows. Section 2 explains how finite
element (FE) meshes are constructed with actual fibers from microscope images. Furthermore, a brief
description and a modification of the RSE and RFR algorithms for actual fibers are presented. Next, in
Section 3, we use spatial and physical statistical metrics to demonstrate the performance of the proposed
scheme for randomness and the prediction of elastic modulus, and we investigate the maximum stress
concentration patterns of the matrix according to fiber shapes and V f . Finally, Section 4 closes this
paper with concluding remarks.

2. Random RVE Generation Using Actual Noncircular Fibers from the Particle-Shape Library

2.1. The Particle-Shape Library Construction of Actual Noncircular Fibers Using a Microscopic Image of
the M55J/M18 Composite

According to our previous work, a FE model was generated from a microscopic image of
the M55J/M18 composite [18] by the level set method and the trimming mesh method [22]. First, we
binarized the microscopic image (see Figure 1a,b) by a black-white filter and proper noise removal,
and then used it to generate a voxel mesh after resizing the image whenever necessary (see Figure 1c).
The minimum signed distance function (SDF) of the image was obtained using the level set method
(see Figure 1d), and the trimmed mesh technique was applied to smooth the voxel mesh (see Figure 1e).
Finally, remeshing was conducted to reconstruct the four-noded quadrilateral elements (see Figure 1f).



Appl. Sci. 2020, 10, 5675 3 of 19

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 21 

shape library. Furthermore, it can be seen that the actual fibers of the M55J/M18 composite are 
concave and convex. 

 
Figure 1. Procedure of generating FE model from a microscopic image of M55J/M18 composite:  
(a) original image, (b) binary image, (c) voxel mesh with image rescaling, (d) minimum SDF,  
(e) trimmed mesh, and (f) remeshing to quadrilateral elements. 

 

Figure 2. Schematic illustration of the particle-shape library consisting of actual noncircular fibers. 
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Figure 1. Procedure of generating FE model from a microscopic image of M55J/M18 composite: (a)
original image, (b) binary image, (c) voxel mesh with image rescaling, (d) minimum SDF, (e) trimmed
mesh, and (f) remeshing to quadrilateral elements.

From the final FE model, a set of the outer nodes of the intact fibers was stored in the particle-shape
library of fibers as shown in Figure 2. In this work, we stored 482 fiber samples in the particle-shape
library. Furthermore, it can be seen that the actual fibers of the M55J/M18 composite are concave
and convex.
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2.2. RVE Generation with Diverse V f

Many RVE samples were generated with various V f values of 60%, 55%, 45%, 35%, 25%, 15%,
and 5% by randomly choosing the geometry of actual fibers from the particle-shape library created as
described in the previous subsection. To arrange the fibers properly in a square domain, the RSE and
RFR algorithms were employed with proper modification as described in the following subsection.

2.2.1. RVE Generation Using the RSE Algorithm

The procedure for applying the RSE algorithm [23] and its modification is introduced as follows
(see Figure 3). An arbitrary rotation procedure of fibers is added to the beginning of the original RSE
algorithm. A flowchart of the algorithm is shown in Figure 4.

1. After a fiber shape is randomly chosen from the particle-shape library, it is rotated at arbitrary
angles around its centroid to give a random orientation to the fiber. Here, n f denotes the current
number of fibers used in RVE.

2. For the first fiber (n f = 1), it is placed in any position in the square window of L× L (see Figure 3a).
The first fiber is set as the reference fiber (Fre f ).

3. Then, step 1 is repeated to choose the new fiber to be placed from the particle-shape library.
The new fiber is placed to satisfy the random minimum distance d (lmin ≤ d ≤ lmax) and random
orientation angle θ (0 ≤ θ < 2π) between the new fiber and Fre f . Additionally, it is necessary to
ensure that the minimum distance between the new fiber and the existing fibers is at least lmin.
The values lmin and lmax can be determined according to the requested fiber volume fraction (Vreq

f ).
If the new fiber is located across the boundary of the window, the fiber is placed on the opposite
side of the window for geometric periodicity (see Figure 3b).

4. Step 3 is repeated until there is no more space around Fre f for new fibers (see Figure 3c,d). To
determine whether there is space for new fibers, the number of attempts to place new fibers
around the Fre f was set to 300. At the end of repeating step 3, a new Fre f is chosen by the fiber
placed next to the original Fre f .

5. Steps 3 and 4 are repeated with respect to the new Fre f .

6. This process is repeated until the current V f (= Vcur
f ) is close to the Vreq

f or there is no room for
a new fiber in the window.Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 21 
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Diverse fiber arrangements were made to have V f = 60%, 55%, 45%, 35%, 25%, 15%, and 5% in
the square window of 10 × 10, and 100 samples were generated for each V f . To avoid clustering of
fibers, which routinely occurs with the RSE algorithm, variables lmin and lmax for the minimum distance
between the fibers were determined through extensive trial and error as summarized in Table 1.

Table 1. Minimum distance between fibers corresponding to Vreq
f in the RSE algorithm.

Vreq
f (%) 5 15 25 35 45 55 60

lmin 2r f 0.5r f 0.2r f 0.2r f 0.18r f 0.14r f 0.11r f
lmax 15r f 13r f 13r f 12r f 6r f 0.58r f 0.18r f

Here, r f denotes the effective radius of the average area of the fibers, and it was 0.4549 for this
work. Note that while an RVE including 30 fibers with V f = 50% has been proved to be adequate to
represent the microstructure of unidirectional composites [26], the size of RVEs and the number of
fibers were set to contain about 78 fibers for V f = 50% in this work.

After fiber placement, the parts of the fiber outside the window were trimmed and a 2D FE mesh
was constructed using three-noded triangular elements assuming perfect bonding between fiber and
matrix. At this time, the FE mesh was generated to ensure convergence through a mesh refinement
study. Then, a 3D FE mesh consisting of six-noded prism elements was constructed by dragging them
by 0.16 with two element layers in the longitudinal direction (1-direction), where 2- and 3-directions
are the transverse direction.

2.2.2. RVE Generation Using RFR Algorithm

To apply the RFR algorithm with various V f , a master RVE with the highest V f is required. For
this purpose, we used the RSE algorithm to generate the master RVE with V f = 65.57% containing
102 fibers. At this time, the parameters for the minimum distance between the fibers were set to
lmin = 0.07r f and lmax = 0.08r f . The 3D FE model of the master RVE finally was created similarly as
mentioned in Section 2.2.1. The total number of nodes and elements were 46,047 and 60,668, respectively.
The procedure of applying the RFR algorithm to this master RVE is summarized as follows.

1. First, the value of Vreq
f is set.

2. One of the fibers is randomly selected to be removed, and its fiber volume fraction is calculated.
3. The elements of the fiber selected in step 2 are replaced by those of the matrix.
4. Steps 2 and 3 are repeated until Vcur

f is close to Vreq
f .

In this work, with the RFR algorithm, 100 RVEs were generated for each V f for 60%, 55%, 45%,
35%, 25%, 15%, and 5%.

3. Results and Discussion

3.1. Check the Randomness of the Centroids with Statistical Spatial Metrics

To check the randomness of the RVEs generated by the proposed method, we calculated the spatial
metrics [27], such as the nearest neighbor orientation, Ripley’s K function, and pair distribution
function, using the centroids of fibers of the RVEs, and compared them with those of the completely
spatial random (CSR). Furthermore, as seen in Figure 1, experimental data of fiber positions were
extracted by placing a square window at the random position in the microscopic image of M55J/M18 to
compare them with those of other generated RVEs.

3.1.1. Nearest Neighbor Orientation

Nearest neighbor orientation is a cumulative distribution function for the orientation angle of
the line between each fiber and its nearest fiber [24]. Figure 5a shows the nearest neighbor orientation
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of experimental data, RFR, RSE, and CSR, according to V f = 65% and 45%. To compute the mean value
(µ) and error bar of the nearest neighbor orientation according to the angle, 10 experimental samples
with V f = 65% and 100 RVE samples with V f = 45% for each case of RFR and RSE were prepared (note
that for V f = 65%, one master RVE with noncircular fibers was used). The results show that the nearest
neighbor orientation of experimental data, RFR, and RSE is close to the CSR pattern. Furthermore,
the RSE results are closer to experimental data and CSR than those of RFR. This finding is consistent
for the case of circular fibers as reported in other works [23,24].
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3.1.2. Ripley’s K Function

Ripley’s K function [23], also termed the second-order intensity function, is defined as the ratio of
points within an arbitrary radius distance r to the unit square area in Equation (1) as

K(r) =
A

N2

∑
i

∑
j,i

I(di j ≤ r)

w(i, j)
(1)

where A is the area of the window, N is the number of all points in the window, and di j is the distance
between points i and j. Additionally, I( ) means an indicator function with a value of 1 if the expression
in parentheses is true, and a value of 0 otherwise. Here, w(i, j) is a weight function that represents
the ratio of the circumference inside the window to the total circumference of the circle passing through
point j, centered on point i. Ripley’s K function in CSR is expressed in Equation (2).

Kr(r) = πr2 (2)

If the K(r) corresponding to any of the points is higher than the Kr(r) of the CSR pattern, it means that
the points are clustered. On the other hand, being lower than the CSR pattern indicates that the points
are somewhat regular [23]. Figure 5b shows Ripley’s K function of experimental data, RFR, RSE, and
CSR according to V f = 65% and 45%. Here, we divided r by the r f for normalization. It can be seen
that the results for experimental data, RFR, and RSE are close to the CSR pattern.

3.1.3. Pair Distribution Function

The pair distribution function, termed radial distribution function, indicates the probability that
points will exist in an annular region with an inner diameter r and an outer diameter r + dr; it can be
written as

g(r) =
1

2πr
dK(r)

dr
(3)

Substituting Equation (2) into Equation (3), the pair distribution function of CSR is g(r) = 1. Therefore,
as r increases, the pair distribution function for the fiber distribution approaches 1, indicating that
the fiber distribution is randomly arranged [28]. Figure 5c shows the pair distribution function of
experimental data, RFR, RSE, and CSR according to V f = 65% and 45%. The results of the experimental
data, RFR, and RSE show that the larger r is close to g(r) = 1, the CSR pattern. In particular, in the case
of V f = 65%, the results of RSE were almost same to the experimental results. It can be seen that
the proposed RVEs are proper to simulate the cross-section of actual fibers.

3.2. Comparison of the Results between Actual Noncircular Fibers and Circular Fibers

In this section, we compared the performance of the proposed RVEs of actual noncircular fibers
with conventional RVEs of circular fibers. To generate RVEs consisting of circular fibers, the RFR and
RSE algorithms were also used. The minimum distance between fibers used in the RSE algorithm was
the same as that of noncircular fibers. Furthermore, the radius of circular fibers was set to r f . Figure 6
shows the RVE samples of V f = 45% according to RFR and RSE algorithms with conventional circular
fibers and actual noncircular fibers by a shape-library approach.

Table 2 shows the µ, standard deviation (SD, σ), and relative standard deviation (RSD, σ/µ) of V f
of the RVE samples corresponding to Vreq

f , and it can be seen that Vreq
f and its corresponding V f of RVE

samples are not exactly identical. In particular, the RVE samples with noncircular fibers show some
deviation from those with circular fibers because they have large RSD values in comparison to the RSD
values of circular fibers. Given that the volume of each noncircular fiber is not identical, RVE samples
with the same V f cannot be produced. The Vreq

f will be approximately satisfied.



Appl. Sci. 2020, 10, 5675 9 of 19

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 21 

Figure 6 shows the RVE samples of fV = 45% according to RFR and RSE algorithms with 
conventional circular fibers and actual noncircular fibers by a shape-library approach.  

 

 

Figure 6. RVE samples of fV = 45%: (a) conventional circular approach and (b) shape-library 

approach. 

Table 2 shows the μ , standard deviation (SD, σ ), and relative standard deviation (RSD, σ μ
) of fV  of the RVE samples corresponding to req

fV , and it can be seen that req
fV  and its 

corresponding fV  of RVE samples are not exactly identical. In particular, the RVE samples with 
noncircular fibers show some deviation from those with circular fibers because they have large RSD 
values in comparison to the RSD values of circular fibers. Given that the volume of each noncircular 
fiber is not identical, RVE samples with the same fV  cannot be produced. The req

fV  will be 
approximately satisfied. 

Table 2. Mean, SD, and RSD of fV  of RVE samples corresponding to req
fV . 

Figure 6. RVE samples of V f = 45%: (a) conventional circular approach and (b) shape-library approach.

Table 2. Mean, SD, and RSD of V f of RVE samples corresponding to Vreq
f .

Vreq
f

RFR

Circular Fiber Noncircular Fiber

(µ (%),σ (×10−3),σ/µ (×10−5)) (µ (%),σ (×10−3),σ/µ (×10−5))

60% (60.2403, 0.0059, 0.0098) (59.9544, 1.9157, 3.1952)
55% (55.0584, 0.0097, 0.0177) (55.0125, 2.0399, 3.7081)
45% (44.6943, 0.0101, 0.0225) (45.0108, 2.0356, 4.5225)
35% (34.9782, 0.0141, 0.0402) (34.9971, 1.9286, 5.5107)
25% (25.2621, 0.0123, 0.0487) (25.0233, 1.7587, 7.0282)
15% (14.8982, 0.0098, 0.0656) (14.9566, 1.8338, 12.2610)
5% (5.1819, 0.0074, 0.1433) (5.0967, 1.7048, 33.4482)
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Table 2. Cont.

Vreq
f

RSE

Circular Fiber Noncircular Fiber

(µ (%),σ (×10−3),σ/µ (×10−5)) (µ (%),σ (×10−3),σ/µ (×10−5))

60% (60.2397, 0.0114, 0.0188) (59.9654, 2.0530, 3.4236)
55% (55.0578, 0.0100, 0.0181) (54.9282, 1.7879, 3.2550)
45% (44.6939, 0.0113, 0.0253) (44.9997, 1.7071, 3.7936)
35% (34.9779, 0.0120, 0.0342) (35.0199, 1.9037, 5.4360)
25% (25.2617, 0.0120, 0.0476) (25.0375, 1.8032, 7.2020)
15% (14.8981, 0.0087, 0.0585) (15.0151, 1.9072, 12.7021)
5% (5.1820, 0.0061, 0.1174) (5.0660, 1.9280, 38.0575)

3.2.1. Comparison of the Effective Elastic Properties

To calculate the effective elastics properties of RVEs, we employed a popular computational
homogenization scheme [29] with a set of periodic boundary conditions (PBCs) showing high
convergence rate [30] on RVEs. Its details are summarized in Appendix A. As a result, longitudinal
modulus E1, transverse modulus E2 and E3, out-of-plane shear modulus G12, in-plane shear modulus
G23, and Poisson’s ratio ν12 and ν23 were calculated by using Abaqus and MATLAB. Furthermore, for
each RFR; RSE algorithm; and noncircular, circular fiber shape, 100 RVEs were used for each V f . As
constituent materials of the composite, two composite materials: M55J/M18 [22] and T300/PR319 [31]
were used. Fibers are transversely isotropic materials and matrices are isotropic materials as shown
in Table 3. We chose these two materials due to the large difference of the relative ratios of elastic
modulus RR between fiber and matrix defined as

RR = {RRL, RRT}
T = {RR1, RR2, RR3, RR4, RR5}

T =

 E f
1

Em
1

,
ν

f
12

νm
12

,
E f

2

Em
2

,
G f

23

Gm
23

,
G f

12

Gm
12


T

(4)

where RRL = {RR1, RR2} and RRT = {RR3, RR4, RR5}. Here, RRL indicates the relative ratio of
the longitudinal elastic moduli, and RRT indicates the relative ratio of the transverse elastic moduli.

Table 3. Elastic properties of fibers and matrices and the relative ratio.

Elastic
Properties M55J M18 Relative

Ratio T300 PR319 Relative
Ratio

E1 (GPa) 496.52 3.5 141.8629 230 0.95 242.1053
ν12 0.25 0.38 0.6579 0.2 0.35 0.5714

E2 (GPa) 6.38 3.5 1.8229 15 0.95 15.7895
G23 (GPa) 2.78 1.2681 2.1923 7.0093 0.3519 19.9184
G12 (GPa) 17.92 1.2681 14.1314 15 0.3519 42.6258

In the case of M55J/M18, the relative ratio of the all transverse moduli, including RR3, RR4, and
RR5, are 1.8229, 2.1923, and 14.1314, respectively, which are much lower than those of T300/PR319,
such as 15.7895, 19.9184, and 42.6258.

Figures 7 and 8 show the effective elastic properties (E1, E2, G23, G12) according to V f from 5%
to 60% of M55J/M18 and T300/PR319 by the computational homogenization, respectively. Figures 9
and 10 show the histogram and normal distribution in terms of µ and σ of the effective elastic properties
for V f = 60% of M55J/M18 and T300/PR319, respectively. Tables 4 and 5 show the µ and relative error of
the effective elastic properties for V f = 60%, 55%, and 45% of M55J/M18 and T300/PR319, respectively.
From the results, it can be seen that both materials show little deviation in E1, but the deviation of
RVE with noncircular fiber is greater than that of RVE with circular fibers as seen in Figures 9a and
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10a. This is because the deviation in V f of RVE with noncircular fiber is larger than that of RVE with
circular fiber as discussed in Section 3.2.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 21 
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Table 4. Comparison of the effective elastic properties of M55J/M18.

Vf Algorithm Fiber Shape E1(GPa) E2(GPa) G23(GPa) G12(GPa)

60%
RFR

Circular
(reference)

300.455 5.431 1.995 4.735

Noncircular
(error in %)

299.028
(−0.47%)

5.420
(−0.20%)

1.989
(−0.30%)

4.857
(2.58%)

RSE
Circular 300.425 5.429 1.996 4.492

Noncircular
299.068

(−0.45%)
5.423

(−0.11%)
1.991

(−0.25%)
4.521

(0.65%)

55%
RFR

Circular 274.915 5.306 1.914 4.209

Noncircular
274.670

(−0.09%)
5.302

(−0.08%)
1.912

(−0.10%)
4.326

(2.78%)

RSE
Circular 274.881 5.304 1.915 3.800

Noncircular
274.238

(−0.23%)
5.301

(−0.06%)
1.913

(−0.10%)
3.844

(1.16%)

45%
RFR

Circular 223.827 5.060 1.764 3.282

Noncircular
225.372
(0.69%)

5.065
(0.10%)

1.768
(0.23%)

3.388
(3.23%)

RSE
Circular 223.801 5.057 1.765 3.001

Noncircular
225.299
(0.66%)

5.065
(0.16%)

1.769
(0.23%)

3.056
(1.83%)

Table 5. Comparison of the effective elastic properties of T300/PR319.

Vf Algorithm Fiber Shape E1(GPa) E2(GPa) G23(GPa) G12(GPa)

60%
RFR

Circular
(reference)

138.924 3.675 1.348 1.687

Noncircular
(error in %)

138.263
(−0.48%)

3.709
(0.93%)

1.333
(−1.11%)

1.760
(4.33%)

RSE
Circular 138.913 3.537 1.297 1.534

Noncircular
138.283

(−0.45%)
3.528

(−0.25%)
1.292

(−0.39%)
1.556

(1.43%)

55%
RFR

Circular 127.057 3.235 1.167 1.463

Noncircular
126.946

(−0.09%)
3.283

(1.48%)
1.162

(−0.43%)
1.528

(4.44%)

RSE
Circular 127.043 3.011 1.083 1.231

Noncircular
126.745

(−0.23%)
3.018

(0.23%)
1.085

(0.18%)
1.254

(1.87%)

45%
RFR

Circular 103.321 2.516 0.879 1.077

Noncircular
104.041
(0.70%)

2.564
(1.91%)

0.887
(0.91%)

1.128
(4.74%)

RSE
Circular 103.310 2.365 0.825 0.930

Noncircular
104.007
(0.67%)

2.394
(1.23%)

0.836
(1.33%)

0.954
(2.58%)

Additionally, it should be noted that, in the case of M55J/M18, the deviations of the transverse
moduli E2, G23 are minimal regardless of the fiber shape and the algorithm of random RVEs. However,
the other transverse modulus G12 varies according to the fiber shape and the algorithm of random RVEs.
In the case of T300/PR319, all transverse modulus E2, G23, and G12 show large deviations according to
the RFR and RSE algorithms, and as V f increases, the deviation increases. For example, for V f = 60%
with the RFR algorithm, the deviation of G12 according to fiber shape is 4.33%, which is larger than
that of M55J/M18 (=2.58%). As mentioned earlier, it could be because RRT of the M55J/M18 composite
is not significant compared to that of T300/PR319. Although the difference in the effective elastic
properties according to the fiber shape of M55J/M18 is small, the actual noncircular fiber shapes should
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be considered because of the transverse tensile strength accompanying crack propagation. The reason
is that, according to our previous work [18], it was reported that the result of the transverse crack
propagation simulation showed a different crack pattern from the test result when the circular fibers
were assumed instead of the actual fibers. In addition, as RRT of the composite is larger, the deviation
of E2, G23, and G12 values of RFR are larger than those of RSE. This is because the minimum distance
between the fibers of the RFR is closer than that of the RSE, as reported in [24].

To check randomness using the effective elastic properties of RVEs with noncircular fibers in
the transverse direction, the symmetry of the compliance matrix was checked as follows:

E2

ν23
=

E3

ν32
→

E2ν32

E3ν23
= 1 (5)

In addition, the anisotropic ratio was confirmed as follows:

G23 =
E2

2(1 + ν23)
→

E2

2(1 + ν23)G23
= 1 (6)

Table 6 shows the results for Equations (5) and (6). It can be seen that all values are close to unity and
are sufficiently random in the transverse direction.

Table 6. Symmetry of the compliance matrix and anisotropic ratio of M55J/M18 and T300/PR319 with
noncircular fibers.

Vf Methodology M55J/M18 T300/PR319
E2ν32
E3ν23

E2
2(1+ν23)G23

E2ν32
E3ν23

E2
2(1+ν23)G23

65% (master RVE) RSE 1.000000 1.000307 0.999998 0.999942

60%
RFR 1.000001 1.000471 0.999911 1.019233
RSE 1.000001 0.999690 0.999974 0.999263

55%
RFR 1.000000 1.000729 0.999875 1.020811
RSE 0.999999 0.999596 1.000068 0.998706

45%
RFR 1.000000 1.000837 0.999891 1.018256
RSE 1.000000 1.000124 1.000003 1.001005

3.2.2. Comparison of the Maximum Von Mises Stress in Matrix

In this section, the distribution of the von Mises stress (σν) in the matrix is compared when 1% of
the tensile strain is given with PBCs in the transverse direction (2-direction) by using Abaqus. At this
time, the stress was calculated at the centroid of the element. Furthermore, as in Section 3.2.1, for each
RFR; RSE algorithm; and noncircular, circular fiber shape, 100 RVEs were used for each V f . Figure 11
shows an example of a contour sample of von Mises stress in the matrix of T300/PR319 with V f = 60%.
Figure 12 and Table 7 show the maximum von Mises stress value in terms of the µ and error bar in
the matrix for diverse V f of M55J/M18 and T300/PR319, respectively. The results show that the RVE
generated by RFR has a higher maximum von Mises stress value in the matrix than those generated by
RSE. As mentioned in Section 3.2.1, it is because the minimum distance between the fibers of RFR is
smaller than that of the RSE, so that it has larger maximum von Mises stress in the matrix. Furthermore,
as the V f increases, µ of the maximum von Mises stress tends to increase. However, the variation of µ
is sensitive to the minimum distance between the fibers as reported in other work [32]. In this work,
we set the minimum distance of RFR as lmin = 0.07r f and lmax = 0.08r f and that of RSE as in Table 1.
Thus, the trend of the maximum stress could be altered by adjusting the minimum distance.
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Figure 11. Von Mises stress with 1% tensile strain for V f = 60% of T300/PR319: (a) RVEs with noncircular
fibers and (b) RVEs with circular fibers.
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Table 7. Comparison of the maximum von Mises stress in matrix.

Vf Methodology Fiber Shape Maximum σν in Matrix (MPa)

M55J/M18 T300/PR319

60%
RFR

Circular
(reference) 46.065 73.756

Noncircular
(error in %)

45.302
(−1.66%)

80.267
(8.83%)

RSE
Circular 43.091 55.927

Noncircular
43.461

(0.86%)
61.341

(9.68%)

55%
RFR

Circular 45.375 70.643

Noncircular
45.104

(−0.60%)
75.978

(7.55%)

RSE
Circular 41.757 43.953

Noncircular
42.331

(1.37%)
49.236

(12.02%)

45%
RFR

Circular 43.605 59.081

Noncircular
43.087

(−1.19%)
65.745

(11.28%)

RSE
Circular 40.319 36.414

Noncircular
40.863

(1.35%)
41.036

(12.69%)

In addition, as RRT increases (i.e., T300/PR319), the RVE composed of noncircular fibers tends to
a larger maximum von Mises stress in the matrix and wider deviation than the RVEs composed of
circular fibers. In the case of T300/PR319 with V f = 60%, the deviations of RFR and RSE according to
fiber shape are 8.83%, 9.68%, respectively. Furthermore, it can be seen that the maximum deviation is
12.69% when V f = 45% with the RSE algorithm in T300/PR319. However, in the case of M55J/M18 with
a lower RRT, the maximum deviation of von Mises stress is quite minimal, less than 2%. Thus, it is
concluded that the effect of shape on the maximum stress is critical as the RRT is larger.

4. Conclusions

In this work, we generated RVEs considering actual noncircular fibers randomly selected from
a particle-shape library, including the features of M55J. The RSE and RFR algorithms were employed
to create RVEs various V f along with proper modification to consider the noncircular fibers.

To check the randomness of the proposed RVEs, we calculated spatial and physical metrics,
concluded that the proposed method is sufficiently random, and reproduced experimental data in
terms of the shapes and positions of actual fibers. In addition, to investigate the effect of the fiber
shapes on the stiffness and strength of the composite, RVEs with circular fibers were also prepared.
The material properties of M55J/M18 and T300/PR319 were adopted, and the effective elastic properties
were compared. Based on the results, it is concluded that M55J/M18 having a low RRT showed minimal
deviation according to the fiber shapes. However, in the case of T300/PR319, which has a high RRT,
the maximum deviation of G12 according to the fiber shapes was about 5%. Finally, to investigate
the effect on the material fracture strength, the maximum von Mises stress in the matrix was compared
with a tensile strain of 1% in the transverse direction according to the fiber shapes. The results showed
that the maximum difference according to the fiber shapes of M55J/M18 was up to about 2%, but that
of T300/PR319 was up to about 13%. Thus, from a practical point of view, when predicting the strength
of composite using micromechanical models having a large RRT of the composites, it is necessary to
consider the actual noncircular fiber shapes and positions in the micromechanics model.



Appl. Sci. 2020, 10, 5675 17 of 19

Author Contributions: Conceptualization, M.-S.G.; Funding acquisition, D.-S.H.; Supervision, J.H.L.;
Writing—original draft, M.-S.G.; Writing—review and editing, M.-S.G., S.-M.P. and D.-W.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported through the National Research Foundation of Korea (NRF) funded by
the Ministry of Science and ICT (No. 2020R1F1A1075588). Additionally, this research was supported by “Research
Base Construction Fund Support Program” funded by Jeonbuk National University in 2019.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Computational Homogenization Schemes

The stress and strain relationship in a unidirectional lamina is typically expressed as

σi(x) = Di j(x)ε j(x), (i, j = 1, 2, . . . , 6) (A1)

where σi, ε j, and Di j are stress, strain, and stiffness matrices in the form of the vector notation,
respectively, and x is the position vector at an arbitrary point in an RVE.

Due to the transversely isotropic symmetry of the stiffness Di j, it is well known that there
are only five independent elastic moduli: E1(= EL), E2 = E3(= ET), G12 = G13(= GL), G23(=

GT), and ν12 = ν13(= νL). In the case of random fiber arrays, due to an anisotropic ratio, one
more parameter, ν23 = ν32(= νT), is needed. To determine the elastic properties of unidirectional
composites in a theoretical manner, computational homogenization in relation to the present study is
briefly summarized.

To predict the equivalent elastic properties of a unidirectional lamina in the computational
homogenization scheme, an RVE comprising fibers and a matrix with a predefined fiber-volume ratio
is first modeled with a set of FE meshes. Proper periodic boundary conditions in Equation (A2) are
then applied to satisfy Hill–Mandel or macro-homogeneity condition [33,34]:

ur+
p − ur−

p = εpq∆xr
q, (p, q, r = 1, 2, 3) (A2)

where the superscripts r+ and r− indicate the positive and negative sides of the RVE in the r-direction,
respectively. That is, the displacements up for each periodic pair are constrained by Equation (A2). In
addition, ∆xr

q indicates the difference between the coordinates xq for the periodic pair in the r-direction.
Only in the case of r = q, ∆xr

q corresponds to the length of the RVE with respect to the r-direction,
i.e., ∆x1

1 = X1, ∆x2
2 = X2, ∆x3

3 = X3, respectively; and the others are zero when the periodic boundary
surfaces of the RVE are assumed to be perpendicular to the Cartesian coordinates axes. The prescribed
strain imposed on the RVE is denoted by εpq.

We consider six independent macroscopic periodic deformations of the RVE, which correspond
to six strain components in the form of vector notation, respectively. First, one of the six strain
components, corresponding to the prescribed εpq, is non-zero, while the others are zero. For example,
when ε23(= ε32) is prescribed, the corresponding constraints are given as

u1+
1 − u1−

1 = 0, u1+
2 − u1−

2 = 0, u1+
3 − u1−

3 = 0,
u2+

1 − u2−
1 = 0, u2+

2 − u2−
2 = 0, u2+

3 − u2−
3 = ε32X2,

u3+
1 − u3−

1 = 0, u3+
2 − u3−

2 = ε23X3, u3+
3 − u3−

3 = 0
(A3)

Then, the FE analysis was conducted imposing the above constraints at all the nodes on boundary
surfaces of the RVE. Similarly, the FE analyses for the other five strain components were carried out.
For each of the macroscopic periodic deformations, the average stresses can be obtained by

< σi >=
1
Ω

∫
Ω
σi(x)dΩ, (i = 1, 2, . . . , 6) (A4)
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where Ω is the RVE volume. The macroscopic strain–stress relationship in the form of the vector
notation is given with the compliance matrix Si j, as follows:

< εi >= Si j < σ j >, (i, j = 1, 2, . . . , 6) (A5)

where the macroscopic averaged strain < εi > corresponds to the prescribed strain εpq. The compliance
matrix Si j can be thus computed from Equations (A5) and (A6). Finally, all elastic moduli are determined
by comparing the computed compliance matrix with the compliance matrix of a unidirectional lamina
as follows:

Si j =



1
E1

−ν21
E2

−ν21
E2

0 0 0
−ν12
E1

1
E2

−ν23
E2

0 0 0
−ν12
E1

−ν23
E2

1
E2

0 0 0
0 0 0 1

G23
0 0

0 0 0 0 1
G12

0
0 0 0 0 0 1

G12


with

ν ji

E j
=
νi j

Ei
(A6)
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