iriried applied
L sciences

Article

VNF Placement for Service Function Chains with
Strong Low-Delay Restrictions in Edge
Computing Networks

Pilar Manzanares-Lopez *, Juan Pedro Muiioz-Gea'” and Josemaria Malgosa-Sanahuja

Department of Information Technologies and Communications, Universidad Politecnica de Cartagena,
E-30202 Cartagena, Spain; juanp.gea@upct.es (J.P.M.-G.); josem.malgosa@upct.es (J.M.-S.)
* Correspondence: pilar.manzanares@upct.es; Tel.: +34-968-326534

check for
Received: 26 August 2020; Accepted: 18 September 2020; Published: 20 September 2020 updates

Featured Application: Mapping of service function chains containing low-delay demanding
virtual network functions into mixed micro data center/cloud data center edge computing
scenarios, optimizing a multi-parameter cost.

Abstract: The edge computing paradigm, allowing the location of network services close to end
users, defines new network scenarios. One of them considers the existence of micro data centers,
with reduced resources but located closer to service requesters, to complement remote cloud data
centers. This hierarchical and geo-distributed architecture allows the definition of different time
constraints that can be taken into account when mapping services into data centers. This feature
is especially useful in the Virtual Network Function (VNF) placement problem, where the network
functions composing a Service Function Chain (SFC) may require more or less strong delay restrictions.
We propose the ModPG (Modified Priority-based Greedy) heuristic, a VNF placement solution that
weighs the latency, bandwidth, and resource restrictions, but also the instantiation cost of VNFs.
ModPG is an improved solution of a previous proposal (called PG). Although both heuristics share
the same optimization target, that is the reduction of the total substrate resource cost, the ModPG
heuristic identifies and solves a limitation of the PG solution: the mapping of sets of SFCs that include
a significant proportion of SFC requests with strong low-delay restrictions. Unlike PG heuristic
performance evaluation, where the amount of SFC requests with strong low-delay restrictions is not
considered as a factor to be analyzed, in this work, both solutions are compared considering the
presence of 1%, 15%, and 25% of this type of SFC request. Results show that the ModPG heuristic
optimizes the target cost similarly to the original proposal, and at the same time, it offers a better
performance when a significant number of low-delay demanding SFC requests are present.

Keywords: edge computing; micro data centers; VNF placement; time restricted NF

1. Introduction

Edge Computing (EC) [1-3] is considered as a key supporting technology for the emerging
Internet of Things (IoT) and 5G networks. Computing services are shifted to the edge of the Internet
ideally within one hop from mobile devices and other smart devices [4].

The traffic demands of existing services and, most importantly, new services such as Virtual
Reality (VR), Augmented Reality (AR), public security, smart cities, or connected cars pose challenges
to remote resource-rich computing centers or clouds. The cloud is often remotely located and far from
the users, and the data transfer delays between users and the cloud can be long and unpredictable.
Bringing services closer to the edge network reduces the backhaul costs and solves the low latency
requirements of the services.

Appl. Sci. 2020, 10, 6573; doi:10.3390/app10186573 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-1296-7158
https://orcid.org/0000-0001-8342-4797
https://orcid.org/0000-0001-8137-1089
http://dx.doi.org/10.3390/app10186573
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/18/6573?type=check_update&version=2

Appl. Sci. 2020, 10, 6573 20f22

Network Function Virtualization (NFV) [5,6] has become an important topic in recent years.
NFV technology can decouple Network Functions (NFs) from proprietary and application-specific
hardware to make them operate in software, known as Virtual Network Functions (VNFs) [7-9],
on virtual instances, such as virtual machines and containers, running on Commercial-Off-The-Shelf
(COTS) devices. Typically, multiple VNFs are chained in a particular order composing a Service
Function Chain (SFC), which provides the services required by a user.

VNF placement algorithms are in charge of finding the optimal path to map the SFC requests
in the available network resources, offering users a demanding quality of service. The costs of VNF
placement should be reduced as much as possible, and the carrying capacity of an entire network
should be improved to reduce the network infrastructure costs. Such improvements will provide
benefits for a network operator and promote the use of NFV technology [10]. The VNF placement
problem has been widely studied in cloud environments, considering resource-rich clouds, federated
clouds, and multi-domain cloud networks [11]. However, the constraints of where data must be stored
and processed has evolved. Cloud Data Centers (CDC) and Edge Computing (EC) will coexist and
cooperate, each performing the functions for which they are best suited.

There are three main factors that determine edge computing: network latency, bandwidth
costs, and application availability. Network latency can cause poor performance or total failure for
time-sensitive or interactive applications that require near-immediate response times. Edge computing
shortens distances and requires fewer network hops to minimize latency and guarantee application
viability. Bandwidth costs can increase significantly when continuously shuttling large volumes
of data from the edge to the cloud. Edge computing reduces bandwidth requirements and
congestion. Finally, edge computing preserves application availability, even during a network failure,
by eliminating the need for constant communication with a cloud data center.

From a conceptual point of view, edge computing is defined for both mobile cloud computing and
IoT cloud computing environments. The edge computing concepts and terminology were analyzed
in [2—4], and the main scenarios including cloudlets, fog computing, or Micro Data Centers (MDC)
were identified. In this work, we focus on mixed Micro Data Center (MDC)/Cloud Data Center (CDC)
networks. The relevance of this network scenario was discussed in [12] focusing on IoT services.
As described before, in scenarios where massive numbers of IoT devices will coexist, implementing
some computation at the edge in micro data centers rather than transferring the task to a remote cloud
enhances the performance of SFCs in latency-critical applications.

The problem of VNF placement in data center networks has been extensively studied in the
literature, but not so much in edge computing scenarios and, in particular, in mixed MDC/CDC
networks. One of the most recent and relevant research works referred to MDC/CDC networks
was presented in [13]. This solution, called the Priority-based Greedy heuristic (PG heuristic),
is described in Section 3 in more detail. The work defines a VNF placement solution for edge computing
networks that takes into account latency, bandwidth, and resource restrictions and also considers
the virtualization overheads when instantiating VNFs as a parameter to be taken into consideration.
To reduce this last cost, multi-tenancy technology is considered. Multi-tenancy, one of the benefits
of the Software-as-a-Service (SaaS) model, is used to make multiple tenants (in this scenario, virtual
network function requests) share the same software instance.

As pointed out above, the combination of distributed micro data centers with cloud data centers
allows the provision of network services that require strong low-delay requirements. For this reason,
we consider it important to study the response of the solution of [13] to a significant and variable
amount of this type of SFC request, an aspect that was not considered in the original work. Thus,
the first contribution of this work is to study the adequacy and correct operation of the PG heuristic in
this case. As a result, we identify a limitation of one of the algorithms defined by the PG heuristic that
impacts the efficiency of the VNF placement solution when the percentage of SFC requests with strong
delay restrictions increases. To solve this matter, we propose an alternative heuristic called the ModPG
heuristic to give a solution to the VNF placement problem. Although both heuristics share the same

Appl. Sci. 2020, 10, 6573 30f22

optimization target, that is the reduction of the total substrate resource cost, our proposed ModPG
heuristic solves the shortcomings of the PG solution.

The percentage of SFC requests with strong low-delay restrictions was not considered as a
relevant factor to be analyzed by [13]. In contrast, we introduce this factor as a vital value to show
the improvement offered by our proposal. In this work, the PG solution and the ModPG solution
are compared considering the presence of 1%, 15%, and 25% of SFC requests with strong low-delay
restrictions. The results show that the ModPG heuristic optimizes the target cost similarly to the
original proposal, and at the same time, it reduces the amount of non-allocated SFC requests.

The remainder of the paper is organized as follows. Section 2 describes related works, and Section 3
presents some technical background. Section 4 presents the formulation of the VNF placement problem.
Section 5 describes the shortcoming identified in the PG heuristic. In Section 6, we present our heuristic
algorithms. In Section 7, simulation results are presented. Finally, Section 8 concludes the paper.

2. Related Works

The problem of VNF placement has been the subject of research during the last few years. Different
works have formulated the VNF placement problem in an NFV environment as an optimization
problem and solved it exactly considering Integer Linear Programming (ILP) models, Mixed Integer
Linear Programming (MILP) models, or Mixed Integer Quadratically Constraint Programming
(MIQCP). The exact solution of these models is an NP-hard problem, requiring an execution time that
grows non-linearly with the network size. As an alternative, the proposal of heuristics to solve the
VNF placement is a widely used method to obtain near-optimal solutions in reduced execution time.

Optimization targets also vary when defining the optimization problem: the number of
used physical machines, the total resource consumption, the total service delay, the energy cost,
and the bandwidth consumption are some of the parameters that have been considered, individually
or jointly, in the literature.

The problem of placing VNFs in edge computing scenarios is different from placing VNFs in
a traditional centralized data center network. It is necessary to consider the placement of VNFs in
both edge cloud servers (with limited resource capacity and low latency) and core cloud servers (with
relatively sufficient resource capacity and high latency) so as to satisfy some strict service-specific
requirements. The variety of edge computing scenarios is translated into the definition of different
physical and logical network topologies that would affect the proposed solutions. In this work, the edge
computing scenario defines three types of nodes (SARs, MDCs, and CDCs), creating a hierarchical and
geo-distributed network substrate that should be considered in the mathematical formulation of the
optimization problem and the proposed heuristic.

Cao et al. [14] studied the VNF-Forwarding Graph (VNF-FG) design and VNF placement problem
in 5G mobile networks. Before the VNF placement, this solution defines a first step composed of
flow designing and flow combining to generate a VNF-FG according to network service requests.
Then, the VNF mapping is solved with the aim of minimizing bandwidth consumption.

Defining an MECas a cloud data center located at the edge of the mobile network, the authors
of [15] proposed a cross-domain service function placement solution for 5G applications. This work
considers a hierarchical network consisting in a top-domain network (containing several cloud data
centers) and sub-domain networks (the detailed description of the cloud data center network). In the
top-domain network, the requested service chain is divided into subchains by the service chain partition
mechanism, and then, the required resources are allocated for these sub-chains in the sub-domain
networks by the service subchain mapping solution. The optimization objective of the service chain
partitioning is to minimize the end-to-end delay, and the optimization goal of the service sub-chain
mapping is to minimize the sub-chain service cost.

Fotoglou et al. [16] studied the Cross-Slice Communication (CSC) in 5G network slicing in
the context of edge computing. The work proposes the use of a shared CSC slice as a solution to
facilitate interactions between services deployed in slices co-located in edge cloud infrastructures.

Appl. Sci. 2020, 10, 6573 40f22

The intermediate slice provides connectivity between the two communicating slices, and it also
provides management, monitoring, and security functions (implemented by VNFs in the form of a
service chain) to the interconnected slices. The pre-configuration and instantiation of VNFs in the
shared CSC slice lead to resource and service time savings.

Network softwarization was also identified as an important factor in network slicing in [17].
This work considers well-defined end-to-end network slice blueprints containing VNF performance
profiles and exposing clear resource requirements and proposes a Multi-Criteria Analysis (MCA)
methodology to translate them into a variable set of candidate slice instances depending on the
infrastructure capabilities. A greedy algorithm is defined to elaborate the candidate slice instances,
mapping VNEF to infrastructure nodes.

Placing VNFs in service-customized 5G network slices was also studied in [18], considering edge
clouds (closer to end-users, with limited resources, but low response latency) and core cloud servers
(with sufficient resources, but high response latency). This work defines VNF interference as the
performance degradation caused by VNF consolidation, that is mapping VNFs on the same server
for the reason of energy savings or reduction of communication latency. A model to quantify the
VNF interference in terms of degraded throughput caused by VNF consolidation is proposed, and an
adaptive interference-aware approach to place VNFs with the aim of maximizing the total throughput
of the accepted requests is defined and evaluated.

In our opinion, the most interesting proposal facing the problem of NFV placement in edge
computing scenarios defined by the cooperation between micro data centers and Cloud Data Centers
(CDC) can be found in [13]. This work is defined in detail in the following section. In this work, the NFV
placement problem takes into account node resource and bandwidth restrictions, but also considers
more complex and detailed delay constraints (two different latency constraints are determined by
each SFC request). Moreover, this work considers the multi-tenancy implementation of VNF instances,
including the instantiation cost into the total cost that the optimization problem tries minimize.

3. Technical Background

The problem of VNF placement and resource optimization in mixed Micro Data Center
(MDC)/Cloud Data Center (CDC) edge computing networks has been addressed in [13]. In this
work, the networking scenario is described as a hierarchical and geo-distributed architecture that
involves, from the edge to the core network, Service Access Routers (SARs), Micro Data Centers
(MDCs), and remote Cloud Data Centers (CDCs). The hierarchical definition of the edge computing
architecture allows the definition of two kinds of latency constraints in the SFC request: the latency
constraint from SARs to MDCs and the latency constraint from the SARs to CDCs. The delay sensitive
part of the SFC request will be served by one or more MDCs and the rest by remote CDCs.

Unlike other VNF placement solutions, this work includes the instantiation method of VNFs as
a cost to be considered in the VNF placement problem. A VNF is hosted on one Virtual Machine
(VM), and each VM has its own guest operating system and hypervisor, so some basic resources are
needed when instantiating a VNF. This cost is called Basic Resource Consumption (BRC). For the sake
of isolation, different VNF instances cannot share the BRCs. To save BRCs, the VNF instances are all
assumed to support multi-tenancy software architecture, which allows multiple VNF requests to be
hosted on the same VNF instance. This VNF combination strategy was also considered in [19], where a
VNF deployment algorithm was proposed for fog-based radio access networks in 5G mobile networks.

Mapping all the VNF requests (VNFrs) of an SFC request (SFCr) on the same MDC reduces
the bandwidth consumption because the flows between the VNFs do not go through network links.
However, many copies of the same VNF will be placed across the network, meaning more node
resource consumption due to the BRCs. BRCs can be reduced by reducing the instantiating of VNFs of
the same type, but this implies longer paths between MDCs to map the SFC requests, increasing the
bandwidth consumption and the latency from the SARs to the involved MDCs.

Appl. Sci. 2020, 10, 6573 50f22

The problem was described in [13] by the following example (see Figure 1). SFCr 1 (in blue)
and SFCr 2 (in red) access the service from SAR 1 and SAR 3, respectively. SFCr 1 chains
{VNFr, VNF?!, VNFr!, VNFr!, VNFrf1}, and SFCr 2 chains {V NFr"2, VNFr2, VNFr'2, VNFrf?},
in the indicated order. If VNFrs are mapped as shown in the figure, the consumed BRCs will be seven,
owing to the multi-tenancy technology, allowing only one instance of VNF? to map VNFr"! and
VNFr" on MDC 6. If the mapping position of VNFr! changes from MDC 8 to MDC 7, the consumed
BRCs will be reduced, and MDC 8 will be free; consequently, CAPEX/OPEX will be saved.
However, the flow path of SFCr 1 may change from1 — 6 — 2 -8 -4 — 9to1l — 6 —
3 =7 —=5—4— 9, which involves more link hops, so the bandwidth consumption increases.

9-CDC

VNF ¢
VNFre!

SFCri={VNFrel, VNFr*', VNFret, VNFrl, VNFril}
SFCr2={VNFr*?, VNFr2, VNFr®?, VNFri?}

VNF f

e (e

VNF @
R e -
VNFr
- L m--
SFCrl ”" .
1-SAR oo THDE
6-MDC .. il
i~
l / i -+
SECr2 VNFd VNFc

3-SAR
Figure 1. Problem outline using the example described in [13].

A Priority-based Greedy (PG) heuristic was defined in [13] to solve the VNF placement problem.
The PG heuristic consists of a priority-based SFC mapping algorithm and a subsequent VNFr merging
algorithm. In a first stage, the SFC request (SFCr) mapping algorithm defines as many clusters as
MDCs in the network topology. Then, each SFCr is assigned to all the clusters that fulfil the latency
constraints (the SAR to MDC latency constraint and the MDC to CDC latency constraint). As can
be expected, there will be SFCrs that are assigned to just one cluster (or MDC), but others will be
assigned to more than one. For the first ones, the SFCrs assigned to just one cluster are called Poor
SFCrs (P-SFCrs), and the others are called Rich SFCrs (R-SFCrs). According to the number of assigned
P-SFCrs, the clusters (MDCs) receive a priority value. The more P-SFCrs, the higher the processing
priority of the corresponding clusters is.

Once the MDC processing sequence is obtained, the MDCs are processed in order.
Thus, the P-SFCrs and the R-SFCrs assigned to the processed MDC are mapped on it. The R-SFCrs
that cannot be mapped on the MDC because of the shortage of resources are left to be mapped on
a subsequent MDC. However, in this case, the R-SFCrs will be processed with equal priority as the
P-SECrs in the new MDC. As we will describe in more detail in Section 5, this priority redefinition of
R-SFCrs in a full MDC to be considered as equal-to-P-SFCrs in the subsequent MDCs incurs a penalty
to R-SFCrs of those MDCs. The impact of this penalty, which is reflected in the number of SFCrs that
cannot be allocated, increases as the percentage of P-SFCrs increases. In addition to the identification
and description of this problem, we propose a Modified Priority-based Greedy (ModPG) heuristic that
deals with this problem, improving the number of successfully mapped SFCrs.

Appl. Sci. 2020, 10, 6573 6 of 22

Starting from the priority-based mapping results, a VNFr merging algorithm is executed.
The objective of this second algorithm is to reduce the number of VNF instances to reduce the BRCs,
the number of activated MDCs, and the total cost.

4. Problem Statement

The main notations used in the problem statement are listed in Table 1.

Table 1. Notations.

(P,R,G,E®) 4-tuple substrate network

ns A substrate node in the substrate network

(n$,n3) The substrate link between the substrate nodes 15 and n3
s s The propagation delay of substrate link (1}, n3)

Cl(;ﬁk’”g) The link capacity of substrate link (15, 13)

Cé?;i)u, C;Znﬁem The CPU and memory resources of substrate node ng

r The SECr set

6-tuple description: p,, indicates the SAR of SFCr; ®,, indicates the part
of the SFCr that should be placed in MDCs; ¥, indicates the part of the
SFCr that should be in CDC; Eg indicates the logical links (that is, the
order) between the VNFrs; DQAD Cisa latency constraint that limits the
tolerated propagation latency from SAR to MDC; and DgD C is the latency
constraint that limits the tolerated propagation latency from SAR to CDC

MDC CDC
(P, @y, ¥y, E5, Dy'P%, DYE5)

ny A VNFr involved in an SFCr that demands CPU and memory resources
(nf, n;’) The logical link between n{ and n;?, two consecutive VNFrs in an SFCr
CPU, i, memty e The CPU and memory consumption of VNFr n? in SFCr vy

BRC/(\:P U,BRCR”E’” The CPU and memory BRCs when instantiating a new VNF

A on one MDC or CDC

4.1. Substrate Topology

The substrate topology is a hierarchical and geo-distributed structure including SARs (Service
Access Routers), MDCs (Micro Data Centers), and CDCs (remote Cloud Data Centers).

A four-tuple (P, R, G, E®) is used to represent the substrate topology, where P is the set of SARs,
R is the set of MDCs, G is the set of CDCs, and E° indicates the set of substrate links.

A node in the substrate network is represented by 13, and the pair (15, n3) represents the substrate
link between the nodes 73, and 3. The propagation delay of the link between the nodes is called d 1S 057
and the link capacity is represented by Cl(gf;(’”g)

s
In terms of CPU and memory, the computing resources of a substrate node are denoted by Cg’;,u

S
and Cp,,, respectively.

4.2. SFC Request

An SFC request (SFCr) consists of a set of VNF requests (VNFr): a set of VNFs that have to be
placed in MDCs and a set of VNFs that have to be placed in the CDC.

A six-tuple (p,, @, ¥, EZ, Df\rAD C D,SD C) is used to define an SFCr <, where p., indicates the SAR
of SFCr, ®, indicates the part of the SFCr that should be placed in MDCs, and ¥, indicates the part of
the SFCr that should be in CDC. Ei’Y indicates the logical links (that is, the order) between the VNFrs,
and DQAD € is a latency constraint that limits the tolerated propagation latency from SAR to MDC,
while DgD C is the latency constraint that limits the tolerated propagation latency from SAR to CDC.

Appl. Sci. 2020, 10, 6573 7 0f 22

The problem statement only considers propagation delay. As pointed out in [13], other delays such as
queueing and processing delays, defining the time needed by the packets related to a VNFr to pass
through a VNF instance, could be included in the formulation. Moreover, an adequate modeling and
parameter setting of these times needs to be included in the proposed heuristics. The recent work [20]
surveyed the literature about delay-aware resource allocation in NFV. The inclusion of this technical
aspect will be considered in future versions of this work.

Each VNFr n{ involved in an SFCr v demands computing resources in terms of CPU and memory:
CpP LI,W?, meit, o, respectively. This work assumes multi-tenancy software technology. A substrate
node, which can host different types of VNFs, can also host multiple VNEFrs of the same type. To run a
particular VNF type in a node, some basic resources are needed. These Basic Resource Consumptions
(BRCs) when instantiating a VNF type in a node are considered fixed and independent of the number
of VNFrs of this type. The CPU and memory BRCs when instantiating a new VNF A on one MDC or
CDC are BRC{"Y and BRC/"“™, respectively.

4.3. VNF Placement

The objective of both the PG and ModPG heuristics is to propose a strategy for efficiently mapping
the SFCr on the substrate network. The optimization target is to reduce the total substrate resource
cost, defined as:

T. = a * (CPU. + BRCSPY) + B+ (MEM, + BRC™™)

1
+p * Band. + ¢ * MDC, M

where the first term corresponds to the CPU resource consumption (CPU,: the total CPU resource
consumption of mapped VNFrs; BRCSPU: the total CPU basic resource consumption associated
with the required nodes), the second one corresponds to the memory resource consumption (MEM,:
the total memory resource consumption of mapped VNFrs; BRC!*": the total memory basic resource
consumption associated with the required nodes), the third addend represents the total bandwidth
consumption, and finally, the last term corresponds to the total cost of activating MDCs.

To optimize the total cost, the proposed solution makes use of some strategies:

1. Itis considered that activating an MDC involves a set of additional costs (power supply, hardware
equipment, cooling systems, etc). Therefore, the mapping process should activate as few MDCs
as possible.

2. VNF combination strategy: If an MDC has enough resources, the maximum number of
consecutive VNFs of an SFCr will be mapped on the MDC. With this strategy, the bandwidth cost
is reduced.

3. VM reusing strategy: To reduce the CPU and memory BRC, when a VNF is instantiated in an
MDC, the VM running the VNF is reused for running VNFrs of the same type.

The VNF placement problem can be formulated as an Integer Linear Programming (ILP) model,
as shown in Appendix A. The obtained ILP model is NP-hard. The Gurobi optimizer [21] was used
to solve the VNF placement problem when the number of SFCrs is small in [13]. To be able to solve
the problem in larger substrate networks with a larger number of SFCrs, the priority based greedy
heuristic described in Section 2 is proposed.

In our opinion, the priority-based SFCr mapping algorithm defined in the PG heuristic presents
some flaws that affect the performance of the solution. In Section 5, we describe the impact of these
flaws, before proposing a modified version of the PG heuristic (called the ModPG heuristic) in Section 6.

5. Shortcomings of the Priority-Based SFCr Mapping Algorithm in the PG Heuristic

As its name implies, the priority-based greedy heuristic makes use of the concept of priority
to define and implement a VNF placement solution. This solution is based on two stages: firstly,

Appl. Sci. 2020, 10, 6573 8 of 22

an SFCr mapping algorithm is executed, and then, a VNFr merging algorithm is applied. The concept
of priority is employed in the first stage, the SFCr mapping algorithm, the of which objective is to
map all the VNFrs of an SECr on a particular MDC and the CDC (only one CDC is considered in the
system model).

The concept of priority is used to establish a mapping order. An expected solution would have
been to associate the term “priority” directly with the SFCrs, obtaining an ordered list of the full set of
SFCrs before being mapped. However, in the PG heuristic, the “priority” parameter is employed to
indicate in which order the MDCs are going to be processed with the aim of the “greedy” use of its
resources to map all possible SFCrs.

Before starting the mapping process, the total set of SFCrs is processed to identify the subset of
MDCs to which each SFCrs could be mapped, taking into account the delay restrictions. Considering a
particular SFCr, the substrate network, and its SAR, the SFCr is assigned as a potentially mapped SFCr
to a particular MDC if the latency requirement D,I;/I is met. As a result of this procedure, an SFCr might
be assigned to just one MDC (if only one MDC fulfills the latency requirement) or to more than one
MDC. As can be seen in the example shown in Figure 2a, SFC 4 is assigned as the potentially mapped
SFCr to MDC1, MDC2, MDC3, and MDC4, while SFCj3 is only attached to MDC1. Based on the number
of candidate MDCs, the SFCrs are cataloged as Poor SFCrs (P-SFCrs) or Rich SFCrs (R-SFCrs): a poor
SECr only has a candidate MDC, while a rich SFCr has more than one candidate.

(a) Assignment of possible-mapped SFCr to MDCs:
MDC1 MDC2 MDC3 MDC4 MDC5

SFC, (P) SFC, (P) SFC, (P) SFC, (P) SFC, (P)

SFC, (P) SFCq (P) SFC,(R) SFCyo(P) SFC, (P)

SFCq (R) SFC,, (P) SFC, (R) SFCy5 (P) SFC,; (P)

SFC, (R) SFC,, (P) SFC, (R) SFC, (P) SFC, (R)

SFC, (R) SFCys (P) SFCe (R) SFCy (R) SFC¢ (R)

SFC: (R) SFC: (R) SFC,4 (R) SFC, (R) SFC: (R)

SFC: (R) SFC (R) SFC, (R) SFC, (R) SFC. (R)

SFC, (R) SFC,4 (R) SFCq (R) SFC, (R) SFCq (R)

SFC, (R) SFCq (R) SFC. (R) SFC, (R) SFCy(R)

SFCy (R) SFCs (R) SFC, (R) SFC. (R) SFC, (R)

SFCy (R) SFC: (R SFCy (R SFC,4 (R) SFC, (R

(b) After processing the MDC priority order: (c) After processing each MDC:

MDC2 MDC4 MDC5 MDC1 MDC3 MDC2 MDC4 MDC5 MDC1 MDC3
SFC, (P) SFC, (P) SFC, (P) SFC, (P) SFCs (P) @ SFC, (P) @ SFC (P) @D SFCG,(P) | @SFC, (P) @ SFCs (P)
SFCq (P) SFCyo (P) SFC, (P) SFC, (P) SFC,(R) @ SFCs(P) | @SFC,(P) | @ SFG,(P) | @ SFC4(P) D
SFC,, (P) SFCy5 (P) SFCy, (P) SFCq (R) SFC, (R) @SFC, (P) | @SFC5(P) | BSFCy, (P) -SFEARY SRi
SFCy, (P) SFC, (P) SFC, (R) SFC, (R) SFC, (R) @SFCy,(P) | @ SFCy(P) | @SFC (R) | ® SFC (R) T
SFCys (P) SFCy (R) SFC (R) SFC,4 (R) SFCe (R) ®SFCys(P) | ® SFCy (R) fsre—tRy SFE{R} FECtRY
SFC (R) SFC, (R) SFC: (R) SFCe (R) SFC, (R) ® SFC: (R) | @ SFC(R) 5 SFC; (R) O SFE (R}
SFCy (R) SFCp (R) SFC. (R) SFC: (R) SFC, (R) @ SFC (R) ® SFCc (R) SFERY FER}
SFC, (R) SFC, (R) SFCs (R) SFCo (R) SFCy (R) SFC,(R) SFC,(R) | @ SFCs(R) | ® SFC,(R) SR
SFCq (R) SFCy (R) SFCy(R) SFC, (R) SFC. (R) SFCy (R) SFC, (R) SFCu(R) | @ SFCy (R) SRe—n
SFCs (R) SFC. (R) SFCy (R) SFCy (R) SFC, (R) SFC4 (R) SFC. (R) @SFCy, (R) Sre—
SFCe (R) SFC, (R) SFC4 (R) SFCy, (R) SFCy (R) SFC:(R) | ® SFCA(R) SFC, (R) i SRE—T i

Figure 2. Example of priority-based mapping algorithm execution. Five MDCs and a set of 30 SFCrs are
considered. It is assumed that the MDCs have CPU and memory resources to accommodate seven SFCs
at most. (a) shows the assignment of possibly mapped SFCrs to each MDC taking into account the delay
restrictions. The SFCrs that are only assigned to one possible MDC (P-SFCrs) are shown in blue and the
R-SFCrs in green. (b) shows the MDC processing priority order (from left to right). Finally, (c) shows
the result of the mapping algorithm. The SFCrs with a number on the left are mapped ones. The SFCrs
without a number and that are not crossed out are pending SFCrs that will be considered in subsequent
MDCs, and crossed out SFCrs indicate SFCrs that have been already mapped in previous MDCs.

Once the set of potentially mapped SFCrs assigned to each MDC is obtained and the SFCrs have
been classified as P-SFCrs or R-SFCrs, this information is used to establish the order of priority for
MDCs to be processed. This processing priority value is obtained according to the number of P-SFCrs:

Appl. Sci. 2020, 10, 6573 90f 22

the more P-SFCrs, the higher the processing order. Figure 2b shows the MDC process order, from left
to right.

For each processed MDC, the potentially mapped P-SFCrs are mapped in the first place. Next,
the R-SFCrs are mapped, using the minimum distance from the SAR to the MDC as the selection
parameter. If more than one R-SFCr coincides on this parameter, the R-SFCr whose VNFrs have
less difference from the existing VNFs in the MDC is chosen to be mapped firstly. The R-SFCrs that
cannot be mapped on the current MDC due to the shortage of resources are left to be mapped on any
subsequent MDC. However, it is also important to emphasize that, in this case, the R-SFCrs will be
processed in a subsequent MDC with equal priority as the P-SFCrs in that MDC. According to this
redefinition, the pending R-SFCrs of an already processed MDC will be mapped as soon as possible.
However, this introduces a penalty to the R-SFCs of the currently processed MDC, as described below.

The priority-based SFCr mapping algorithm of the PG heuristic assumes that, although the
memory and CPU capacities of the substrate nodes are limited, there will always be an available MDC
that allows the fulfillment of the latency restrictions with enough resources to locate any SFCr of the
total set. However, this assumption is rather unrealistic in real scenarios. There may be resources
available on the network, but none of them meet the delay restrictions.

The non-fulfillment of this assumption, the priority order definition focused on MDCs, and the
redefinition of the priority of pending R-SFCrs affect the probability of SFCr mapping failure. An SFCr
is marked as poor if the number of possible MDCs is equal to one or rich if this number is higher than
one, without considering the number of possible MDCs. Thus, an originally marked R-SFCr with
a high number of possible MDCs may be mapped before an R-SFCr with a low number of possible
MDCs (which has fewer options to be mapped), only because the priority of the MDC of the former
R-SFCrs was higher due to the number of P-SFCrs.

Figure 2c illustrates the situation described above. Although the amount of SFCrs that can be
mapped on an MDC depends on the MDC resources and the requested resources demanded by the
VNFrs composing the SFCrs, by way of example, we consider that MDCs have the CPU and memory
resources to accommodate seven SFCs at most. This assumption is used in order to simplify the
scenario and to facilitate the problem identification and description. Firstly, MDC2 is processed: five
P-SFCrs and two of the six R-SFCrs (SFCE and SFCk) are mapped on it. The rest of the R-SFCrs (SFC 4,
SFCp, SFCg, and SFCr) have to be mapped on other MDCs. Next, MDC4 is processed: After four
P-SFCrs are mapped, the following mapped one is SFC 4. Although it is at the end of the possibly
mapped list, it is treated with the same priority as the poor SFCrs (and consequently, with more priority
than rich SFCrs of this MDC) because it is a pending SFCr of a previously processed MDC (in this case,
MDC?2). Finally, SFCy and SFC; are mapped on MDC2. Following the same procedure, the rest of the
MDCs are processed. It can be seen that, at the end of the mapping process, SFCp and SFCg are not
mapped on any MDC. In detail, SFCp (a rich SFCr, but with only two possible MDCs) could have been
mapped on MDC4, but SEC 4 (a rich SFCr with four possible MDCs) was mapped instead because of
the priority redefinition of pending requests. However, SFC 4 could have been mapped on MDC1 or
MD3, which have available resources, allowing the mapping of SFCp.

Coming back to the PG heuristic, once the priority-based SFCr mapping algorithm finishes,
a second stage called the VNFr merging algorithm is executed. In summary, starting from the mapping
result of the first stage, the VNFr merging algorithm tries to move and merge VNFrs of the same type to
reduce the number of VNF instances and consequently BRCs. During this second stage, the movement
of VNFrs is done if the delay and resource restrictions of SFCrs are fulfilled, link and node resources
are not violated, and the total cost is reduced.

6. Modified Priority-Based Greedy Heuristic

We propose an alternative to the PG heuristic that improves the VNF placement results, reducing
the number of non-allocated SFCrs and maintaining similar total cost. Following the approach of the
PG solution, the heuristic proposed in this work, which is called the Modified Priority-based Greedy

Appl. Sci. 2020, 10, 6573 10 of 22

heuristic (ModPG), consists of two stages: an SFCr mapping stage (described in Algorithm 1) and a
VNFr merging stage (described in Algorithm 2).

Algorithm 1: ModPG-SFCr mapping algorithm.
Input: MDCs: R, network status: (), set of SFCrs: I', Substrate Network: SN;
Output: Set of used MDCs: R1, network status: ()1, total cost: TCq

1 classify (I') - Procedure 1;

2 while I is not empty: do

3 ¥x = the SFCr in I with the minimum length of set_possible MDC ;

4 Yx_mapped =0;

5 mem.,, = total memory requirement of y, ;

6

7

8

9

CPU,, = total CPU requirement of 7y ;
sort set_possible_MDC () by total_delay ;
if vy not mapped: then

for niS in set_possible_MDC(7yy): do

10 if (avail_mem_n? > mem., Jand (avail_CPU_n? > CPU,,) then

11 map vy in nf creating new VNFs if necessary ;

12 if (avail_mem_n? < SFCI) or (avail_CPU_n? < SFC*) then

13 ‘ remove 17 from set_possible_MDC of the rest of the SFCrsin T ;
14 break ;

15 if vy not mapped: then
16 distribute ®,, to MDCs € R / (all VNFs € ®,,, are instantiated) and (max. No.
consecutive VNFrs in an MDC) and (resource and delay constraints’ fulfillment) ;

[

17 f vy not mapped: then
18 distribute @, to MDCs € R / (max. No. consecutive VNFrs in an MDC) and (resource
and delay constraints’ fulfillment);

19 TCq=obtain_total_cost - equation (1) ;

Algorithm 2: ModPG-VNFr merging algorithm.

Input: Set of used MDCs: R1, status of the network: €}y, total cost: TC;
Output: Set of used MDCs: R2, status of the network: (), total cost: TCy
Rp=Ry; (p=0)y; TC=TCy;

p={set of MDCs in R; in order of increasing number of mapped VNFrs};

N =

3 for p; in p: do
s R;empoml:Rz; Q;empomlzaz;
5 Pi tota1=1set of SFCrs totally mapped on p; in order of decreasing resource requirements};

6 Pi,partiar={set of SFCrs partially mapped on p;};
7 if p; partial is empty: then

8 #moved=0;
9 for 1y in p; jp141: do
10 if (moving to an MDC in R;em” oral) or (moving to MDCs in R;emp Oml): then
11 ‘ #moved++ ;
12 else
13 ‘ break ;
14 if #moved==|p; 1o14|: then
15 TC;emporal:obtain_total_cost(R;empoml, Q;em’”om’) ;
16 if TC"P*" <TC,: then
17 ‘ Ry <_R§empoml; 0y « Q;empoml; TC, <_Tcéemporal ;

Appl. Sci. 2020, 10, 6573 110f22

Although the problem statement defined in Section 4 considers Gas a variable number of CDCs,
the ModPG heuristic (similarly to the PG heuristic in [13]) is defined considering a network scenario
with just one CDC. A single CDC with limited resources would constrain the total set of SFCrs that
could be mapped, but in both the PG and ModPG heuristics, this constraint has been considered
outside the scope of this work, assuming CDC resources as infinite. A multiple CDC model will require
extending the proposed heuristics by answering the problem of the load balancing among the links
from MDCs to CDCs. This extension will be addressed in future works.

6.1. ModPG-SFCr Mapping Algorithm

The PG heuristic is based on the definition of a set of clusters to which the SFCrs will be assigned,
and then, the features of each cluster determine the order in which the SFCrs are mapped to MDCs.
In contrast to the PG, the mapping order of the SFCrs is determined by their own SFCrs and the set of
possible MDCs that are associated with each one (Line 1 in Algorithm 1). In Procedure 1 (Algorithm
2), the SAR, the location of MDCs, the CDC in the substrate network, and the delay requirements of
each SFCr are considered to check if the SFCr could be mapped on a particular MDC. For each SFCr,
the propagation delay from its SAR to each MDC and the propagation delay from a certain MDC to
the CDC are calculated using the shortest path algorithm (Lines 5-6 in Procedure 1). If the selection of
a particular MDC fulfills the delay requirements, the MDC is considered a possible MDC to map the
SECr (Line 9 in Procedure 1).

Procedure 1: SFCr classification procedure.

1 Procedure 1: classify(T') ;
2 foryinT do

3 set_possible_ MDC(y)=empty ;

4 for MDC; in R: do

5 obtain delay(SAR,, MDC;) using Dijkstra alg.;

6 obtain delay(MDC;j, CDC) using Dijkstra alg.;

7 total_delay=delay(SAR,, MDC;)+delay(MDC;, CDC);

8 if delay(SAR,, MDC]-)<D§/IDC and total_deluy<D$DC then
9 ‘ add (MDCj total_delay) to set_possible_MDC(7y) ;

After obtaining the sets of possible MDCs associated with each SFCr, the SFCr mapping process
begins. The SFCr with the minimum set of potential MDCs is selected (Line 3 in Algorithm 1). It is
referred to as 7y. set_possible_MDC(7yy) is ordered from smallest to highest total propagation delay
(Line 7 in Algorithm 1), and then, the first potential MDC with enough CPU and memory resources for
mapping the SFCr is selected (Lines 9-14 in Algorithm 1). If necessary, new VNFs will be instantiated
in the selected MDC (nl.s) (Line 11 in Algorithm 1).

As described in Section 5, the PG mapping algorithm in [13] was defined assuming that there is
always a potential MDC with enough available resources to host all the VNFrs of the SFCr that fulfills
the delay requirements. The ModPG algorithm does not adopt this strong assumption. Therefore,
if the SFCr being processed cannot be mapped on one of the potential MDCs entirely, the possibility of
mapping the VNFrs on multiple MDCs is considered (Lines 15-18 in Algorithm 1). In this process,
the resource availability of potential MDCs in set_possible_MDC(-yy) is analyzed, and then, the MDC
that maximizes the number of consecutive VNFrs of 7y, that can be mapped is selected. Next, taking into
account the topology and delay restrictions imposed by the SFCr, additional MDCs that allow the
mapping of the remaining VNFrs are located. In order to minimize the BRC cost, this process is
executed in two stages. Firstly (Line 16 in Algorithm 1), only MDCs where required VNFs are already
instantiated are considered. If the mapping process fails, then this restriction is removed (Line 18 in
Algorithm 1), and VNFs are instantiated if required.

Appl. Sci. 2020, 10, 6573 12 0f 22

Once the set of SFCrs (I') is processed, the total cost of the resulting mapping solution (TC;) is
obtained by applying Equation (1) (Line 19 in Algorithm 1).

6.2. ModPG-VNFr Merging Algorithm

Due to the fact that the mapping algorithm tries to minimize the delay and bandwidth cost by
mapping, all the VNFrs of an SFCr are mapped on the same MDC whenever possible (Lines 8-14
in Algorithm 1) or on a reduced number of MDCs (Lines 15-18 in Algorithm 1). As a consequence,
multiple instantiations of the same type of VNF are distributed in the network. That is, the volume
of BRCs is not optimal. In addition, the result of the mapping algorithm does not optimize another
relevant cost, the cost due to the activation of MDCs (the last term in Equation (1)). As pointed out
in [13], as few MDCs as possible should be activated because the corresponding cost of activating
MDCs is far higher than the other costs.

Taking into account both considerations, the ModPG-VNFr merging algorithm is defined as
shown in Algorithm 2.

With the aim of reducing the cost of activating MDCs, the set of MDCs is sorted in increasing
order considering the number of mapped VNFrs (Line 2 in Algorithm 2), and they are processed next
(Line 3 in Algorithm 2). To reduce the complexity of the process, the implemented merging algorithm
tries to empty the MDCs that host complete SFCrs (Line 7 in Algorithm 2). The moving of a sub-chain
(a partial number of VNFrs belonging to an SFCr) involves not only the MDC to be emptied and the
potential new destination MDCs, but also the MDCs that host the rest of the sub-chain.

If all the SFCrs mapped on the processed MDC can be potentially moved to other MDCs
(or distributed to various MDCs) fulfilling all the resource, delay, and bandwidth requirements
and constraints (Line 14 Algorithm 2), the new proposed mapping solution R;emp 7! is considered as
valid if the total cost is reduced (Lines 16-17 in Algorithm 2).

6.3. Complexity Analysis

In this part, the time complexity of the ModPG is analyzed. Firstly, for Algorithm 1, the time
complexity of Procedure 11is |T'| - [R| -2 |R| - log|R|, in which |R| - log|R] is the time complexity of the
Dijkstra algorithm. Then, for Lines 2-19 in Algorithm 1, all the SFCrs (|T'|) are traversed in order to
identify the SFCr with the smallest set of possible MDCs (yx). Next, this set is ordered, and in the
worst case, three loops are traversed.

Thus, the total time complexity is [I'| - [R| -2 - [R| - log|R| + |T'| - |R]| - log|R| + |T| - |R]| - 4. The first
term comes from Procedure 1. The second term corresponds to the sorting process in Line 7. The last
term derives from the minimum operator in Line 3 and the for-loops in Line 9, Line 16, and Line 18.
Therefore, the complexity is at the level of O(|T| - |R?| - log|R|).

Regarding Algorithm 2, for Line 2, the time complexity is |R;| - log|R1|. Then, for Lines 3-17,
all MDCs (|R1|) are traversed. Generally speaking, (R > R;). Therefore, the total time complexity of
ModPG is O(|T| - |R?| - Iog|R|).

7. Performance Evaluation

In this section, we evaluate the performance of the proposed ModPG heuristic and compare the
results to the original approach. Both solutions were coded in Python. All experiments were performed
on a computer with one Intel(R) Core(R) i5-7300U CPU 2.60GHz and 8GB of RAM.

7.1. Simulation Setup

The substrate network topology used to evaluate the proposed ModPG heuristic is the same
topology used in [13]. There are 100 SARs, 50 MDCs, and 1 CDC. The topology containing the 100
SAREs is generated by BRITE[22] based on a Waxman model [23], and then, the 50 MDCs are added to
the topology based on a K-means algorithm [24]. The K-means clustering algorithm is used to obtain

Appl. Sci. 2020, 10, 6573 13 0f 22

K clusters of SARs and then to place the K MDCs into their centers to minimize the within-cluster sum
of squares. The propagation delay on each link obeys a uniform distribution of (0,2).

Similarly to the PG evaluation in [13], in order to obtain the total substrate resource cost
Equation (1), all the weighted factors are equally balanced, that is &, 8, p, and ¢ are set to one.
Different parameter settings for the proposed solution will be evaluated in a future work.

Replicating the setting used in [13], each SFCr is composed of four network functions that
have to be hosted in MDCs. The virtualization of each network function in a node requires CPU
and memory BRCs to be instantiated (as in the referenced work, both BRC values were set to
20 units), and a particular VNFr demands CPU and memory consumption (as in the referenced
work, both requirements were randomly assigned following a uniform distribution of (40,80) units).
The bandwidth consumption of each SFCr obeys a uniform distribution of (10,50).

Similarly, assuming the delay values considered in [13], a set of experiments was performed
considering that the DQAD € of each SFCr obeys a uniform distribution of (1,2) and that Df;D € obeys
a uniform distribution of (5,10). Analyzing the obtained results, from the point of view of SFCr
classification as P-SFCrs or R-SFCrs, these delay distributions lead to a reduced amount of P-SFCrs.
In particular, the number of P-SFCrs corresponds to around just 1% of the total number of SFCrs.
Because the main objective of this performance evaluation is to verify the improvement of the proposed
ModPG heuristic against the original PG heuristic when the percentage of P-SFCrs increases, two other
sets of experiments were executed, where the percentage of P-SFCrs increased to around 15% and
around 25%.

7.2. Results

Two scenarios were considered: the first scenario where the CPU and memory resources of each
MDC were set to 3000 units; and the second scenario where the CPU and memory resources of each
MDC were set to 4000 units. The second scenario replicates the simulation parameters defined in
the baseline work [13]. To extend the evaluated scenarios, a more reduced capacity of MDCs was
considered in the first scenario to study and compare the behavior of both proposals in a tightener
situation.

For each scenario, different simulations were executed for different sets of SFCrs. Each experiment
was executed 10 times.

The percentage of non-allocated SFC requests, the total number of activated MDCs, the total BRC
cost, and the bandwidth cost were the obtained values for each simulation. The last three parameters
were used in [13] to evaluate the performance of the PG. In addition, the first parameter allows us
to evaluate the suitability of the proposed ModPG solution when the number of SECrs with strong
low-delay requirements is significant.

Figures 3 and 4 represent the evaluated parameters corresponding to the first and second scenario,
respectively. The mean value is shown, and the 95% confidence interval is represented in the figures.
Both figures compare the evaluated parameters using the proposed ModPG algorithm and the original
PG algorithm. In both cases, the VNFr merging algorithm defined in Section 6.2 was implemented.

7.2.1. Performance Comparison Focused on Successful SFCr Allocation

The main objective of this work is to solve the weakness found in the referenced work as the
percentage of SFC requests with strong low-delay restriction increases. As analyzed before in this
work, this behavior affects the number of non-allocated SFCrs. Therefore, the first parameter to be
evaluated is the percentage of non-allocated SFCrs, which is shown in Figure 3a and Figure 4a.

First of all, as expected, as the number of total SFCrs increases, the percentage of non-allocated
SFECrs increases as well, because of the limited CPU and memory capacity of the MDCs. The maximum
set of SFCrs in the first scenario was 500 and 600 in the second scenario.

Appl. Sci. 2020, 10, 6573 14 of 22

0 ModPG-1%-poor ModPG-15%-poor = ModPG-25%-poor =0 ModPG-1%-poor = ModPG-15%-poor I ModPG-25%-poor

4% PG-1%-poor PG-15%-poor PG-25%-poor 45 PG-1%-poor PG-15%-poor PG-25%-poor

40% 40 rl -l I 1
35% 35 Tl [al

30% 20 T

25% 5

" L
I“ .

0% - 1 I 0
300 400 500 SFers 300 400 500 SFers
(a) Percentage of non-allocated SFCrs. (b) Number of activated MDCs.
8000 ModPG-1%-poor ModPG-15%-poor ModPG-25%-poor ModPG-1%-poor = ModPG-15%-poor = ModPG-25%-poor
000 PG-1%-poor PG-15%-poor PG-ZrS%-poor 120000 PG-1%-poor PG-15%-poor PG-25%-poor
I
I I I
6000 I I I 100000 I I I :[
- I z I I
I B oy
5000 - - 80000
= 3 11 ¥ el s

4000

60000
3000

40000
2000

20000
1000
0 0

300 400 500 SFCrs 300 400 500 SFCrs
(c) BRCs. (d) Bandwidth cost.

Figure 3. Scenario 1: CPU and memory capacity of MDCs set to 3000.

50% ModPG-1%-poor I ModPG-15%-poor i ModPG-25%-poor 50 ModPG-1%-poor = ModPG-15%-poor © ModPG-25%-poor
45% PG=1%-poor PG-15%-poor PG-25%-poor 45 PG-1%-poor PG-15%-poor PG-25%-poor
40% 0 ! I Llz]:
I
35% 35
s I 1
30% 30
L EE Il
25% 25 1 I
" ER
20% 20 I
15% I I I 15
10%]: I I 10
5% I I I i I I 5
I
0% -l - I -1 = 0
300 400 500 600 sFcrs 300 400 500 600 sFCrs
(a) Percentage of non-allocated SFCrs. (b) Number of activated MDCs.
8000 ModPG-1%-poor = ModPG-15%-poor & ModPG-25%-poor ModPG-1%-poor = ModPG-15%-poor ModPG-25%-poor
140000
7000 PG-1%-poor PG-15%-poor PG-25%-poor PG-1%-poor PG-15%-poor PG-25%-poor I I
F 120000
6000 - SR IIIIII I
[Fa=x1 100000 . 1
5000 I
z o Ilg I I I
2000 80000 . I
NPEY: zoh - SRE
3000 T 60000
2000 40000
1000 20000
0 0
300 400 500 600 srcrs 300 400 500 600 scrs
(c) BRCs. (d) Bandwidth cost.

Figure 4. Scenario 2: CPU and memory capacity of MDCs set to 4000.

Appl. Sci. 2020, 10, 6573 15 of 22

On the other hand, taking into account the percentage of P-SFCrs shown in Figure 4a (and
summarized in Table 2), the ModPG algorithm always results in a lower number of non-allocated
SFCrs than the PG algorithm. Analyzing the obtained values in the case of 300 SFCrs, the percentage
of non-allocated SFCrs using the ModPG algorithm is very low. That is, there are enough CPU and
memory resources in the network to allocate almost all the SFCrs, even when the percentage of
P-SECr is 25%. However, the values obtained for the same set of experiments using the PG algorithm
correspond to a higher number of non-allocated SFCrs (around 4% in the first scenario and 2% in
the second scenario whatever the percentage of P-SFCrs). Although there are enough resources, the
mapping order set by the PG algorithm penalizes SFCrs, which without being cataloged as P-SFCrs,
have high latency restrictions. The same trend is observed considering 400 and 500 SFCrs.

Table 2. Percentage of non-allocated SFCrs: mean values.

Scenario 1 Scenario 2
1% 15% 25% 1% 15% 25%
ModPG 0% 0.23% 1.97% 0% 0.17% 0.87%

300 SFCrs g 410% 420% 443% 173% 1.97% 2.30%
ModPG 0% 138% 468% 0% 020% 1.40%

400SFCrs "o 1118% 958% 870% 4.93% 530% 3.20%
so0SECre ModPG 178% 1098% 1596% 004% 106% 488%
SPG 17.22% 1858% 17.82% 6.64% 1038% 7.62%
ModPG - - —027% 2.65% 13.37%

600 SFCrs g _ - _ 147% 1155% 14.27%

As mentioned previously, in both scenarios and independent of the algorithm, as the number of
SFCrs increases for the same amount of available CPU and memory resources, the inability to map
SFCrs increases. This fact can be deduced from the result obtained by ModPG in the first scenario
considering 500 SFCrs with 25% P-SFCrs and in the second scenario considering 600 SFCrs with 25%
P-SFCrs. In these cases, the percentage of non-allocated SFCrs is almost equal using the ModPG
solution and the PG solution, and this is because there are not enough resources to allocate such a high
number of highly demanding SFCrs.

Figures 5 and 6 corroborate the previous conclusions. The figures show the total amount of
non-allocated SFCrs considering the size of the potential set of MDCs assigned by the SFCr classification
procedure. It is important to remember that an SFCr is classified as a P-SFCr if the number of potential
MDCs is only one. The results shown in Figure 5 correspond to four of the simulations considering
600 SFCrs with 15% P-SFCrs. It can be observed that the PG algorithm penalizes SFCrs with high
latency restrictions, that is with a low number of potential MDCs, but that have not been cataloged as
P-SECrs because the value was not just one. The results obtained using the ModPG solution indicate
that there are enough resources, but the mapping order set by the PG solution prevents their suitable
allocation. The same behavior is observed in Figure 6. In this case, as observed before, the total
number of non-allocated SFCrs is higher due to the shortage of resources. SFCrs with less strict delay
requirements, and consequently with a higher number of potential MDCs, are not allocated.

Appl. Sci. 2020, 10, 6573 16 of 22

Simulation #1. 15% P-SFCrs Simulation #2. 15% P-SFCrs

8

® ModPG PG W ModPG PG

Number of non-allocated SFCrs
Number of non-allocated SFCrs

n
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

o " -l - -
1203 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Amount of potential MDCs assigned to a SFCr Amount of potential MDCs assigned to a SFCr

Simulation #3. 15% P-SFCrs Simulation #4. 15% P-SFCrs

u ModPG PG = ModPG PG

Number of non-allocated SFCrs
Number of non-allocated SFCrs

:
2 2
I s s 1a L i N N .

123 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 12 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Amount of potential MDCs assigned to a SFCr Amount of potential MDCs assigned to a SFCr

Figure 5. Detailed analysis of non-allocated SFCrs. Sets of 600 SFCrs with 15% P-SFCrs. Scenario 2:
CPU and memory capacity of MDCs set to 4000.

Simulation #1. 25% P-SFCrs Simulation #2. 25% P-SFCrs

® ModPG PG ® ModPG PG

Number of non-allocated SFCrs
Number of non-allocated SFCrs

N 10
0 N -I-IIII | I UI e mem o lmm e M B
12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Amount of potential MDCs assigned to a SFCr Amount of potential MDCs assigned to a SFCr
Simulation #3. 25% P-SFCrs Simulation #4. 25% P-SFCrs

0 60 90

E = ModPG PG E 20 = ModPG PG

& s0 5

o 5 70

2 £

& a0 ® 60

] s

2 25

% 30 5

§ § a0

2 2

5 20 5 30

5 10 g2

£ | 5o N

z, I--- | — - m - EEN R R I —— - PR

12 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Amount of potential MDCs assigned to a SFCr Amount of potential MDCs assigned to a SFCr

Figure 6. Detailed analysis of non-allocated SFCrs. Sets of 600 SFCrs with 25% P-SFCrs. Scenario 2:
CPU and memory capacity of MDCs set to 4000.

7.2.2. Utilization of Network Resources

In this section, the total number of activated MDCs, the total BRC cost, and the bandwidth cost
are analyzed.

Figures 3b and 4b show the number of activated MDCs after successfully allocating the
corresponding number of SFCrs. In the first scenario, both solutions offer similar results. The slight
increment observed in the ModPG solution is due to the fact that, as evaluated in the previous section,
the total number of allocated SFCrs is higher than when using the PG solution. Consequently, more
MDC resources are needed. In the second scenario, where the total number of CPU and memory
resources offered by MDCs is higher, the ModPG solution also presents positive results. In the case of
300 and 400 SFCrs to be mapped, the PG solution activates a lower number of MDCs. When the set
size of the SFCrs increases, the ModPG solution activates a similar number of MDCs, but in a more
efficient manner, because the proportion of non-allocated SFCrs is lower.

From Figures 3¢ and 4c, it can be observed that the total cost due to BRC increases as the proportion
of SFCrs with high latency restrictions grows. When the set of potential MDCs of the SFCrs is limited
due to the latency restrictions, the VNFr merging algorithm is less efficient, which means an inability
to reduce this cost. Again, the higher results obtained in the case of 500 SFCrs in the first scenario and
600 SECrs in the second scenario is associated with the higher successful allocation rate.

Appl. Sci. 2020, 10, 6573 17 of 22

Finally, the bandwidth consumption behavior shown in Figures 3d and 4d results in the same
conclusions that were already exposed.

8. Conclusions

This work proposes and evaluates a solution for the Virtual Network Function (VNF) placement
problem in Micro Data Center (MDC)/Cloud Data Center (CDC) edge computing networks.
This scenario defines a hierarchical and geo-distributed data center structure, where micro data
centers are closer to service requesters than remote cloud data centers. This is a suitable scenario
to solve the VNF placement problem when Service Function Chains (SFCs) present strict delay
restrictions. In this paper, we propose a VNF placement solution that takes into account the latency
and resource requirements imposed by the SFCs, the bandwidth and resource restrictions imposed
by the network and the micro data centers, as well as the instantiation cost of VNFs. Due to the fact
that the optimization objective, the minimization of the total substrate resource cost, is an NP-hard
problem, a heuristic solution is proposed. The Modified Priority-based Greedy heuristic (ModPG
heuristic) is coded and compared to a previously proposed solution (the PG heuristic) taking into
account as an important factor the percentage of SFC requests with strong low-delay restrictions. Both
solutions are compared considering the presence of 1%, 15%, and 25% of SFCrs with strong low-delay
restrictions. For the performance evaluation, the following parameters are considered: the percentage
of non-allocated SFCrs, the number of activated MDCs, the BRC, and the bandwidth cost. The results
show that the ModPG heuristic obtains the objective, the optimization of the target cost, similar to the
original proposal, and at the same time, it obtains the reduction of non-allocated SFC requests.

As future work, we plan to evaluate the proposal performance considering different weighing
parameter values («, 5, p, and ¢) defining the total substrate resource cost. In addition, it will be
interesting to evaluate the results offered by the ModPG heuristic in a wider set of network topologies,
establishing specific NFV resource requirements and MDC and CPC capacities expressed in terms of
the number of cores and memory units.

Author Contributions: Conceptualization, PM.-L.,][PM.-G., and].M.-S.; methodology, PM.-L.,] PM.-G.,
and J.M.-S.; software, PM.-L.; validation, PM.-L.,] PM.-G., and J.M.-S.; formal analysis, PM.-L.,] PM.-G.,
and].M.-S,; investigation, PM.-L.; resources, PM.-L.; data curation, PM.-L.; writing, original draft preparation,
PM.-L., JPM.-G,, and]. M.-S.; writing, review and editing, PM.-L.; visualization, PM.-L.; supervision, PM.-L.;
project administration, PM.-L.; funding acquisition,].M.-S. All authors read and agreed to the published version
of the manuscript.

Funding: This work was supported by the AEI/FEDER, UE Project Grants TEC-2016-76465-C2-1-R (AIM).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AR Augmented Reality

BRC Basic Resource Consumption
CAPEX CAPital EXpenditure

CDC Cloud Data Center

COTs Commercial-Off-The-Shelf

EC Edge Computing
ILP Integer Linear Programming
IoT Internet of Things

MDC Micro Data Center

ModPG Modified Priority-based Greedy
NF Network Function

NFV Network Function Virtualization
OPEX OPerational EXpenditure

Appl. Sci. 2020, 10, 6573 18 of 22

PG Priority-based Greedy
P-SECr Poor Service Function Chain request
R-SFCr Rich Service Function Chain request

SaaS Software-as-a-Service

SAR Service Access Router

SFC Service Function Chain

SFCr Service Function Chain request
VM Virtual Machine

VNF Virtual Network Function
VNEFr Virtual Network Function request
VR Virtual Reality

Appendix A

The VNF placement problem can be formulated as an Integer Linear Programming (ILP) model
as follows.
Appendix A.1. Constraints

A first VNF placement constraint can be formulated as follows:

[P|+|R]+|G|-1
Xoyn? s, = 1,7 €T, Tl? € py U pr U‘Yry (A1)
u=0

that is, a VNFr and SAR in an SFCr must be mapped on only one node in the substrate network. The
binary x, v 5 indicates whether the VNFr 1" in SFCr <y is mapped on substrate node n.
Due to geographical considerations, each SFCr specifies its SAR. Therefore:

1, nS istheattachment o ,v€ET,
Xoyn?,ms, —{ ! fpry (A2)

0, otherwise

In addition, VNFrs in ®,, and ¥, can only be mapped on MDCs and CDCs, respectively. Therefore:

{0,1}, n? € ®,andnj € R,
Xyno g, = 10,1}, nf € ¥yandn € G, (A3)
0, otherwise

The CPU and memory consumptions of the VNFrs on an MDC cannot exceed the CPU and
memory capacities of the MDC:

IT|=1|@y]-1
Y. CPU e - Xy + Z BRCFPY 2y < CPY,n5 € R (A4)
¥=0 i=0
IT[=1 [@y] -1 A-1
MetMy o« Xo o s, + Z BRCmem- ", < Cmem, n,, € R (A5)
y=0 =0

In Equations (A4) and (A5), the first term indicates the total CPU and memory consumption
by the VNFs mapped on the substrate node nj,. The second term indicates the total CPU BRCs and
memory BRCs, respectively, due to the instantiation of VNFs.

Regarding BRCs, the variable z, ,,; indicates if one or more than one VNFrs of type VNF A are
mapped on 15, and it is defined as:

Appl. Sci. 2020, 10, 6573 19 of 22

| @[+[¥y[-1
i=0

Al-1

0, otherwise

X -1 >1
Zaus = ynimy "yt A = (A6)

where 13, € RUG. l%niv, A, which indicates if VNFr n} in SFCr y demands VNF A; it is not a variable
because the type of VNFr in an SFCr is known.

In addition, if there is more than one VNFr mapped on one MDC, the MDC has to be activated.
This constraint can be formulated as:

A L >y 2 g 2 1 € R (A7)

0, otherwise

It is assumed that CDCs are always in operation.

The model does not consider resource consumption on SARs, and it also assumes
resource-rich CDCs.

As described in Section 4.2, Ei’r indicates the logical links between VNEFrs of SFCr . These logical
links are represented by (n?, n;’), where n{ and n? are two consecutive VNFrs of SFCr <. To model the
bandwidth constraints, a link variable is defined:

1, themappingof (nf,n})in SECry
Vomputmins = goes through (n, n3), (15, n3) € E¥, (A8)
0, otherwise

Due to the VN reuse strategy, two different VNFrs in one SFCr can be mapped on the same
substrate node. Therefore, the flow of the logical link (n7, n;)) may go through a substrate link or not.
This fact determines the following constraint:

Z yv,nf,n;’,nz,n% >0, (Tlf, 71;)) € E,z;,’)’ el (A9)

(n5yn3) €E?

Using this variable, the bandwidth constraint can be modeled as follows. For each link in the
substrate network, the link capacity must be satisfied:

-1

link S
ZO (Z bw,niv,n}’ ']/v,nl’.’,n}’,n;,n% < C(lnnf”ng)/ (”Z/n;) €E’, yel (A10)
y= n;.”,n;’)GEg

where b%nlp,n}z_r indicates the bandwidth consumption of the logical link (17, n;’) in SFCr «.

In this scenario, the edge computing network allows the location of sensitive services in MDCs
and not in remote CDCs. Therefore, considering only propagation delays, the ILP model includes two
latency constraints: DQAD €, SAR to MDC tolerated propagation delay; and DgD €, the entire tolerated
propagation delay:

|| -1]| -1

;
) DD I R

i=0 j=0 (n,n$)€Es

oy < DYIPS, (nf,) € B,y €T (A11)

| @y [+ ¥y | =1 | @]+ ¥y [-1

cDC
Y dumg Yoy n? =Dy, A12
i=0 =0 (n%n5)€Es (Al2)

(nj,nj) € E}, vy €T

Finally, the following flow conservation constraints must be satisfied:

Appl. Sci. 2020, 10, 6573

PURUG S
s 8 v v v
y%nf,n;’,ni,n% € {011}17 erl, (nwnv) €E”, (ni'nj) € E’y
g
PURUG s
y'y,nf,n;.’,n%,ni € {Orl}r')/ er, (1’1;, nit) €E ’ (Tl?, 1’1;)) € E'z‘}/
g
PURUG PURUG
L Yot = Yo, = Ko, Xt i
ng ny

yeT,(n,n) € ES, (ni,n}) € E}

20 of 22

(A13)

(A14)

(A15)

Equation (A13) indicates whether a logical link is mapped on one of the substrate links that leave
out node 13, and Equation (A14) indicates whether the logical link is mapped on one of the substrate
links that go in node nj,. Both equations ensure that one logical link can only be mapped on a single
path. Equation (A15) ensures that the path in the substrate network is consistent for a logical link.

Appendix A.2. Optimization Target

The optimization target of the VNF placement problem is to minimize the total cost:

Minimize (T;) =
min{a x (CPU, + BRCSPY) + B« (MEM, + BRC"™)}
where the total CPU resource consumption is:
IT[=1|®|-1[R|+|G[-1
Cpuc = Z 2 Z CPUW:"? . x7rn?r”f[
y=0 i=0 j=0
The total memory resource consumption is:
T =1 |®] -1 R[+|G[-1
MEM.= Y Y) MeMy o Xy 0 s
=0 i=0 j=0
The total CPU BRC is:
A-1|R[+|G|-1
BRCSPY = YY" BRC{PY -z,
A=0 u=0
The total memory BRC is:
A—1|R|+|G|-1

BRCI™ =Y) BRCY™ -z,
A=0 u=0

The total bandwidth consumption is:
Band. = E E E b'y,n}’,n’-’ “ Yoy n?n? g n,
- : j i
7=0 (n?,nj”)eEg (n§,n3)€ES
The total cost of activating the MDC is:

IR|-1
MDCc = Y p-hy
u=0

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

Appl. Sci. 2020, 10, 6573 21 of 22

As pointed out in Section 4.3, the mapping process should try to activate as few MDCs as possible,

due to the additional cost involved. To introduce this strategy to the optimization model, a value p
that represents the activation of an MDC is defined, which is assigned a greater value than other costs.

References

1. Varghese, B.; Buyya, R. Next generation cloud computing: New trends and research directions. Future Gener.
Comput. Syst. 2018, 79, 849-861. [CrossRef]

2. Shi, W,; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things].
2016, 3, 637-646. [CrossRef]

3. Satyanarayanan, M. The emergence of edge computing. Computer 2019, 50, 30-39. [CrossRef]

4. Elazhary, H. Internet of Things (IoT), mobile cloud, cloudlet, mobile IoT, IoT cloud, fog, mobile edge, and
edge emerging computing paradigms: Disambiguation and research directions. J. Netw. Comput. Appl. 2019,
128,105-140. [CrossRef]

5. Mijumbi, R;; Serrat, J.; Gorricho, J.L.; Bouten, N.; Turck, ED.; Boutaba, R. Network Function Virtualization:
State-of-the-Art and Research Challenges. IEEE Commun. Surv. Tutor. 2015, 18, 236-262. [CrossRef]

6. Han, B.; Gopalakrishnan, V.; Ji, L.; Lee, S. Network function virtualization: Challenges and opportunities for
innovations. IEEE Commun. Mag. 2015, 53, 90-97. [CrossRef]

7. Yia, B.,; Wang, X,; Lic, K; Das, S.K.; Huang, M. A comprehensive survey of Network Function Virtualization.
Comput. Netw. 2018, 212-262. [CrossRef]

8. Zhang, C.; Joshi, H.P; Riley, G.F; Wright, S.A. Towards a virtual network function research agenda:
A systematic literature review of VNF design considerations. J. Netw. Comput. Appl. 2019, 146, 102417.
[CrossRef]

9. He,M,; Alba, A M,; Basta, A.; Blenk, A.; Kellerer, W. Flexibility in softwarized networks: Classifications and
research challenges. IEEE Commun. Surv. Tutor. 2019, 21, 2600-2636. [CrossRef]

10. Sun, G.; Zhu, G,; Liao, D.; Yu, H.; Du, X.; Guizani, M. Cost-Efficient Service Function Chain Orchestration for
Low-Latency Applications in NFV Networks. IEEE Syst. . 2018, 13, 3877-3888. [CrossRef]

11. Bellavista, P.; Callegati, F.; Cerroni, W.; Contoli, C.; Corradi, A.; Foschini, L.; Pernafini, A.; Santandrea, G.
Virtual network function embedding in real cloud environments. Comput. Netw. 2015, 3, 506-517. [CrossRef]

12. Rafique, W.; Qi, L.; Yaqoob, I.; Imran, M.; Rasool, R.U.; Dou, W. Complementing IoT Servthe hrough Software
Defined Networking and Edge Computing: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22,
1761-1804. [CrossRef]

13. Li, D.; Hong, P; Xue, K; Pei, J. Virtual network function placement and resource optimization in NFV and
edge computing enabled networks. Comput. Netw. 2019, 152, 12-24. [CrossRef]

14. Cao, J.; Zhang, Y.; An, W,; Chen, X,; Sun, J.; Han, Y. VNF-FG design and VNF placement for 5G mobile
networks. Sci. China Inf. Sci. 2017, 60, 040302. [CrossRef]

15. Xu, Q.; Gao, D; Li, T.; Zhang, H. Low Latency Security Function Chain Embedding Across Multiple Domains.
IEEE Access 2018, 6, 14474-14484. [CrossRef]

16. Fotoglou, I.; Papathanail, G.; Pentelas, A.; Papadimitriou, S. Towards Cross-Slice Communication for
Enhanced Service Delivery at the Network Edge. In Proceedings of the 6th IEEE Conference on Network
Softwarization (NetSoft), Virtual Conference, Ghent, Belgium, 29 June-3 July 2020.

17. Rosa, R.V.; Rothenberg, C.E. The Pandora of Network Slicing: A Multi-Criteria Analysis. Trans. Emerg.
Telecommun. Technol. 2020, 31, e3651. [CrossRef]

18. Zhang, Q.; Liu, F; Zeng, C. Adaptive Interference-Aware VNF Placement for Service-Customized 5G
Network Slices. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications,
Paris, France, 29 April-2 May 2019.

19. Zhao, D, Ren, J,; Lin, R;; Xu, S.; Chang, V. On Orchestrating Service Function Chains in 5G Mobile Network.
IEEE Access 2019, 9, 39402-39416. [CrossRef]

20. Yang, S.; Li, F; Trajanovski, S.; Yahyapour, R.; Fu, X. Recent Advances of Resource Allocation in Network
Function Virtualization. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 295-314. [CrossRef]

21. Gurobi Optimizer. Available online: https://www.gurobi.com/products/gurobi-optimizer (accessed on 26

August 2020).

http://dx.doi.org/10.1016/j.future.2017.09.020
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/MC.2017.9
http://dx.doi.org/10.1016/j.jnca.2018.10.021
http://dx.doi.org/10.1109/COMST.2015.2477041
http://dx.doi.org/10.1109/MCOM.2015.7045396
http://dx.doi.org/10.1016/j.comnet.2018.01.021
http://dx.doi.org/10.1016/j.jnca.2019.102417
http://dx.doi.org/10.1109/COMST.2019.2892806
http://dx.doi.org/10.1109/JSYST.2018.2879883
http://dx.doi.org/10.1016/j.comnet.2015.09.034
http://dx.doi.org/10.1109/COMST.2020.2997475
http://dx.doi.org/10.1016/j.comnet.2019.01.036
http://dx.doi.org/10.1007/s11432-016-9031-x
http://dx.doi.org/10.1109/ACCESS.2018.2791963
http://dx.doi.org/10.1002/ett.3651
http://dx.doi.org/10.1109/ACCESS.2019.2895316
http://dx.doi.org/10.1109/TPDS.2020.3017001
https://www.gurobi.com/products/gurobi-optimizer

Appl. Sci. 2020, 10, 6573 22 of 22

22. Medina, A.; Lakhina, A.; Matta, I.; Byers, J. BRITE: An Approach to Universal Topology Generation.
In Proceedings of the International Workshop on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, Atlanta, GA, USA, 27-29 September 2005.

23. Waxman, B. Routing of Multipoint Connections. IEEE]. Sel. Areas Commun. 1988, 6, 1617-1622. [CrossRef]

24. Likas, A; Vlassis, N.; Verbeek,].]. The Global k-means clustering algorithm. Patter Recognit. 2003, 36, 451-461.
[CrossRef]

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/49.12889
http://dx.doi.org/10.1016/S0031-3203(02)00060-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Technical Background
	Problem Statement
	Substrate Topology
	SFC Request
	VNF Placement

	Shortcomings of the Priority-Based SFCr Mapping Algorithm in the PG Heuristic
	Modified Priority-Based Greedy Heuristic
	ModPG-SFCr Mapping Algorithm
	ModPG-VNFr Merging Algorithm
	Complexity Analysis

	Performance Evaluation
	Simulation Setup
	Results
	Performance Comparison Focused on Successful SFCr Allocation
	Utilization of Network Resources

	Conclusions
	
	Constraints
	Optimization Target

	References

