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Abstract: The Tianshan Mountain is the largest mountain range in Central Asia, and the source area of
many river systems. Changes in precipitation result in significant alterations to regional hydrological
processes. Lake sediment from the Tian Shan representative of the last 90 years was chosen as the
object of this research study. The grain-size data were used in conjunction with instrumental data to
provide a method for determining changes in paleoprecipitation. The results showed the three-point
moving average curve of the silty fraction content with a size of 16 to 32 pm to be significantly
consistent with the curve of total precipitation from April to September since 1950. The total content
of clay and fine-silty fraction (0-16 um) was clearly consistent with the monthly precipitation in July.
The total precipitation from April to September showed a significant downward trend from 1930 to
1975, and then an overall increasing trend beginning in 1975, which may have been influenced by
the North Atlantic Oscillation. The change in precipitation reconstructed by the grain size of lake
sediments was significantly different from the high-resolution gridded datasets (Climatic Research
Unit Time-Series version 4.04) because of the lack of data from meteorological stations in China before
1950. The conclusions of this study are significant for evaluating the validity of climatic research
unit (CRU) data in arid areas of Western China. In addition, the results of this study serve as a
bridge between modern instrumental records and long time-scale paleoclimate research and provide
important reference values for future reconstructions of long time-scale paleoclimate.

Keywords: lake sediment; grain size; paleoprecipitation reconstruction; Tianshan Mountain;
Central Asia

1. Introduction

Located in the hinterland of Eurasia, the arid region of Central Asia has a typical continental arid
climate and one of the most vulnerable terrestrial ecosystems [1]. A comprehensive understanding
of the environmental issues resulting from climate change and human activities in Central Asia is
of great significance for the ecological protection and improvement of the region, national security,
and sustainable development of the social economy [2—4]. Over the past 100 years, air temperature
in the arid region of Central Asia, which is mainly controlled by westerly winds, has clearly shown
an increasing trend [5,6]. Annual precipitation in this region also shows an overall increasing trend,
but with spatial differences [7,8]. Under the combined effect of climate change and human activities,
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regional surface processes are undergoing strong and brand-new changes, which are highlighted by
changes in arid hydrological processes and consequent changes in the ecological environment [9-11].

The underlying surface structure of the arid region in Central Asia is complex, and a large number
of mountain-oasis-desert systems exist in the region [12,13]. Water resources in arid regions typically
originate in mountain systems. The Tian Shan comprises the largest mountain range in Central Asia,
traversing the central part of Xinjiang in China, Kyrgyzstan, and Uzbekistan, and extending into
four countries including Kazakhstan at the western end. Major rivers in Central Asia such as the
Ili, Syr Darya, Amu Darya, Tarim, and Chu rivers all have their headwaters in the Tian Shan [14].
Within the context of global change, important changes in the climate and hydrology of the Tian
Shan have occurred [2,4,11,14-16]. In particular, owing to the lack of weather monitoring stations in
high-altitude areas such as the Tian Shan, there is a major knowledge gap regarding temperature and
precipitation trends, and available data are typically poor and often unreliable, which has a negative
impact on the ability to predict the occurrence and intensity of extreme weather events [17].

As modern instruments are not able to record historic climate changes, their data are representative
of only a short period in the evolution of a climatic environment [18,19]. Some historically significant
climate mutations and their environmental responses cannot be recorded by modern instruments,
making it difficult to grasp the current state of environmental changes and to predict future trends [20,21].
On the one hand, the climate data has a relatively short time scale, e.g., climatic research unit (CRU)
data began in 1901 [22]. On the other hand, since most of the weather stations in arid regions of
China began to observe in the 1950s, the applicability of the CRU data covering Chia is also worthy
of exploring. In recent years, many scholars in Central Asia have integrated tree rings into their
studies [23-30] to recover and reconstruct long-term changes in temperature, precipitation, or humidity.
Compared with tree rings, lake sediments effectively record information on lake hydrology, regional
temperature, precipitation, and vegetation, and extracting climate information from lake records is
one of the basic means for studying paleoclimate and paleoenvironment [31-34]. However, previous
studies have not provided effective links between long-term paleoclimate reconstruction and modern
investigations regarding climate and environmental parameters.

In this study, while focusing on the importance of environmental changes in the Tianshan
Mountains and significant spatial heterogeneity of precipitation in this area, lake sediment representative
of the last 100 years from a lake in the Tian Shan was chosen as the research object. In conjunction
with instrument data, the sediment grain-size data from a lake in Tianshan Mountain were used to
reconstruct the changes in paleoprecipitation over the past 90 years, which will provide an approach
for reconstructing changes in paleoprecipitation over long-time scales.

2. Geographic Background

Lake Ta-Lung-Chi (Figure 1) is a freshwater lake with an altitude of 2402 m, located on the
southern slope of the middle Tian Shan. The bedrocks in this region are mainly composed of carbonate
sedimentary rocks, pyroclastics, mixed sedimentary rocks, and a small cover of intermediated
plutonic [35]. The east-west length of the lake is ~2.6 km, the north-south width is ~0.6 km, the area is
~2 km?, and the deepest point is 5.5 m. The lake is mainly supplied by glacier melt water from the
surrounding mountain and precipitation in the valley, which is blocked by the moraine embankment
west of the lake. Glacial and snow-melt water are injected into the lake through the Muzilik River on
the east side of Lake Ta-Lung-Chi. The lakeside area consists of dense grassland, with dense spruce
forest in the south, spruce forest, bushes, and meadows on the western slope, and seasonal rivers
and underflows in the western lake area; the northern mountains are relatively bare, with some low
bushes. The lake has no obvious surface water outlets, but water passes through an underground
underpass formed by gaps in the huge rock stacks under the final embankment, and enters Lake
Hsiao-Lung-Chi downstream at ~1.4 km through infiltration. During the high-water period, water in
Lake Hsiao-Lung-Chi overflows the west bank where a waterfall dropping 150 m forms. Overflow water
from Lake Hsiao-Lung-Chi enters the Kuga River through the river channel. Based on CRU data [22]
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(grid coordinates 42.0° N—42.5° N; 83.0° E-83.5° E, central coordinates 42.25° N, 83.25° E), the average
annual temperature within this grid for the period 1960 to 2019 was 1.4 °C. The hottest month was July,
with an average temperature of 14.7 °C; the coldest period was January, with an average temperature
of —16.0 °C. The total annual precipitation was 159.4 mm; the average monthly precipitation was
25.6 mm, with the maximum precipitation occurring in May. The closest meteorological station to
Lake Ta-Lung-Chi is Bayanbulak Station with an elevation of 2458 m. The average annual temperature
recorded at Bayanbulak Station from 1960 to 2019 was 3.2 °C. The hottest month was July, with an
average temperature of 18.3 °C; the coldest period was January, with an average temperature of
—19.6 °C. The average precipitation for the period was 283.7 mm; the average monthly precipitation
was 71.4 mm, with the maximum occurring in July.
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Figure 1. Geographical map of the study area. (a) Location of the Tian Shan where Lake Ta-Lung-Chi
is located. Monthly precipitation and monthly average temperature data for Lake Ta-Lung-Chi are
from the climatic research unit (CRU) (Harris et al., 2020) while data for the Bayanbulak Station are
from the Meteorological Data Center of China Meteorological Administration. (b) Lake Ta-Lung-Chi
water system. The base map of (a) was derived from a SRTM30PLUS color-encoded shaded relief
world topography (approximately 4 km) GeoTIFF image [36]. The base map of (b) was derived from
global topographic data at 1 arc-second (~30 m) horizontal resolution (NASADEM) from NASA Land
Processes Distributed Active Archive Center (LP DAAC) Distribution Server hosted at the USGS Earth
Resources Observation and Science (EROS) Center [37]. (c) Vegetation around the lake. (d) Core
sediment TLCO1 and field sub-sampling.
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3. Materials and Methods

In May 2018, a sedimentary core with 50-cm length (TLCO01) (42.447775°, 83.285435°) was obtained
from Lake Ta-Lung-Chi at a depth of 5.5 m using a gravity corer (UWITEC, Mondsee, Austria) fitted
with a 60 mm internal diameter Perspex tube. The color of the core sediment is dark brown with
no bedding structure. The core log was shown in Figure 2. The core was sampled in-situ at 1.0 cm
intervals, and a total of 50 samples were obtained. The samples were analyzed at the Key Laboratory
of Lakes and the Environment, Nanjing Institute of Geography and Limnology, Chinese Academy
of Sciences.
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Figure 2. The vertical distribution of 137Cs specific activity in Lake Ta-Lung-Chi sediments, a mountain
lake in the Tian Shan (left), and the established chronological record for sediment core TLCO1 (right).
Different colors represent the percentage (%) of clay (gray)/silt (blue)/sand (white) versus depth.

The %7Cs specific activity was detected by an Ortec HPGe GWL series well-type, coaxial low
background intrinsic germanium detectors (EG&G ORTEC, Oak Ridge, TN, USA). The procedure for
measuring sediment grain size involved placing a small amount of sediment sample (about 0.3 g)
into a 100 mL beaker, adding 20 mL of distilled water, and 10 mL of 10% hydrogen peroxide (H,O5).
The sample was then heated and brought to a boil on a hot plate throughout which a wash bottle
was used to continuously clean the beaker walls from substances deposited from the reaction foam.
Once the sample was fully reacted following the complete decomposition of excess hydrogen peroxide,
10 mL of 10% hydrochloric acid was added and the beaker was removed upon boiling. Then, 100 mL of
distilled water was added and left overnight, after which the distilled water was removed, the excess
hydrochloric acid was washed off, and the sample was neutralized. Next, 20 mL of distilled water and
10 mL of potassium hexametaphosphate with a concentration of 0.05 mol/L were added to the sample
and the beaker was placed in an ultrasonic cleaner and agitated for 15 min. Agitated samples were
tested with a British Malvern Mastersizer 2000 laser particle size analyzer with a relative error of less
than 1%.

The temperature (TMP) and precipitation (PRE) data were derived from Climatic Research Unit
(CRU) Time-Series (TS) version 4.04 of high-resolution gridded data of month-by-month variation in
climate (cru_ts_4.04) of the University of East Anglia in the United Kingdom, with a time range from
1901 to 2019 [22]. The monitoring data were obtained from the Meteorological Data Center of China
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Meteorological Administration. Sediment size analysis of the entire TLC01 core using an algorithm
of end-member modelling analysis (EMMA) [38,39], which was used to extract geo-meaningful end
members. The HYSPLIT model [40] was used to determine the possible source of water vapor.
Global Data Assimilation System (GDAS) meteorological data (GDAS1) were downloaded from the
National Centers for Environmental Prediction [41] for use in the HYSPLIT model, and the daily
backward parcel trajectory for 48 h from April 2019 to September 2019 was calculated using Meteolnfo
(TrajStat package) [42].

4. Results

4.1. Core Dating

Variations in 13 Cs specific activity with depth in the lake sediment core are shown in Figure 2.
There is significant accumulation of 137Cs in the sediment core starting at a depth of 35 cm (0.51 Bg/kg)
and peaking at 20 cm (14.60 Bq/kg). Based on the distribution of 13’Cs in lake sediments within
the northern hemisphere, it is believed that the occurrence of 13’Cs residual layers corresponds to
the start of global nuclear testing in 1954 [43], and the main peak at 20 cm may correspond to the
Chernobyl nuclear leak in the former Soviet Union in 1986 [44,45]. The accumulation peak occurring
between these depths corresponds to the global ¥Cs scattering peak (30 cm) date to 1963 [46,47],
and the sedimentation rate of sediments in core TLC01 was calculated based on this year. The average
sedimentation rate in Lake Ta-Lung-Chi is about 0.55 cm/year. With the average sedimentation rate,
the age for the bottom of the sediment is about 1928 (Figure 2).

4.2. Sediment Grain Size

The grain size distributions of sediments in core TLC01 ranged from 0.28 to 1905.46 um and
displayed clear bimodal or multimodal styles (Figure 3). Sediment size analysis of the entire TLCO01
core using an algorithm of end-member modelling analysis (EMMA) [38,39] showed that there
are four relatively independent end-element components (EM1, EM2, EM3, and EM4); however,
these four end-element components do not adequately express the entire granularity data sequence
(Figure 4). These results indicate that the grain size of Lake Ta-Lung-Chi sediments reflect abundant
environmental information.
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Figure 3. Distribution of grain-size frequencies in sediment core TLCO01.
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Figure 4. Grain-size data using the algorithm of end-member modelling analysis (EMMA) [39].

Following the Udden-Wentworth grain size scale [48,49], Lake Ta-Lung-Chi sediments were
classified into five grain size components (Figure 5): clay fraction (<4 pm), fine-silty fraction (4-16 pm),
silty fraction (16-32 um), coarse-silty fraction (32-64 pum), and sandy fraction (>64 pm. Overall,
the TLCO1 sediment core was mainly composed of medium and fine particles. Clay fraction components
comprised 4.78% to 55.56% of the particles with an average value of 16.94%, fine-silty fraction
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components comprised 9.60% to 47.71% (average 25.03%), silty fraction components comprised 2.99%
to 23.77% (average 13.24%), coarse-silty fraction components comprised 3.98% to 24.81% (average
15.37%), and sandy fraction components comprised 2.89% to 74.63% (average 29.42%). The median
diameter D(0.5) was 3.39 to 107.15 pm, with an average value of 33.67 pm. The mean grain size (Mz)
was calculated using the expression defined by Fokker and Ward [50]: Mz = (P14 + P50 + Psa)/3,
where @, is the grain diameter phi units at the cumulative percentile value of x. The median diameter
D(0.5) was 4.66 to 72.71 um, with an average value of 24.71 pm. Once calculated, the mean grain size
was converted to a metric unit (um).

D(0.5)(um) 4-16 pm (%) 32-64pm (%) Mean (pm)
0 40 80 120 0 20 40 60 0 10 20 30 0 30 60 90

Depth (cm)

0 30 60 0 10 20 30 0 25 50 75100

<4pm (%) 16-32pm (%) >84 pm (%)

Figure 5. Grain size distribution and nonlinear trend fitting in sediment core TLCO1 from Lake
Ta-Lung-Chi. The blue triangles for the change points with the method of Piecewise linear fitting and
trend changing points [51,52].

The trend depicted by component 4.0-16.0 um in sediment core TLC01 was generally consistent
with changes in component 16.0-32.0 um, but opposite to changes noted in component >64.0 pm.
The median particle size was consistent with the average particle size and with changes in component
>64.0 um. Following the analysis of Piecewise linear fitting and trend changing points [51,52],
the vertical trends noted for each particle size could be divided into two stages, but the trend changing
points differed between particle sizes (Figure 5). The trend changing points for the median diameter,
mean value, silty fraction (16-32 um), and sandy fraction (>64 pm) all occurred at a depth of 23 cm.
The trend changing points for clay fraction (<4 pm) and fine-silty fraction (4-16 um) occurred at a
21-cm depth. The trend changing point for coarse-silty fraction (32-64 pm) was at 32 cm, which differed
from the other grain sizes. Taking the vertical change in the fine-silty fraction content of 4-16 um as
an example, with increasing depth below the trend changing point at 21 cm, the content tended to
increase. However, above the trend changing point, the content decreased with increasing depth.

5. Discussion

Although EMMA is a very effective grain-size research tool [39,53-56], through the result,
the end-member model cannot effectively extract the grain size components affected by a single
geological action (Figure 4). The grain size of the lake sediments was affected by the combined effects
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of multiple external stresses, or the strength of the same force has large fluctuations. Although the end
member model has wide applicability [57,58], it is not an effective method to conduct research in this
region. Existing studies have shown that the size characteristics of lake sediments are sensitive to the
regional climatic environment [59-61]. In humid-semi-humid regions, on inter-annual and 10-year
scales, coarse-grained sediments indicate wet years with heavy rainfall while fine-grained sediments
indicate dry years with low rainfall [60]. During the process of lake sedimentation, changes in rainfall
affecting the intensity of surface runoff can also determine to a considerable extent the amounts of
coarse and terrigenous clastic materials entering the lake. In years with heavy rainfall, the capacity
of surface runoff for erosion and transport is enhanced, and the sediment particle size in the runoff
is increased; in dry years with low rainfall, surface runoff is low, making it difficult to transport
coarse particulate matter to the lake, and the sediment particle size in the runoff decreases [62,63].
In arid and semi-arid regions, during humid periods, precipitation is high, lake water levels are high,
and the sediment particles are coarse [64]. In summary, grain size of lake sediments can provide
environmental information about lake runoff, which indirectly reflected the variation in the regional
climate [61]. Studies on grain size in arid regions can also reveal the frequency and intensity of
sandstorms that have occurred in the past [65,66], e.g., lakes in the Tibetan Plateau [59], Lake Chaiwopu,
Xinjiang Province, China [67], Lop Nur, Tarim Basin, northwestern China [68], San Juan Mountains,
Colorado [69], and Lake Hongjiannao, Shaanxi Province, China [70], all of which indicate that the
debris transported by wind in arid areas is also a source of sediments to lakes. Through this research
on Lake Ta-Lung-Chi in the Tian Shan, it was found that lake sediment size data can reflect regional
climate change information.

Because the CRU data are based on data from existing meteorological monitoring stations,
it was possible to reconstruct a complete set of high-resolution, monthly average surface climate
data for the period 1901 to 2019 covering an area of 0.25° X 0.25° that includes all land types [22].
The weather station serving the area where Lak Ta-Lung-Chi is located in the middle of the Tian
Shan is shown in Figure 1 [22]. The earliest record of meteorological stations in China related to
the study of Lake Ta-Lung-Chi is from 1951. Therefore, it is necessary to verify whether the CRU
precipitation data from before 1951 [22] are credible. Through this study, it was found that the
three-point moving average curve of the silty fraction content (16-32 um) was significantly consistent
with the curve of total precipitation from April to September since 1950 (Figure 6). The results
suggested that the grain size of Lake Ta-Lung-Chi in the Tianshan Mountains sensitively recorded
the information of precipitation changes. The proxies that are sensitive to precipitation changes
in lake sediments are different in different regions, for example, biomarker compounds [34,71,72],
Rb/Sr ratios [73], and magnetic susceptibility [74] are sensitive to changes in precipitation in some
regions. In addition, the environmental information reflected by the grain size of lake sediments in
different regions is also different, for example, it can reflect wind intensity and dust transport [75,76],
riverine input [77] and lake water level changes [78]; however, it can be used as a useful indicator
for quantitative reconstruction of long-term paleoprecipitation in the region of Lake Ta-Lung-Chi in
Tianshan Mountains. The total precipitation from April to September showed a significant downward
trend from 1930 to 1975, after which an overall increasing trend began. What caused this change?
The study area is located in the mid-latitude zone, which is affected by westerlies, and the change in
the North Atlantic Oscillation (NOA) is closely related to westerly intensity [79,80]. From the Figure 6,
it was an interesting phenomenon that the precipitation change in the study region may be affected by
the NAO, which showed that there is a certain correspondence between the Monthly North Atlantic
Oscillation Index (station-based, December, January, and February) [81,82] and the precipitation curve
reconstructed since 1930 in this study. The North Atlantic Oscillation Index is positively correlated with
the westerly wind intensity [83], indicating that more water vapor is brought to the study area with
increasing westerly winds, which may result in more precipitation. However, existing studies have
shown that the precipitation in Central Asia and NAO have an anti-phased relationship on interannual
to multi-centennial time scales [19,84,85]. The impact mechanism of the North Atlantic Oscillation on
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climate change in the Tianshan Mountains and even Central Asia may be different at different time
scales, which is worthy of further discussion in the future.
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Figure 6. Comparisons of regional climate change. (a) Total precipitation from April to September
at the meteorological station (Chonkyzylsu, 42.20° N 78.19° E, 1883-1996) located in the western
Tian Shan [86]. (b) The three-point moving average curve of silty fraction content of 16 to 32 pum.
(c) Total precipitation from April to September from cru_ts_4.04 grid-box data for 42.25° N, 83.25° E in
the region of Lake Ta-Lung-Chi [22]. (d) The monthly North Atlantic Oscillation Index (station-based,
December, January, and February) [81,82]. (e) The total content of clay and fine-silty fraction (0-16 pm).
(f) The monthly precipitation in July from CRU TS 4.04 grid-box data for 42.25° N, 83.25° E in the region
of Lake Ta-Lung-Chi [22].

From the Figure 6, 1951 years ago, the reconstructed precipitation from April to September are
inconsistent with the change from the CRU data, which was mainly because the earliest instrumental
records of weather stations of China started at 1951 [86] (Figure 1), and thus the data before 1951 in
this region were mainly calculated based on data from weather stations in the western section of the
Tian Shan (within Kyrgyzstan, Figure 1). By comparing the data from our study area to data from a
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meteorological station (Chonkyzylsu, 42.20° N, 78.19° E; 1883-1996) in the Tian Shan [86], it can be
seen that there is a large difference in precipitation between central Tian Shan and the region of Lake
Ta-Lung-Chi in western Tian Shan. What is the reason for this difference? The main influencing factor
of precipitation is the source of water vapor. The HYSPLIT analysis showed that water vapor sources
in the region of Lake Ta-Lung-Chi (42.45° N, 83.29° E) from April to September are not only affected
by westerlies blowing from west to east, but also in part by winds blowing from east to west (8.33%)
and from north to south (20.56%), which infers a local effect to water vapor transmission (Figure 7).
At Chonkyzylsu station (42.20° N, 78.19° E), apart from the 10.56% of water vapor transmitted from
north to south, the rest of the water vapor is transmitted from west to east (Figure 7). There are
obvious differences between the two regions, which may be one of the reasons for the differences noted
in precipitation.

p7.73%J2L0T0
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Figure 7. Possible sources of water vapor identified for Lake Ta-Lung-Chi (42.45° N, 83.29° E) and
Chonkyzylsu station (42.20° N, 78.19° E) using the HYSPLIT [40] and Meteolnfo (TrajStat package) [42]
models. The base map was derived from SRTM 90 m Digital Elevation Database v4.1 [87]. The red lines
suggested the cluster trajectories of water vapor source for the site of Chonkyzylsu Station, and the
yellow for Lake Ta-Lung-Chi.

The contents of clay fraction (<4 um) and fine-silty fraction (4-16 pm) particles in Lake Ta-Lung-Chi
sediments show a significant positive linear correlation (R? = 0.85, p < 0.0001), indicating that these
components are influenced by the same factors. Furthermore, it was found that the total content of
clay and fine-silty fraction (0-16 pum) particles are clearly consistent with the monthly precipitation
in July (Figure 6). However, during the 1940s and since 2000, the relationship between this particle
content (0-16 pm) and July precipitation has been more complicated. Through previous research,
it has been found that the sources of lake sediments in arid areas are not limited to surface runoff
within the basin, and that atmospheric dust also represents an important source of lake sediments.
In addition to this, studies on grain size in arid regions can reveal the frequency and intensity of
sandstorms that have occurred in the past [65,66], e.g., lakes in the Tibetan Plateau [59], Lake Chaiwopu,
Xinjiang Province, China [67], Lop Nur, Tarim Basin, northwestern China [68], San Juan Mountains,
Colorado [69], and Lake Hongjiannao, Shaanxi Province, China [70], all of which show that the debris
transported by wind in arid areas is also a source of lake sediments. A large amount of modern dustfall
grain size data shows that the modal grain size of modern atmospheric dustfall materials is about
20 um [69,88]. Therefore, some of the land-based materials in Lake Ta-Lung-Chi sediments less than
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16 um in size may also come from atmospheric dustfall, which may be the reason for the inconsistency
observed between the variation curve of sediment content smaller than 16 um and precipitation in the
study area in July.

6. Conclusions

By analyzing the characteristics of particle size in the sediments from Lake Ta-Lung-Chi in the Tian
Shan, the possibility of using sediment grain size to reconstruct past changes of regional precipitation
was discussed. The following conclusions are drawn.

The core sediment (TLC01) with 50-cm length extracted from Lake Ta-Lung-Chi recorded the
environmental changes covering over the past 90 years (1928-2018). The average sedimentation rate is
about 0.55 cm year~!, and the average content of clay fraction (<4 pum), fine-silty fraction (4-16 um),
silty fraction (16-32 pum), coarse-silty fraction (32-64 um), and sandy fraction (>64 pm) was 16.94%,
25.03%, 13.24%, 15.37%, and 29.42%, respectively.

The grain size of lake sediments in the Tianshan Mountains sensitively reflects the changes in
precipitation in the basin, and it can be used as a useful indicator for quantitative reconstruction
of long-term paleoprecipitation. The three-point moving average curve of silty fraction (16-32 pum)
content is significantly consistent with the total precipitation curve from April to September since
1950. The total content of clay and fine-silty fraction (0-16 pum) is clearly consistent with the monthly
precipitation in July.

The reconstructed precipitation (1950 years ago) with grain size of lake sediments was significantly
different from the CRU database, which was due to the lack of meteorological data from monitoring
stations in China before 1950, The total precipitation from April to September showed a significant
downward trend from 1930 to 1975, and an overall increasing trend began in 1975.
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