
applied
sciences

Article

A Comparative Evaluation of Nature Inspired
Algorithms for Telecommunication Network Design

Stanisław Kozdrowski 1,∗ , Mateusz Żotkiewicz 1, Kacper Wnuk 1, Arkadiusz Sikorski 1

and Sławomir Sujecki 2,3

1 Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19,
00-665 Warsaw, Poland; mzotkiew@tele.pw.edu.pl (M.Ż.); kacper.wnuk.stud@pw.edu.pl (K.W.);
Arkadiusz.Sikorski.stud@pw.edu.pl (A.S.)

2 George Green Institute, University of Nottingham, Nottingham NG7 2RD, UK;
Slawomir.Sujecki@nottingham.ac.uk

3 Telecommunications and Teleinformatics Department, Wroclaw University of Science and Technology,
50-370 Wroclaw, Poland

* Correspondence: s.kozdrowski@elka.pw.edu.pl

Received: 23 July 2020; Accepted: 25 September 2020; Published: 29 September 2020

Abstract: The subject of the study was an application of nature-inspired metaheuristic algorithms to
node configuration optimization in optical networks. The main objective of the optimization was to
minimize capital expenditure, which includes the costs of optical node resources, such as transponders
and amplifiers used in a new generation of optical networks. For this purpose a model that takes
into account the physical phenomena in the optical network is proposed. Selected nature-inspired
metaheuristic algorithms were implemented and compared with a reference, deterministic algorithm,
based on linear integer programming. For the cases studied the obtained results show that there is a
large advantage in using metaheuristic algorithms. In particular, the evolutionary algorithm, the bees
algorithm and the harmony search algorithm showed superior performance for the considered
data-sets corresponding to large optical networks; the integer programming-based algorithm failed
to find an acceptable sub-optimal solution within the assumed maximum computational time.
All optimization methods were compared for selected instances of realistic teletransmission networks
of different dimensions subject to traffic demand sets extracted from real traffic data.

Keywords: metaheuristics; evolutionary algorithm; bees algorithm; harmony search algorithm;
swarm intelligence; swarm-based optimization; mixed integer and integer linear programming;
combinatorial optimization; optical network design; optical node resources

1. Introduction

From the network operator’s point of view, the ever-increasing demand for high-speed data
services translates into the need to continually upgrade the networks to increase the data transmission
rate per optical fiber. An engineer who is responsible for the task of continual upgrading of dense
wavelength division multiplexing (DWDM) networks [1] needs specific software tools that allow
for estimation of the network’s performance and optimization of the architecture with respect to
operational and capital costs. Thus, the specific task considered in this contribution related to DWDM
network optimization was formulated as an integer programming (IP) problem and solved by the
available general purpose solvers [2]. However, the IP optimization results show that even if the
IP approach is applicable, it is inefficient for larger networks since the design task is, in general,
NP-complete [3]. The numerical efficiency limitations are particularly acute in the context of routing
and wavelength assignment (RWA) [4–6] and routing and spectrum allocation (RSA) [7–10] problems,

Appl. Sci. 2020, 10, 6840; doi:10.3390/app10196840 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-6647-5189
https://orcid.org/0000-0003-4588-6741
http://dx.doi.org/10.3390/app10196840
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 6840 2 of 19

which are at the heart of DWDM network optimization. Moreover, the constraints and cost functions
are in a general case nonlinear and thus may further complicate the situation.

Since the invention of computationally efficient exact algorithms is rather unlikely, heuristic discrete
optimization methods seem to be best suited for the optimization of DWDM networks with realistic size
and high modularity of node resources while taking into account optical network impairments, such as
attenuation or an optical signal to noise ratio (OSNR) [11,12]. Therefore, the main aim of this paper is to
study the properties of heuristic algorithms that are applicable to the optimization of DWDM networks,
whereby particular attention is paid to nature-inspired algorithms, with problem-specific operators that
were specifically adapted by the authors to the problem studied. The performances of all optimization
algorithms were compared for selected test networks with differing complexity. All networks used for
comparison were optimized, subject to traffic demand sets extracted from real traffic data [13].

This paper is organized as follows. In Section 2 the problem is formulated and the network
models are described. Due to space constraints we decided to keep the presentation of the problem to a
minimum and refer to our previous article. In Section 3 general methodology is described. In Section 4
the proposed metaheuristics are described. Next, in Section 5 a testbed of four network structures
is presented and results of series of numerical experiments testing the algorithms are provided and
compared. Finally, Section 6 provides a summary of the research findings.

2. Problem Formulation

In this section, the UW-WDM network optimization problem is formulated using MIP [10].
For this purpose the following sets are defined:

N set of all nodes;
T set of transponders;
S set of frequency slices;
E set of edges;
P(n,n′ ,t) set of paths between nodes n, n′ ∈ N for transponder t ∈ T ; p ⊆ E ;
B set of bands;
Sb set of frequency slices used by band b ∈ B; Sb ⊆ S ;

⋃
b∈B
Sb = S ;

St set of frequency slices that can be used as starting; slices for transponder t ∈ T ; St ⊆ S .

Notice that the power budget constraints are taken into account in the model by limiting
sets P(n,n′ ,t). In this approach, the sets are precomputed and contain only paths that are feasible
from the point of view of the power budget.

We use the following variables:

ybe binary variable, equal to 1 if band b is used on edge e and 0 otherwise;
xtnn′ps binary variable that equals 1 if transponders t are installed between node n and node n′,

routed on path p and start on frequency slice s ∈ St, and 0 otherwise.

In the model, the following constants are used:

ξ(b) cost of using band b at a single edge;
ξ(t, b) cost of using a pair of transponders t in band b;
v(t) bitrate provided by transponder t;
d(n, n′) bitrate demanded from node n to node n′;
u(t, s, s′) binary constant that equals 1 if transponder t using bandwidth starting at frequency slice s

also uses frequency slice s′; 0 otherwise.

In the cost model EDFAs, preamplifiers, boosters, ILAs and transponders are included in ξ(b) and
ξ(t, b) but not WSSs and filters since the latter devices cannot be subject to optimization.

Appl. Sci. 2020, 10, 6840 3 of 19

The optimization model is as follows:

min ∑
b∈B

(
ξ(b) ∑

e∈E
ybe + ∑

t∈T
ξ(t, b) ∑

n,n′∈N
∑

p∈P(n,n′ ,t)

∑
s∈St

xtnn′ps
)

(1)

∑
t∈T

∑
p∈P(n,n′ ,t)

∑
s∈St

v(t)xtnn′ps ≥ d(n, n′) ∀n, n′ ∈ N (2)

∑
t∈T

∑
n,n′∈N

∑
p∈P(n,n′ ,t) :e∈p

∑
s∈St

u(t, s, s′) · xtnn′ps ≤ ybe ∀e ∈ E , ∀b ∈ B, ∀s′ ∈ Sb (3)

The subject of minimization is the cost of installed amplifiers and transponders in (1).
Constraints (2) ensure that all demands are satisfied. Constraints (3) ensure that each frequency
slice at each edge is not used more than once. Moreover, they ensure that using a band at an edge
results in installing appropriate amplifiers.

In this contribution the CAPEX minimization problem is considered and several techniques
are applied in order to reduce the calculation time. The motivation for reducing the calculation
time of the CAPEX minimization problem is two fold. First of all the CAPEX minimization should
be performed each time new capacity is needed following a request coming from a customer.
Hence, smaller calculation time is of clear benefit. Secondly, it was observed that the calculation
time of standard optimization methods (e.g., ILP) growths rapidly with the number of network
nodes [7]. Thus, for large networks, application of heuristic methods becomes indispensable.

3. Methodology

3.1. Solution Model

For each algorithm the same solution model was applied. The generic structure of the solution
model is shown in Figure 1. Thus, in order to implement an algorithm, the following steps are taken:

• For all node pairs in set N , a set of transponders T must be selected that are capable of meeting
the demands for the node pair. The set is a 4-element vector T = {n · t1, n · t2, n · t3, n · t4},
where the first element is the number of 40G transponders used, the second element is the
number of 100 G transponders used, the third element is the number of 200 G transponders used
and fourth element is the number of 400 G transponders used. For example, T = {2, 1, 0, 3}
means that this set consists of two 40 G transponders, one 100 G transponder and three 400 Gb
transponders. The set of transponders is chosen from four precalculated solutions, generated
using linear programming.

• For each selected transponder a path should be determined, through which it will transmit data.
The path p ∈ P is selected randomly by drawing one of the k-element set of predefined paths.

• Choosinga path is necessary to be able to assign each transponder t ∈ T a unique piece of
bandwidth s ∈ S for data transmission. This is done using a heuristic RMLSA (routing modulation
level and spectrum allocation) algorithm [14] that sequentially handles each demand and uses
longest path first (LPF) sorting.

Appl. Sci. 2020, 10, 6840 4 of 19

3.2. Operators

This section shortly describes operators used to modify a solution, i.e., change realization operator,
change path operator, crossover operator.

Operator change realization operator calculates a new solution for a given demand. For each demand
we precalculate four sets of transponders capable of satisfying them. After choosing one of the
precalculated sets, for each transponder t ∈ T of the set one of the predefined paths is randomly chosen.

Operator change path operator changes a path assigned to a transponder. A new path is randomly
chosen from a set of predefined paths. Thus change path operator changes the selected path identifier
allocated to the specific transponder to a random allowed value. Thus, if k paths are available,
then change path operator changes the path identifier to a randomly selected value taken from a set of
{1, 2, . . . , k}. In this study for each demand, k = 3 was assumed.

For implementation of crossover operator, a uniform crossover [15] was used. In this application
offspring chromosomes are created as a concatenation of demand vectors picked up randomly
from parents. In this variant of crossover, the C genotype is formed from the parents’ genes on
the basis of the following scheme:

Ci =

{
Ai ζi < pe

Bi otherwise,

where ζi means the execution of a random variable with a U(0, 1) uniform distribution, drawn for
each i item in the genotype separately, and pe is the probability of gene replacement. A typical pe

value is: pe =
1
2 . An example of the crossover, based on Polish network is depicted in Figure 2. In this

specific example, the demand-two vector is subject to crossover, i.e., demand two for offspring has
been swapped when compared to parents.

Figure 1. Structure of a model. Each demand consists of k 3-element vectors; k may be different for
different demands.

Appl. Sci. 2020, 10, 6840 5 of 19

Figure 2. An example of crossover, based on the Polish network.

4. Methods

In the paper, several methods were used to solve the problem presented in Section 2, which can
be divided into two classes. The first class is formed by population algorithms and consists of the
bees algorithm (BA) [16–18] and the evolutionary algorithm (EA) [19–21]. The second class consists
of algorithms that generate one solution in each iteration. Here, the harmony search algorithm
(HS) [22] and the stochastic hill climbing algorithm (HC) [23] were considered. As the reference a
well-known method based on integer linear programming (IP) was used [24,25]. This method is
available through a commercial solver CPLEX [2].

Appl. Sci. 2020, 10, 6840 6 of 19

4.1. The Bees Algorithm

The bees algorithm is inspired by honey bees and their way of searching for flower patches rich
in nectar [16]. Each solution and its value of the objective function might be perceived as a flower
patch found by a scout-bee and amount of nectar available there. The neighborhood of a flower patch
rich in nectar should be explored by more bees than the other flower patches. Initially, the search
space is randomly sampled according to scout bees randomly searching the surroundings of the hive.
Thus N random solutions are generated. Then, a group of m best solutions is chosen from the
current population. These solutions are used for local search. For the elite e out of m solutions n1

random neighbors are generated. Analogously, for the remaining best m − e solutions n2 random
neighbors are generated.

Note that n1 should be greater than n2 and the size of the neighborhood of local search is
determined by value k. To generate a neighbor, change realization operator is used k times. At the end of
each iteration m best solutions are chosen from best, elite and newly generated neighbors. To keep the
population size constant, the current populations is filled with N −m completely random solutions.
The pseudo-code of the algorithm is presented in Algorithm 1. For the problem described in this article
the hyperparameters N, m, e, n1, n2, k should be relatively small.

Algorithm 1: The bees algorithm.
Input: N, m, e, n1, n2, k
Output: the best solution found
bees← RandomSolutions(N);
while stop condition is not met do

best← SelectBest(bees, m);
elite← SelectBest(best, e);
best← best - elite;
elite_neighbors← RandomNeighbors(elite, n1, k);
best_neighbors← RandomNeighbors(best, n2, k);
bees← elite_neighbors + best_neighbors + best + elite;
bees← SelectBest(bees, m) + RandomSolutions(N −m);

end
return SelectBest(bees, 1);

4.2. Harmony Search

At the beginning of the algorithm the memory harmony is initialized [26]. It is set of randomly
generated and evaluated solution models. The size of the memory is constant. In each iteration a new
solution is created using the following steps:

• For each node pair in set N choose solution which satisfies the demand.
• With probability pa, a solution is chosen randomly from memory. There is also probability pm

that the chosen solution will be modified using change path operator.
• Otherwise, a solution is created using change realization operator.

After creation, the solution is evaluated and if it is better than any of the solutions stored in the
memory, the worst solution is replaced by the newly created solution. Due to two ways of generating
solutions, the algorithm has the option to explore and exploit solution space. Furthermore, it is certain
that the best solution generated will be the final solution because of the way of storing solutions in
memory. The pseudo-code of the algorithm is presented in Algorithm 2.

Appl. Sci. 2020, 10, 6840 7 of 19

Algorithm 2: Harmony search.
Input: Number of iterations (MaxIters), memory size (MemSize)
Output: The best solution found (BestSoFar)
M←random initial population [MemSize];
EvaluateMemory(M);
t = 0;
while t <MaxIters do

NewSolution← EmptySolution();
if Rand(0, 1) < pa then

for NodePair in N do
realization← ChooseRealization(NodePair, M);
if Rand(0, 1) < pm then

ChangePath(realization);
end
AddRealization(NewSolution, NodePair, realization);

end
else

CreateRandom(NewSolution);
end
Evaluate(NewSolution);
CompareWithMemory(NewSolution, M);
t← t + 1

end
return TheBestFrom(M);

4.3. Evolutionary Algorithm

The EA, which was employed for the optical node optimization problem, was inspired by
evolutionary strategy ((µ+ λ) ES) given in [27,28], but both the encoding method and genetic operators
that were applied here are problem-specific. Its pseudo-code is given in Algorithm 3.

The algorithm maintains a population Pt of individuals. The population is initialized randomly.
For each gene, the demand that is associated with it is randomly allocated to a possible path. Then the
objective function of each individual is calculated according to (1). The main loop of the algorithm works for
the specified number of iterations, which is a parameter of the method. Inside the main loop, an offspring
population Ot is generated by reproducing randomly selected elements from Pt. Then, chromosomes are
randomly mated into pairs, crossed over and mutated. A new population Pt+1 is generated by selecting
best chromosomes from the sum of the base population and the offspring population.

To be able to use the EA, the solution of the problem must be encoded to form a genotype of
an individual. The structure of the chromosome has already been depicted in Figure 1 and an example
of the chromosome based on Polish network is depicted in Figure 3. Demand 1 is realized by means
of four transponders (first, traversing path 1 and using slice 2; second, 40 G traversing the same path,
using slice 7; third, 100 G transponder-path 2 and slice 13; and fourth, 200 G transponder–path 1 and
slice 17). Demand 2 has two transponders and the last demand 66 has just one transponder, traversing
path 1, using slice 5. The crossover is performed using crossover operator as described earlier. The mutation
is performed for each chromosome. Each demand is mutated separately with probability pm using change
path operator.

Appl. Sci. 2020, 10, 6840 8 of 19

Algorithm 3: The evolutionary algorithm (µ + λ)–EA.
Input: Number of iterations (MaxIters), population size (PopSize)
Output: The best solution found (BestSoFar)
P0 ←random initial population [µ chrom.];
Objective←EvaluatePopulation(P0);
t = 0;
while t <MaxIters do

O← RandomlyReproduce(Pt) [λ chrom.];
C ← Crossover(O);
M←Mutate(C);
ObjectiveNew←EvaluatePopulation(M);
Pt+1 ← TheBestFrom(Pt ∪M, Objective, ObjectiveNew) [µ chrom.];
Objective←TheBestFrom(Objective, ObjectiveNew);
t← t + 1

end
return TheBestFrom(Pt, Objective);

Figure 3. An example of a chromosome, based on Polish network.

5. Results and Discussion

Computational results were obtained for seven optical networks that have different characteristics.
The networks correspond to actual optical networks stemming from specified countries and were
taken from [29]. Table 1 and Figures 4–10 provide the relevant parameters for both networks and
their topologies.

Berlin

Braunschweig

Bremen

Bremerhaven

Flensburg

Hamburg

Hannover

Kiel

Magdeburg

Schwerin

Figure 4. Schematic diagram of 10-node German national transmission optical backbone network.

Appl. Sci. 2020, 10, 6840 9 of 19

Gda sk

Bydgoszcz

Ko obrzeg

Katowice
Kraków

Bia ystok

ód

Pozna

Rzeszów

Szczecin

Warszawa

Wroc aw

Figure 5. Schematic diagram of Polish national transmission optical backbone network.

Augsburg

Bayreuth

Chemnitz

DresdenErfurt

Fulda

Kassel Leipzig

Muenchen

Nuernberg

Passau

Regensburg

Stuttgart

Ulm

Wuerzburg

Figure 6. Schematic diagram of 15-node German national transmission optical backbone network.

Augsburg

BayreuthDarmstadt
Frankfurt

Freiburg

Kaiserslautern

Karlsruhe

Kempten

Koblenz

Konstanz

Mannheim

Muenchen

Nuernberg

Passau

Regensburg
Saarbruecken

Stuttgart

Trier

Ulm

Wuerzburg

Figure 7. Schematic diagram of 20-node German national transmission optical backbone network.

Appl. Sci. 2020, 10, 6840 10 of 19

Seattle

LosAngeles

San
Francisco

LasVegas

SaltLakeCity

ElPaso
Dallas

Houston

Tulsa

Minneapolis

KansasCityDenver

Chicago

Indianapolis

Detroit

StLouis

Nashville

Cleveland
NewYork

Albany

Charlotte

NewOrleans

Boston

Atlanta

Miami

WashingtonDC

Figure 8. Schematic diagram of a USA national transmission optical backbone network.

Vancouver

LosAngeles

San
Francisco

LasVegas

SaltLakeCity

ElPaso
Dallas

Houston

OklahomaCity

Minneapolis

KansasCityDenver

Chicago

Indianapolis

Detroit

StLouis

Nashville

Cleveland
NewYork

Montreal

Charlotte

NewOrleans

Boston

Atlanta

Miami

WashingtonDC
Philadelphia

Toronto

Pittsburgh

Cincinnati

Tampa

Memphis

Winnipeg

Calgary

Seattle

Portland

Sacrameto

Phoenix
SanDiego

Figure 9. Schematic diagram of an American national transmission optical backbone network.

Table 1. Parameters of analyzed networks.

Network #Nodes #Links #Demands

Germany10 10 14 45
Polish 12 18 66
Germany15 15 23 105
Germany20 20 29 190
USA 26 42 325
American 39 61 741
Germany 50 88 1225

The demands that were used in the optimization of network costs are given by a demand
matrix, which provides the values of traffic flow between selected nodes expressed in gigabits per
second (Gbps). The calculations were carried out using a linear solver engine of CPLEX 12.8.0.0 on a
2.1 GHz Xeon E7-4830 v.3 processor with 256 GB RAM running under Linux Debian operating system.
Table 2 describes in detail the sets and their settings and presents constant settings used during the
computational process.

Appl. Sci. 2020, 10, 6840 11 of 19

Aachen

Augsburg

Bayreuth

Berlin

Bielefeld

Braunschweig

Bremen

Bremerhaven

Chemnitz

Darmstadt

Dortmund

Dresden
Duesseldorf

Erfurt

Essen

Flensburg

Frankfurt

Freiburg

FuldaGiessen

Greifswald

Hamburg

Hannover

Kaiserslautern

Karlsruhe

Kassel

Kempten

Kiel

Koblenz

Koeln

Konstanz

Leipzig

Magdeburg

Mannheim

Muenchen

Muenster

Norden

Nuernberg

Oldenburg

Osnabrueck

Passau

Regensburg
Saarbruecken

Schwerin

Siegen

Stuttgart

Trier

Ulm

Wesel

Wuerzburg

Figure 10. Schematic diagram of 50-node German national transmission optical backbone network.

The following modeling parameters were used for heuristic algorithms: pa = 0.95, pm = 0.05
and memory_size = 30 for HS; N = 50, m = 12, e = 6, n1 = 8, n2 = 2 and k = 5 for BA; and µ = 100
λ/µ = 2, pc = 0.9 and pm = 0, 05 for EA. All these values were selected empirically after a series
of tests.

In the first numerical experiment a comparison of optimization methods was performed.
For Polish, German10, German15 and German20 networks (Figure 4–7 and Figure 11), which are
discussed first, all considered algorithms reached the optimal solution. Results of heuristic algorithms
are characterized by a small standard deviation. This observation supports the claim that the
simulations are quite repetitive and that they converge consistently to effectively the same value.
Further, the results from Tables 3–6 show that average values are close to the minimum values.
This is particularly the case for the BA algorithm. Thus, BA algorithm showed on average the best
performance among all heuristic algorithms in terms of consistency.

Appl. Sci. 2020, 10, 6840 12 of 19

Table 2. Set and constant settings.

Set Set Settings

N in Table 1

E in Table 1

S 768 slots

B 2 bands

T 4 transponders (t1 = 40 G, t2 = 100 G, t3 = 200 G and t4 = 400 G)

St

S1 = {1 . . . 380} ∪ {385 . . . 764}
S2 = {1 . . . 380} ∪ {385 . . . 762}
S3 = {1 . . . 378} ∪ {385 . . . 762}
S4 = {1 . . . 376} ∪ {385 . . . 760}

Constant Constant Settings

d(n, n′)[Gbps] e.g., d(1, 2) = 70

ξ(b) ξ(1) = 1, ξ(2) = 2

ξ(t, b) ξ(1, 1) = 2, ξ(2, 1) = 5, ξ(3, 1) = 7, ξ(4, 1) = 9
ξ(1, 2) = 2.4, ξ(2, 2) = 6, ξ(3, 2) = 8.4, ξ(4, 2) = 11.8

The results obtained by HS algorithm on the other hand, are characterized by the highest standard
deviation and the highest average value of the cost function. Thus, HS algorithm performed worst
among all heuristic algorithms. It is also important to note that CPLEX software took about 6 min to
find the optimal solution of 1321. Therefore, on average, IP approach won the competition for the
Polish network instance. Finally, it is noted that on average, the fastest heuristic algorithm turned out
to be HC algorithm. A bit worse, in terms of time, was the HS algorithm. Both of these algorithms
were close to the IP approach in terms of time. The swarm algorithms (BA and EA) finally reached the
optimum, but needed about 20 times more time.

The implemented algorithms were also applied to the large networks, i.e., the USA, American
and German50 networks (Figures 8–10). That was the main purpose of this article. Analogously,
the results were collected in Tables 7–9. Additionally, convergence curves over 50 independent runs
are depicted in Figures 12–14 for the USA, American and German50 networks. In all three cases the IP
approach found solutions which were much further away from the optimal value than the ones found
by heuristic algorithms. In all cases studied, the highest minimum values were obtained by HC and
HS algorithms.

It is worth noticing that the ILP approach has one advantage over heuristic methods, i.e., ILP,
in that it provides the lower bound for the minimum sought. The results obtained show that
for the cases studied ILP is particularly effective when applied to German10, Polish, German15
and German20 networks, since in this case an ILP algorithm finds the optimum. For the USA,
American and German networks, as mentioned, ILP finds the lower band and thus allows estimating
the optimality gap. However, it is noted that for networks with exceedingly many nodes the
optimality gap may be so large as to preclude any practical knowledge concerning the quality of the
feasible solutions obtained.

Considering the average results, the HC algorithm performed worst in all cases. On the other
hand, the best results in all considered cases for USA, American and German networks were obtained
consistently using BA and EA algorithms. BA and EA algorithms both reached the minimum, and most
importantly, the lowest average value for the American network. This observation supports the claim
that the swarm algorithms (BA and EA) are best suited for optimization of optical networks with a
large number of nodes (i.e., USA, American and German). The BA and HC algorithms results have
the highest values of the standard deviation. This suggests that BA and HC algorithms explore the
solution space more robustly and thus give more diverse results.

In the more complex cases, American, USA and German 50 node networks (Figures 8–10),
algorithms based mainly on solution space exploitation (HC and HS) converged to a certain point,
and then, due to small exploration, stopped at one of the extrema of local solution spaces. At this point,

Appl. Sci. 2020, 10, 6840 13 of 19

EA and BA algorithms show their superiority. This is because in EA and BA algorithms more emphasis
is placed on exploration than in the previous two algorithms (HC and HS), which allows EA and BA
algorithms to avoid the trap of local extremes and enables them to continue with further optimization.

The Figures 11–14 also show the influence of initialization population by HS, EA and BA
algorithms in contrast to HC algorithm. More than one solution at the start gives a potentially
better base solution, so that these algorithms find a lower cost solution at the start (the chart starts with
a much lower cost value).

100 101 102 103 104 105

number of evaluations

1,500

2,000

2,500

3,000

3,500

co
st

 [
co

st
 u

ni
ts

]

BA
EA
HS
HC

Figure 11. Comparison of the convergence for the Polish network of all considered methods: artificial
bee colony (BA), evolutionary algorithm (EA), harmony search algorithm (HS) and stochastic hill
climbing algorithm (HC). Each curve is an average of 50 independent runs.

100 101 102 103 104 105

number of evaluations

104

105

106

co
st

 [
co

st
 u

ni
ts

]

BA
EA
HS
HC

Figure 12. Comparison of the convergence for the USA network of all considered methods: artificial
bee colony (BA), evolutionary algorithm (EA), harmony search algorithm (HS) and stochastic hill
climbing algorithm (HC). Each curve is an average of 50 independent runs.

Appl. Sci. 2020, 10, 6840 14 of 19

100 101 102 103 104 105

number of evaluations

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

co
st

 [
co

st
 u

ni
ts

]

BA
EA
HS
HC

Figure 13. Comparison of the convergence for the American network of all considered methods:
artificial bee colony (BA), evolutionary algorithm (EA), harmony search algorithm (HS) and stochastic
hill climbing algorithm (HC). Each curve is an average of 50 independent runs.

100 101 102 103 104 105

number of evaluations

3,000

3,500

4,000

4,500

5,000

5,500

6,000

co
st

 [
co

st
 u

ni
ts

]

BA
EA
HS
HC

Figure 14. Comparison of the convergence for 50-node the German network of all considered methods:
artificial bee colony (BA), evolutionary algorithm (EA), harmony search algorithm (HS) and stochastic
hill climbing algorithm (HC). Each curve is an average of 50 independent runs.

Table 3. Comparison of all considered algorithms for the 10-node German network.

Method

German10

Solution #Evaluation Time [sec.]

Best Mean std. dev. Mean Mean std. dev. Gap [%]

BA 152 152.63 0.48 69,992 6990.8 170.7 –
EA 152 152.59 0.49 21,220 2170.0 51.0 –
HS 152 152.96 0.19 5293 529.18 25.86 –
HC 153 153.96 0.19 5226 522.18 25.86 –
IP 152 – – – 461.12 – 0.00

Further, it is noted that it took more than 6 days for the IP approach to find a solution, which is still
further away from the optimum value than the solutions obtained by heuristic algorithms. On average,

Appl. Sci. 2020, 10, 6840 15 of 19

it took almost three times less time for the BA algorithm than for IP approach, and almost six times
less time was needed by the EA algorithm. This is due to the fact that the iterations of the climbing
algorithm are computationally very efficient when compared with other algorithms, e.g., the EA
algorithm. Finally, the same amount of time was needed for completing calculations using HS
and HC algorithms. In fact, HS and HC algorithms proved to be the fastest among all algorithms
tested. However, these algorithms did not find the best solutions, which were provided by BA and
EA algorithms.

Table 4. Comparison of all considered algorithms for the Polish network.

Method

Polish

Solution #Evaluation Time [sec.]

Best Mean std. dev. Mean Mean std. dev. Gap [%]

BA 1321 1321.0 0.0 108,000 7650.8 165.2 –
EA 1321 1321.6 1.3 40,000 8562.1 275.3 –
HS 1321 1330.1 5.9 7641 420.3 90.1 –
HC 1321 1321.7 1.4 2421 410.8 80.8 –
IP 1321 – – – 367.0 – 0.00

Table 5. Comparison of all considered algorithms for the 15-node German network.

Method

German15

Solution #Evaluation Time [sec.]

Best Mean std. dev. Mean Mean std. dev. Gap [%]

BA 281 281.85 0.35 70,084 7008.0 170.7 –
EA 281 281.4 0.49 27,220 2710.0 62.0 –
HS 281 281.93 0.47 5862 582.37 105.5 –
HC 282 282.9 0.32 5440 544.5 24.8 –
IP 281 – – – 1547.10 – 0.00

Table 6. Comparison of all considered algorithms for the 20-node German network.

Method

German20

Solution #Evaluation Time [sec.]

Best Mean std. dev. Mean Mean std. dev. Gap [%]

BA 500 502.1 0.21 55,612 5561.0 417.7 –
EA 500 506.0 0.70 29,770 2870.0 20.7 –
HS 501 503.7 0.4 5245 524.5 47.1 –
HC 501 504.0 0.3 6255 625.3 562.0 –
IP 500 – – – 17304.75 – 0.00

Table 7. Comparison of all considered algorithms for the USA network.

Method

USA

Solution #Evaluation Time [sec.]

Best Mean std. dev. Mean Mean std. dev. Gap [%]

BA 1846 1851.6 8.6 108000 18113.2 187.4 –
EA 1846 1872.6 10.2 40,000 19,006.0 514.4 –
HS 1866 1884.8 10.3 9057 1696.3 230.5 –
HC 1862 1886.4 11.9 4868 1661.5 279.7 –
HY 1846 1864.4 8.8 21248 9717.8 455.0 –
IP 2366 – – – 3 · 105 – 25.7

Appl. Sci. 2020, 10, 6840 16 of 19

Table 8. Comparison of all considered algorithms for the American network.

Method

American

Solution #Evaluation Time [sec.]

Best Mean std. dev. Mean Mean std. dev. Gap [%]

BA 4658 4698.3 40.0 210,819 57,299.3 452.4 –
EA 4685 4751.9 26.2 40,000 62,470.9 706.9 –
HS 5047 5136.1 46.8 9205 4931.5 734.3 –
HC 4900 5051.4 85.5 23,407 30,819.3 6884.5 –
IP 6020 – – – 6 · 105 – 33.2

Table 9. Comparison of all considered algorithms for the 50-node German network.

Method

German50

Solution #Evaluation Time [sec.]

Best Mean std. dev. Mean Mean std. dev. gap [%]

BA 2968 3043.8 37.4 108,000 42,981.3 484.8 –
EA 2851 2852.0 1.0 40,000 52,929.6 750.6 –
HS 2979 2993.9 7.7 8805 5783.3 915.8 –
HC 3088 3127.4 22.3 2894 2525.3 1048.0 –
HY 2917 2959.7 13.2 21321 28166.6 3980.9 –
IP 3196 – – – 6 · 105 – 13.1

In the last experiment, fine tuning of the EA was performed. Results concerning tuning of µ and
λ parameters are provided, as this emerged as a challenging problem. The purpose of this experiment
was to establish best settings for µ and λ

µ . The methodology was as follows: values of µ = 100 and

µ = 200 were set experimentally; then λ
µ ∈ {0.1, 0.2, 0.5, 1, 2, 5} were tested, pc = 0.9 and pm = 0.05.

Convergence curves presented in Figure 15–18 have similar shapes for different λ
µ values. If λ

µ

is small, almost no gain is observed for the first iterations. After the initial iterations, however, quick
convergence follows, after which the calculated cost values settle to a constant value. With large λ

µ ,
the initial slow convergence does not occur at all and the fast convergence period is followed again by
settling down to a constant value.

Thus, the analysis of the impact of the studied parameters on convergence led to the formulation
of the following conclusion: if µ = 100, λ

µ should be kept to about 1–2 to yield the best EA
algorithm performance.

100 101 102

#iteration

1360

1440

1520

1600

1680

1760

co
st

 [
co

st
 u

ni
ts

]

/ =0.1
/ =0.2
/ =0.5
/ =1
/ =2
/ =5

Figure 15. Convergence curves (cost vs. iterations) for different combinations of µ and λ
µ settings.

Each curve is an average of 50 independent runs. Values of the λ
µ coefficient are described in the legend

of the figure. The results were computed for the Polish network.

Appl. Sci. 2020, 10, 6840 17 of 19

102

#iteration

1310

1320

1330

1340

1350

1360

co
st

 [
co

st
 u

ni
ts

]

/ =0.1
/ =0.2
/ =0.5
/ =1
/ =2
/ =5

Figure 16. Convergence curves (cost vs. iterations) for different combinations of µ and λ
µ settings.

Zoom of Figure 15.

100 101 102

#iteration

1360

1440

1520

1600

1680

co
st

 [
co

st
 u

ni
ts

]

/ =0.1
/ =0.2
/ =0.5
/ =1
/ =2
/ =5

Figure 17. Convergence curves (cost vs. iterations) for different combinations of µ and λ
µ settings.

Each curve is an average of 50 independent runs. Values of the λ
µ coefficient are described in the legend

of the figure. The results were computed for the Polish network.

101 102

#iteration

1300

1310

1320

1330

1340

1350

1360

co
st

 [
co

st
 u

ni
ts

]

/ =0.1
/ =0.2
/ =0.5
/ =1
/ =2
/ =5

Figure 18. Convergence curves (cost vs. iterations) for different combinations of µ and λ
µ settings.

Zoom of Figure 17.

Appl. Sci. 2020, 10, 6840 18 of 19

6. Conclusions

To sum up, the following conclusions can be drawn from the analysis for the cases studied.
For the German10, Polish, German15 and German20 networks, which are instances of small networks,
almost all of the considered methods calculated the optimal solutions. However, for the IP method
the calculation time was the lowest for German10 and Polish networks. HS and HC methods can also
be successfully used for those cases. However, for the swarm algorithms (BA and EA) calculation
times were relatively long. We observed that the EA algorithm is the most efficient for large networks,
with the data-sets used in this paper (i.e., USA, American and German), although the BA algorithm
was nearly as good.

Finally, it is noted that the results refer to DWDM networks of practical relevance, and hence
provide additional guidance for network operators who are planning DWDM network expansions,
and since swarm algorithms give promising results when applied to DWDM network optimization,
in the near future we plan to continue research on optimizing large networks subject to additional
non-linear constraints that are typical for optical networks.

Author Contributions: Conceptualization, S.K.; methodology, S.K. and S.S.; software, K.W., A.S., S.K. and M.Ż.;
validation, S.K. and S.S.; formal analysis, S.K., S.S. and M.Ż.; resources, S.K., M.Ż. and S.S.; writing—original
draft preparation, S.K. and S.S.; writing—review and editing, S.K., M.Ż. and S.S.; visualization, A.S., S.K. and S.S.;
supervision, S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Richardson, D.; Fini, J.; Nelson, L. Space Division Multiplexing in Optical Fibres. Nat. Photonics 2013,
7, 354–362. [CrossRef]

2. ILOG. CPLEX 11.0 User’s Manual; ILOG: Geneva, Switzerland, 2007.
3. Garey, M.R.; Johnson, D.S. Computers and Intractability; A Guide to the Theory of NP-Completeness;

W. H. Freeman & Co.: New York, NY, USA, 1990.
4. Klinkowski, M.; Walkowiak, K. Routing and Spectrum Assignment in Spectrum Sliced Elastic Optical Path

Network. IEEE Commun. Lett. 2011, 15, 884–886. [CrossRef]
5. Klinkowski, M.; Żotkiewicz, M.; Walkowiak, K.; Pióro, M.; Ruiz, M.; Velasco, L. Solving large instances of

the RSA problem in flexgrid elastic optical networks. IEEE/OSA J. Opt. Commun. Netw. 2016, 8, 320–330.
[CrossRef]

6. Cai, A.; Shen, G.; Peng, L.; Zukerman, M. Novel Node-Arc Model and Multiiteration Heuristics for Static
Routing and Spectrum Assignment in Elastic Optical Networks. J. Light. Technol. 2013, 31, 3402–3413.
[CrossRef]

7. Kozdrowski, S.; Żotkiewicz, M.; Sujecki, S. Optimization of Optical Networks Based on CDC-ROADM
Technology. Appl. Sci. 2019, 9, 399. [CrossRef]

8. Żotkiewicz, M.; Ruiz, M.; Klinkowski, M.; Pióro, M.; Velasco, L. Reoptimization of dynamic flexgrid optical
networks after link failure repairs. IEEE/OSA J. Opt. Commun. Netw. 2015, 7, 49–61. [CrossRef]

9. Dallaglio, M.; Giorgetti, A.; Sambo, N.; Velasco, L.; Castoldi, P. Routing, Spectrum, and Transponder
Assignment in Elastic Optical Networks. J. Light. Technol. 2015, 33, 4648–4658. [CrossRef]

10. Kozdrowski, S.; Żotkiewicz, M.; Sujecki, S. Ultra-Wideband WDM Optical Network Optimization. Photonics
2020, 7, 16. [CrossRef]

11. Shariati, B.; Mastropaolo, A.; Diamantopoulos, N.; Rivas-Moscoso, J.M.; Klonidis, D.; Tomkos, I.
Physical-layer-aware performance evaluation of SDM networks based on SMF bundles, MCFs, and FMFs.
IEEE/OSA J. Opt. Commun. Netw. 2018, 10, 712–722. [CrossRef]

12. Poggiolini, P.; Bosco, G.; Carena, A.; Curri, V.; Jiang, Y.; Forghieri, F. The GN-Model of Fiber Non-Linear
Propagation and its Applications. J. Light. Technol. 2014, 32, 694–721. [CrossRef]

13. Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Guide books: Nairobi, Kenya, 2010.

http://dx.doi.org/10.1038/nphoton.2013.94
http://dx.doi.org/10.1109/LCOMM.2011.060811.110281
http://dx.doi.org/10.1364/JOCN.8.000320
http://dx.doi.org/10.1109/JLT.2013.2282696
http://dx.doi.org/10.3390/app9030399
http://dx.doi.org/10.1364/JOCN.7.000049
http://dx.doi.org/10.1109/JLT.2015.2477898
http://dx.doi.org/10.3390/photonics7010016
http://dx.doi.org/10.1364/JOCN.10.000712
http://dx.doi.org/10.1109/JLT.2013.2295208

Appl. Sci. 2020, 10, 6840 19 of 19

14. Christodoulopoulos, K.; Tomkos, I.; Varvarigos, E.A. Elastic Bandwidth Allocation in Flexible OFDM-Based
Optical Networks. J. Light. Technol. 2011, 29, 1354–1366. [CrossRef]

15. Syswerda, G. Uniform Crossover in Genetic Algorithms; ICGA’89; Morgan Kaufmann: San Mateo,
CA, USA, 1989; pp. 2–9. [CrossRef]

16. Pham, D.; Ghanbarzadeh, A.; Koç, E.; Otri, S.; Rahim, S.; Zaidi, M. The Bees Algorithm—A Novel Tool for
Complex Optimisation Problems. Intell. Prod. Mach. Syst. 2006, 454–459. [CrossRef]

17. Karaboga, D.; Basturk, B. Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained
Optimization Problems. In Proceedings of the Foundations of Fuzzy Logic and Soft Computing,
12th International Fuzzy Systems Association World Congress, IFSA 2007, Cancun, Mexico, 18–21 June 2007;
Volume 4529, pp. 789–798. [CrossRef]

18. Yuce, B.; Packianather, M.; Mastrocinque, E.; Pham, D.; Lambiase, A. Honey Bees Inspired Optimization
Method: The Bees Algorithm. Insects 2013, 4, 646–662. [CrossRef] [PubMed]

19. Bäck, H. Proceedings of the Seventh International Conference on Genetic Algorithms: Michigan State University,
East Lansing, MI, USA, 19–23 July 1997; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1997.

20. Michalkiewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin, Germany, 1996.
21. Arabas, J.; Kozdrowski, S. Applying an evolutionary algorithm to telecommunication network design.

Evol. Comput. IEEE Trans. 2001, 5, 309–322. [CrossRef]
22. Yang, X.S. Harmony Search as a Metaheuristic Algorithm. 2010. Available online: http://xxx.lanl.gov/abs/

1003.1599 (accessed on 20 September 2020).
23. Turky, A.M.; Abdullah, S.; McCollum, B.; Sabar, N.R. An Evolutionary Hill Climbing Algorithm for Dynamic

Optimisation Problems. In Proceedings of the 6th Multidisciplinary Int. conf. on Scheduling: Theory and
Applications (MISTA 2013), Ghent, Belgium, 27–30 August 2013.

24. Tomlin, J. Branch and Bound Methods for Integer and Nonconvex Programming. In Integer and Nonlinear
Programming; Abbie, J., Ed.; North-Holland: Amsterdam, The Netherlands, 1970; pp. 437–450.

25. Wolsey, L. Integer Programming; John Wiley & Sons: New York, NY, USA, 1998.
26. Geem, Z.W.; Kim, J.H.; Loganathan, G. A New Heuristic Optimization Algorithm: Harmony Search.

SIMULATION 2001, 76, 60–68. [CrossRef]
27. Beyer, H.G.; Schwefel, H.P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002, 1, 3–52.

[CrossRef]
28. Arabas, J.; Kozdrowski, S. Population initialization in the context of a biased, problem-specific

mutation. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation
Proceedings, IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA,
4–9 May 1998; pp. 769–774. [CrossRef]

29. Orlowski, S.; Wessäly, R.; Pióro, M.; Tomaszewski, A. SNDlib 1.0-Survivable Network Design Library.
Networks 2010, 55, 276–286. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JLT.2011.2125777
http://dx.doi.org/10.1109/ENIC.2016.047
http://dx.doi.org/10.1016/B978-008045157-2/50081-X
http://dx.doi.org/10.1007/978-3-540-72950-1-77
http://dx.doi.org/10.3390/insects4040646
http://www.ncbi.nlm.nih.gov/pubmed/26462528
http://dx.doi.org/10.1109/4235.942526
http://xxx.lanl.gov/abs/1003.1599
http://xxx.lanl.gov/abs/1003.1599
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1023/A:1015059928466
http://dx.doi.org/10.1109/ICEC.1998.700149
http://dx.doi.org/10.1002/net.20371
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Formulation
	Methodology
	Solution Model
	Operators

	Methods
	The Bees Algorithm
	Harmony Search
	Evolutionary Algorithm

	Results and Discussion
	Conclusions
	References

