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Abstract: Subwavelength optical micro/nanofibers have been widely used as basic building blocks
in the field of quantum sensing and quantum light source by virtue of their properties which
include pronounced evanescent field, large surface area, and small optical mode area. This paper
presents theoretical studies on the propagation properties of the guided optical wave and the
spectral properties of entangled photons from spontaneous four-wave mixing in micro/nanofibers.
We first analyze numerically single-mode propagation, field distribution, fraction of power,
and group-velocity-dispersions by solving Maxwell’s equations with boundary conditions in
cylindrical coordinates. Then, optical wave guiding properties of micro/nanofibers are applied
to estimate the spectral properties such as central wavelengths and bandwidths of the created
photons via spontaneous four-wave mixing that can be tailored by controlling diameter and length of
micro/nanofibers. This theoretical work provides useful guidelines to design micro/nanofiber-based
quantum sensing and quantum light sources for quantum technologies.

Keywords: micro/nanofiber; quantum sensing; quantum light generation; spontaneous
four-wave mixing

1. Introduction

Optical micro/nanofibers (MNFs) are usually referred to one-dimensional optical waveguide
with the diameter close to or smaller than the wavelength of guided light, which confines and guides
the beam by the total internal reflection at the silica(SiO2)-air interface [1–4]. Recently, MNFs have
been extensively studied for quantum optics and photonic quantum information because of their
extraordinary properties which include low transmission loss, high-nonlinearity, large evanescent
fields, and small bending radius [5–8]. The strong radial confinement much longer than the Rayleigh
range of a focused Gaussian beam has made it possible to efficiently couple atoms to the fiber mode
via the evanescent field [9–13]. With these waveguiding properties, MNFs, so far, have been used for
broad application in optical sensing [14–23], optical trapping [24,25], evanescent field coupling [26],
and quantum optics [27,28]. Also, the flexibility and mechanical strength of MNFs have been able
to offer great advantage to demonstrate various microstructures as sensing head, such as loop, coil,
and optical coupler [29–31]. In addition, thanks to the strong field confinement and tunable dispersion,
MNFs have been applied to nonlinear optics [32–36]. Furthermore, MNFs have been used as quantum
light sources based on spontaneous four-wave mixing (SFWM) process, that are suitable for directly
connecting to other fiber-based system with negligible coupling loss [37–41]. Their small optical mode
areas provide low-threshold optical nonlinear effect, so that MNFs significantly enhance photon-pair
generation in a short length of MNF. Compared to the area of normal single-mode fiber about 100 µm2,
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an MNF has 1 µm2. A few years ago, the generation of correlated photon-pairs via SFWM was
experimentally demonstrated in a micro/nanofiber [42]. By using 15 cm long MNF with the diameter
of 900 nm and the laser centered at 1040 nm, correlated photon-pairs were generated at 1310 nm and
850 nm, respectively, that are compatible with the telecom-band fiber system and the high efficiency
single photon detector (SPD) for the near IR region. In a very recent study, photon-pairs were generated
in a 12 cm long MNF with a 615 nm diameter [43]. For the 725 nm pump beam, the signal and idler
photons were created at 632 and 850 nm, respectively, which can be detected by Si-based SPDs with
high quantum efficiency.

In this work, we theoretically investigate optical wave guiding properties and the spectral
properties of entangled photon pairs via SFWM process in MNFs. Thanks to the extraordinary
properties such as pronounced evanescent field and small mode area, MNFs have become powerful
tools for quantum sensing, detection, and photon-pair generation. In particular, by controlling the
waveguide dimension, photon-pairs are designed at one’s desired wavelengths. Here, based on the
exact solutions of the Maxwell’s equations, we first numerically calculate the propagation constants
for guided optical modes through a circular silica-air optical fiber with a subwavelength-diameter,
and then evaluate field distributions, fractional power, effective diameters, group velocity,
and group-velocity-dispersions according to the changes of the fiber diameter and the wavelength
of the light. Finally, optical wave guiding properties based on numerical caculations are applied to
estimate spectral properties such as central wavelengths and bandwidths of the created photons via
spontaneous four-wave mixing in MNFs.

This paper is organized as follows: Section 2 is devoted to the analysis of the Maxwell’s equation in
the step-index cylindrical wire model, and from the exact solutions of the Maxwell’s equation, Section 3
presents propagation constants and fundamental modes in MNFs. Based on the mode properties,
Sections 4 and 5 describe the fractional power, effective diameter, group velocity, and group velocity
dispersion that are essential parameters to estimate spectral properties of entangled photon-pair
via spontaneous four-wave mixing (SFWM). In Section 6, the SFWM in an MNF is introduced with
phase-matching conditions, and finally spectral properties of created photons are shown in Section 7.
It is summarized in Section 8.

2. Light Propagation in Step-Index Cylindrical Wires

We first consider the geometry of a step-index optical fiber with a circular cross-section as shown
in Figure 1a. An MNF has a silica core of radius a with refractive index n1 and an infinite air-clad of
refractive index of n2 = 1. The corresponding refractive index profile can be written as

n(r) =

{
n1, if r < a

n2, if r > a
, (1)

where n1 > n2. According to the Sellmeier equation, the refractive index for fused silica at room
temperature can be given by [44]

n2 − 1 =
0.6961663λ2

λ2 − (0.0684043)2 +
0.4079426λ2

λ2 − (0.1162414)2 +
0.8974794λ2

λ2 − (9.896161)2 . (2)

Since a short length of the MNF is sufficient for microphotonic scales, we assume that both
media are non-absorbing and have a magnetic permeability equal to the vacuum permeability µ0.
The corresponding Maxwell’s equations can be reduced to Helmholtz equations [1,3]

(∇2 + n2k2 − β2) · e = 0,
(∇2 + n2k2 − β2) · h = 0,

(3)
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where k = 2π/λ, λ is the wavelength of the light, β is the propagation constant, e and h are the electric
field vector and the magnetic field vector, respectively. The longitudinal propagation constant β of
various modes can be determined by the eigenvalue equations of Equation (3) [1,3,45]:

Jl−1(ha)
haJl(ha)

=

(
n2

1 + n2
2

2n2
1

)
Kl−1(qa) + Kl+1(qa)

2qaKl(qa)
+

l
ha
± R (4)

with

R =

[(
n2

1 − n2
2

2n2
1

)2 (
Kl−1(qa) + Kl+1(qa)

2qaKl(qa)

)2

+

(
lβ

n1k0

)2 ( 1
(qa)2 +

1
(ha)2

)2]1/2

, (5)

where h = (n2
1k2

0 − β2)1/2 and q = (β2 − n2
2k2

0)
1/2 characterize the fields inside and outside the fiber.

These two parameters are directly related to the V-number, V =
√
(ha)2 + (qa)2 = 2πa/λ

√
n2

1 − n2
2

which determines the fraction of the optical power in a certain mode confined to the fiber core. Jl and
Kl are the Bessel functions of the first kind and the modified Bessel functions of the second kind,
respectively. There are different solutions depending on the value l in Equation (4). For l = 0, the ±
signs stand for the TM (+) and TE (−) modes that are transversal magnetic and electric modes,
respectively. For l = 1, the ± signs lead to two different states of modes, the HE (+) and EH (−)
which imply Ez being larger and smaller than Hz, respectively [45,46].

Figure 1. Step-index mathematical model: (a) Geometry of an air-clad cylindrical wire. (b) Schematic
refractive index profile of an air-clad cylindrical wire.

Figure 2 shows the solutions of the TM and TE modes of Equation (4) that the magnetic field
(electric field) is perpendicular to the fiber axis. Both modes are placed at V > 2.405. That means that
any non-fundamental mode is not allowed to propagate inside the fiber below the lowest cut-off value
of 2.405. Therefore, the single mode condition for the silica-air waveguide is V < 2.405. Figure 3 shows
the solutions of the EH and HE modes at V = 11.03. There is a lower limit in V-number for the EH
modes so that the EH modes are not allowed below the single mode condition. The HE11 mode is only
the fundamental mode which can always propagate inside the fiber since it has no cut-off value.

Figure 2. Solutions for the (a) TM modes and (b) TE modes of Equation (4) at V = 11.03. The right-
and left-hand sides of Equation (4) are plotted by the solid-red and black-dashed lines, respectively.
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Figure 3. Solutions for the (a) EH modes and (b) HE modes of Equation (4) at V = 11.03. The right-
and left-hand sides of Equation (4) are plotted by the solid-red and black-dashed lines, respectively.

Figure 4 shows the single mode condition of the silica-air waveguide as a function of the
wavelengths and wire diameters. A silica-air MNF with a diameter less than 550 nm will always have
a single-mode propagation at the wavelength of 780 nm. For the telecom-band wavelength of 1.5 µm,
a diameter of MNF should be less than 1.1 µm to be a single-mode waveguide.

Figure 4. Wavelength for single mode condition of a silica-air waveguide as a function of a diameter,
d = 2a.

3. Propagation Constant β and Fundamental Mode HE11

In order to investigate the propagation constant β as a function of a diameter d, the Equation (4)
can be rewritten in terms of β and d,(

4lβk0(n2
1 − n2

2)

d2((k0n1)2 − β2)(β2 − (k0n2)2)

)2

=

(
Jl−1(ha)− l

ha Jl(ha)
haJl(ha)

− Kl−1(qa) + Kl+1(qa)
2qaKl(qa)

)

×
(

n2
1(Jl−1(ha)− l

ha Jl(ha))
haJl(ha)

−
n2

2(Kl−1(qa) + Kl+1(qa))
2qaKl(qa)

)
.

(6)

Figure 5a presents the propagation constant (or effective refractive index) as a function of V-number
for the first seven modes. The first two excited modes TM01 and TE01 lie at V ≥ 2.405 so that the
single-mode and multi-mode regimes are clearly distinguished. When V-number decreases, β/k0

tends to be close to n1. It means that the field will propagate more into the surrounding medium while
decreasing the diameter. Figure 5b shows the dependence of the propagation constant as a function of
a diameter at the wavelength of 780 nm. The HE11 mode only propagates for d ≤ 550 nm.
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Figure 5. (a) Numerical solutions of effective refractive index, neff = β/k0, as a function of V-number
for the first seven modes. (b) Numerical solutions of propagation constant, β, as a function of diameter
at 780 nm.

We now study a fundamental mode HE11 with rotating polarization. In the cylindrical coordinates
(r, φ, z), for r < a (inside the fiber), the solutions of Maxwell’s equations for the electric field E can be
given by [1,45,47]

Er(r, φ, z, t) = −iA
β

2h
[(1− s)J0(hr)− (1 + s)J2(hr)]ei(ωt±φ−βz),

Eφ(r, φ, z, t) = ±A
β

2h
[(1− s)J0(hr) + (1 + s)J2(hr)]ei(ωt±ϕ−βz),

Ez(r, φ, z, t) = AJ1(hr)ei(ωt±ϕ−βz). (7)

For r > a,

Er(r, φ, z, t) = −iA
β

2q
J1(ha)
K1(qa)

[(1− s)K0(qr) + (1 + s)K2(qr)]ei(ωt±φ−βz),

Eφ(r, φ, z, t) = ±A
β

2q
J1(ha)
K1(qa)

[(1− s)K0(qr)− (1 + s)K2(qr)]ei(ωt±φ−βz),

Ez(r, φ, z, t) = A
J1(ha)
K1(qa)

K1(qr)ei(ωt±φ−βz), (8)

where

s =
[

1
(ha)2 +

1
(qa)2

][
J0(ha)− 1

ha J1(ha)
haJ1(ha)

− K0(qa) + K2(qa)
2qaK1(qa)

]−1

.
(9)

The +(−) sign in Equations (7) and (8) accounts for clockwise (counterclockwise) rotation of the
polarization around the z-axis. The coefficient A is determined by the normalization condition. Figure 6
shows vector plots of the electric field component transversal to the z-axis at time t = 0, π/4ω, π/2ω,
and 3π/4ω. We perform numerical calculations for a silica-air fiber with a radius a = 250 nm at a
wavelength of λ = 780 nm. A red circle describes the fiber surface. With increasing time, the real part
of the transversed electric field rotates along the circular or elliptical with respect to the fiber axis.
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Figure 6. Vector field plots of the electric component perpendicular to the fiber axis in the fundamental
HE11 mode for rotating polarization at (a) t = 0, (b) π/4ω, (c) 2π/4ω, (d) 3π/4ω under the conditions
of a = 250 nm and λ = 780 nm.

To apply for sensing and trapping of atoms by the optical force of an evanescent wave around an
MNF [10–12], it is necessary to calculate the optical potential which is proportional to the total intensity
of the electric field. From the electric field in the HE11 mode with rotating polarization, we can easily
calculate the total intensity |E|2 which is given by

|E|2in =
A2β2

2h2 [(1− s)2 J2
0 (hr) + (1 + s)2 J2

2 (hr) + 2
h2

β2 J2
1 (hr)],

|E|2out =
A2β2

2q2
J2
1 (ha)

K2
1(qa)

[(1− s)2K2
0(qr) + (1 + s)2K2

2(qr) + 2
q2

β2 K2
1(qr)]. (10)

Since the total intensity |E|2 is independent of φ, the distribution of |E|2 is cylindrically symmetric
as shown in Figure 7. Since the polarization of the field breaks the symmetry, in general, the electric
field propagating in the fiber is not cylindrically symmetric. However, for the rotating polarization,
averaging over a period washes out this symmetry breaking. The regions of r < a and r > a can be
clearly identified due to the discontinuity at the boundary r = a. This strong discontinuity arises from
the large refractive index difference between the bulk and the surrounding medium as well as from
the strong radial confinement of the field when λ > a.

µ

µ

Figure 7. (a) The total intensity |E|2 of the electric field in the fundamental mode HE11 with rotating
polarization. (b) Radial dependence of the total intensity |E|2 of the electric field. Parameters are same
as used in Figure 6.
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We now present the field equations of the fundamental HE11 mode with quasi-linear polarization.
In the cylindrical coordinates (r, φ, z), for r < a (inside the fiber), the solutions of Maxwell’s equations
for the Cartesian components of the electric field can be obtained by [1,45,47]

Ex(r, φ, z, t) = A
β

2h
[(1− s)J0(hr) cos φ0 − (1 + s)J2(hr) cos (2φ− φ0)]ei(ωt−βz),

Ey(r, φ, z, t) = A
β

2h
[(1− s)J0(hr) sin φ0 + (1 + s)J2(hr) sin (2φ− φ0)]ei(ωt−βz),

Ez(r, φ, z, t) = iAJ1(hr) cos (φ− φ0)ei(ωt−βz). (11)

For r > a,

Ex(r, φ, z, t) = A
β

2q
J1(ha)
K1(qa)

[(1− s)K0(qr) cos φ0 + (1 + s)K2(qr) cos (2φ− φ0)]ei(ωt−βz),

Ey(r, φ, z, t) = A
β

2q
J1(ha)
K1(qa)

[(1− s)K0(qr) sin φ0 + (1 + s)K2(qr) sin (2φ− φ0)]ei(ωt−βz),

Ez(r, φ, z, t) = iA
J1(ha)
K1(qa)

K1(qr) cos (φ− φ0)ei(ωt−βz). (12)

The angle φ0 accounts for the orientation axis of the polarization of the electric field. Two sets of
the solutions corresponding to φ0 = 0 and π/2 imply x-polarization and y-polarization, respectively.
On the contrary to the rotational polarization, the polarization of transversed E field does not depend
on time but it is position-dependent as shown in Figure 8. The total intensity of the electric field can be
given by

|E|2in =
A2β2

4h2 [(1− s)2 J2
0 (hr) + (1 + s)2 J2

2 (hr) + 2
h2

β2 J2
1 (hr) + 2

(
h2

β2 J2
1 (hr)− (1− s2)J0(hr)J2(hr)

)
,

× cos (2(φ− φ0))],

|E|2out =
A2β2

4q2
J2
1 (ha)

K2
1(qa)

[(1− s)2K2
0(qr) + (1 + s)2K2

2(qr) + 2
(

q2

β2 K2
1(qr) + (1 + s2)K0(qr)K2(qr)

)
× cos (2(φ− φ0))]. (13)

µ

µ

Figure 8. Vector field plot of the electric field component perpendicular to the z-axis in the fundamental
HE11 mode with φ0 = 0 (x-polarization). Parameters are same as used in Figure 6.

Figure 9a presents the total intensity of the electric field in a fundamental HE11 mode with
quasi-polarization. We choose the x-axis as the major orientation of polarization (φ0 = 0).
A discontinuity of the field intensity takes place at the fiber surface because of the boundary condition
for the radial component of the electric field. It is dramatically induced by the large gap between the
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refractive indices n1 and n2. The spatial distribution of the field intensity is not cylindrically symmetric.
The cos (2(φ− φ0)) terms in Equation (13) break the symmetry and make much larger evanescent field
in the regions, where the field component is transversal to the fiber surface.

µ

µ

Figure 9. (a) The total intensity |E|2 of the electric field in a fundamental mode HE11 with quasi-linear
polarization. (b) Radial dependences of the total intensity |E|2 of the electric field at φ = 0
(x-polarization) and φ = π/2 (y-polarization). Parameters are same as used in Figure 6.

Figure 9b shows the spatial distribution of the field along the different polarization axis.
The z-component of the electric field disappears while the transversed component is parallel to the
fiber surface, and it becomes the maximum value while the transversed component is perpendicular
to the fiber surface. For the HE11 mode with quasi-linear polarization, the evanescent field on the
surface of an MNF can reach the maximum intensity at a/λ = 0.24. In fiber-based sensing application,
the diameter-dependent power density at the fiber-air interface is important to design possible strong
interaction outside the media [48].

4. Fraction of Power Propagating Inside and Outside a Micro/Nanofiber

In this section, we investigate the fractional power and effective diameter of the fundamental
mode guided in an MNF. In the case of propagation in an optical fiber, the average flux transmitted
through the fiber is written by the z-component of the cycle-averaged Poynting vector [49]〈

~S
〉
=

1
2

Re
[
~E× ~H∗

]
. (14)

For the HE11 mode, the z-components of Poynting vector are obtained by [1,3]

〈
~Sz

〉
in

=
1
2

(
ε0

µ0

)1/2 k0n2
1

βJ2
1 (ha)

[a1a3 J2
0 (hr) + a2a4 J2

2 (hr) +
1− F1F2

2
J0(hr)J2(hr) cos (2(φ)],

〈
~Sz

〉
out

=
1
2

(
ε0

µ0

)1/2 k0n2
1

βK2
1(qa)

h2

q2 [a1a5K2
0(qr) + a2a6K2

2(qr) +
1− 2∆− F1F2

2
K0(qr)K2(qr)

× cos (2(φ)], (15)

where

F1 =

(
a2hq

V

)2

[b1 + (1− 2∆)], F2 =

(
V

a2hq

)2 1
b1 + b2

, b1 =
1

2ah

{
J0(ha)
J1(ha)

− J2(ha)
J1(ha)

}
,

b2 = − 1
2aq

{
K0(qa)
K1(qa)

+
K2(qa)
K1(qa)

}
, a1 =

F2 − 1
2

, a2 =
F2 + 1

2
, a3 =

F1 − 1
2

, a4 =
F1 + 1

2
,

a5 =
F1 − 1 + 2∆

2
, a6 =

F1 + 1− 2∆
2

, ∆ =
n1 − n2

n1
. (16)
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The radial and azimuthal components transversal to the fiber axis,
〈
~Sr

〉
and

〈
~Sφ

〉
, describe the

fraction of the energy flow of the electromagnetic field that does not propagate. The fraction of power
propagating inside and outside the fiber can be given by η = Pin

Pin+Pout
, where Pin =

∫ 2π
0 dφ

∫ a
0

〈
~Sz

〉
in

rdr

and Pout =
∫ 2π

0 dφ
∫ ∞

a

〈
~Sz

〉
out

rdr [3]. The fractional power η is related to the diameter-dependent
group velocity and waveguide dispersion. Figure 10 shows the fraction of power for the fundamental
mode inside the core as a function of the diameter at λ = 780 nm and λ = 1.5 µm. At λ = 780 nm
(1.5 µm), the 90% energy inside the core is confined by d = 700 nm (1.36 µm) of an MNF whereas
the rest of the energy is confined by 270 nm (515 nm) of it. Because of the highly confined optical
modes in high-index contrast structures, a tight bending radius of less than 5 µm can be achieved,
that results in compact guided optical components while giving more flexibilities in the photonic
circuit layout [50–53]. Now, let us define the effective radius, aeff, which is a hypothetic radius for
possessing 86.5% (=1−e2) of the total power [3]. aeff can be obtained from Pin

Pin+Pout
= 86.5% for aeff ≤ a

and Pin+Peff
Pin+Pout

= 86.5% for aeff > a, where Peff =
∫ 2π

0 dφ
∫ aeff

a

〈
~Sz

〉
in

rdr. As the diameter decreases,

deff(= 2aeff) is getting larger so that it leads most of light energy to propagate in air. In Figure 11,
the major power can be confined within d = 500 nm at λ = 780 nm and d = 1.1 µm at λ = 1.5 µm.

η

µ µ

Figure 10. Fraction of power of the fundamental modes inside the core (a) at λ = 780 nm and (b) at
λ = 1.5 µm. Grey solid lines present the diameters for confining 10% and 90% energy inside the core.

µ

µ µ

Figure 11. Effective diameters of the fundamental modes as a function of diameter (a) at λ = 780 nm
and (b) at 1.5 µm.

5. Group Velocity and Group Velocity Dispersion (GVD)

The knowledge of group velocity and dispersion property of MNFs are very useful for designing
fiber-based quantum sensing and quantum light generation. They have dependences of the dimension
of a diameter and the wavelength of an optical wave. Group velocity of the MNF can be given as [1,3]

vg =
cβ

n2
1k0[1− 2∆(1− η)]

. (17)
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Diameter-dependent group velocities of the fundamental modes are shown in Figure 12a. As the
diameter decreases, group velocity, vg approaches the speed of light in vacuum because most of the
light energy propagates in air. When the diameter becomes large enough, vg approaches c/n1 which is
the group velocity of a plane wave in the optical fiber. For a large value of the wavelength compared to
the diameter, vg approaches the speed of light, c, as shown in Figure 12b. Based on the group velocity,
we can obtain diameter- and wavelength-dependent group velocity dispersion (GVD) which is written
by [3,54]

GVD =
d(v−1

g )

dλ
. (18)

The optical dispersions of MNFs are affected by both the material dispersion and the waveguide
dispersion. In particular, the waveguide dispersion is strongly modified by the waveguide dimension.
Therefore, when we determine the optimum diameter for generating entangled photon pairs, it is useful
to estimate GVD parameter of MNFs according to the changes of the diameter and the wavelength as
depicted in Figure 13. As the MNF diameter and the wavelength increase, zero GVDs are up-shifted.

µ

λ

λ µ

λ µ

µ

Figure 12. Group velocity of the fundamental modes (a) as a function of diameter at λ = 780 nm and
λ = 1.5 µm, (b) as a function of wavelength at different diameters.

λ

λ µ

µ λ µ

µ

Figure 13. Group velocity dispersion of the fundamental modes (a) as a function of diameter at
λ = 780 nm and λ = 1.5 µm, (b) as a function of wavelength at different diameters.

6. Spontaneous Four-Wave Mixing (SFWM)

The SFWM process is mediated by a χ(3) nonlinear susceptibility, wherein two pump photons are
annihilated by the medium, and then create two different photons, called signal and idler. MNFs can
be used as quantum light sources generating entangled photon pairs via SFWM process. The small
mode area of the MNF strongly enhances nonlinear coefficient which is roughly 100 times larger than
that of the standard single-mode fiber. The SFWM process must satisfy both energy conservation and
phase-matching condition which are given by

2ωp = ωs + ωi,

2βp = βs + βi + 2γPp, (19)
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where β j and ωj are propagation constants and angular frequencies, respectively. The last term, 2γPp,
refers to the contribution of the self-phase modulation. The nonlinear coefficient, γ, can be given as
2πn2/(λp Aeff), where n2 = 2× 10−20 m2/W is the second-order nonlinear index of silica, Pp is the
peak power of the pump laser, and Aeff is the effective mode area. When we consider the reasonable
pump power, i.e., 0.5 mW-average power, the self-phase modulation term leads the phase-matching
condition to have two different regions in the normal dispersion regime. Figure 14a shows numerically
calculated phase-matching curves of the signal and idler photons for various MNF diameters as a
function of the pump wavelength. As a diameter increases, overall phase-matching curves are shifted
toward the long wavelength. In the region where the phase-matched wavelengths are far-detuned
from the pump wavelength, the wavelengths of created photon pair are weakly power-dependent.
On the contrary, the region which is close to the pump wavelength has strong dependence of the
pump power. As the pump power increases, the wavelength difference between signal and idler
photons becomes large as shown in Figure 14b. Here, in order to consider pump power dependences
in numerical calculations, we assume that a femto-second pulsed laser is operated at 78 MHz repetition
rate. When a spectral filter with the full width at half-maximum of 1 nm is used, for the sech2-shape
pulse, the pulse duration and peak power are obtained. From the conditions of Figure 14a,b, we can
design from visible to NIR photon-pair sources working in the silicon-based single photon detector
(SPD) [43]. In Figure 14c, one of the entangled photon-pair is generated at a telecom-band wavelength
which is compatible with the existing fiber-based system, while the other photon has a NIR wavelength
which can be detected in high efficiency by using the silicon-based SPD. Moreover, due to the large
detuning between the pump and signal (idler) photons, Raman noise can be significantly suppressed
at the room temperature [42]. Therefore, by the proper diameter control and the pump wavelength
selection, photon-pair can be created at one’s desired wavelengths.

Figure 14. (a) Phase-matching curves of the signal and idler as a function of the pump wavelength
at 610 nm (red), 615 nm (blue), and 630 nm (green) in diameter. Average pump power is 0.5 mW.
(b) Power dependence of the phase-matching curves at 1.0 mW (brown), 5.0 mW (black), and 10 mW
(gray) in average pump power. Here, d is fixed at 650 nm. (c) Phase-matching curves of the signal and
idler as a function of the pump wavelength at 900 nm (red), 925 nm (purple), and 950 nm (orange) in
diameter. Average pump power is 0.5 mW.

We now present a theoretical study of the two-photon state generated by SFWM with degenerated
pump photons. The interaction Hamiltonian of SFWM process can be written as

Hint(t) = ε0χ(3)
∫ L/2

−L/2
Ê(+)

p1 Ê(+)
p2 Ê(−)

s E(−)
i dz + H.C., (20)
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where χ(3) is a non-linear susceptibility that characterizes the non-linear process, and the effective
length of the crystal is L. The pump beam can be expressed with plane wave, Ê(+)

p (z, t) =∫
Ep(ωp)ei(kpz−ωpt)dωp. The signal and idler photons are quantized as

Ê(+)
s,i (z, t) =

∫ ∞

0
dωs,i

√
h̄ω̄s,i

2ε0 A
â(ωs,i)ei(ks,iz−ωs,it), (21)

where ωj(j = s, i) and k j(j = s, i) represent the frequencies and wave vectors of signal (s) and idler (i),
respectively. A is the single-mode cross-section area. â†

s and â†
i are the creation operators for signal

and idler photons. The Hamiltonian becomes

Ĥint(t) =
χ(3) h̄

√
ωsωiL

2A

∫ L/2

0
dz
∫

dωp1

∫
dωp2

∫
dωs

∫
dωiEp1(ωp1)Ep2(ωp2)

× e−i ∆kL
2 Sinc

(
∆kL

2

)
a†

s (ωs)a†
i (ωi) + H.C.,

(22)

where ∆k = kp1(ωp1) + kp1(ωp2)− ks(ωs)− ki(ωi) is the phase-mismatching condition. Hence we can
obtain the two-photon state as

|ψ〉 = − i
h̄

∫
dtĤint(t) |0〉 ,

=
χ(3)√ωsωiL

2iA

∫ ∫ ∫ ∫
dωp1 dωp2 dωsdωiEp1(ωp1)Ep2(ωp2)e

−i ∆kL
2 Sinc

(
∆kL

2

)
a†

s (ωs)a†
i (ωi) |0〉 ,

=
∫ ∫

dωsdωiF(ωs, ωi)a†
s (ωs)a†

i (ωi) |0〉 ,

(23)

where F(ωs, ωi) refers to the joint spectral amplitude (JPA) that consists of the pump envelope function
and the phase-matching function.

7. Joint Spectrum

The joint spectral amplitude, F(ωs, ωi), is an important physical quantity to show the spectral
property and directly influence on the amount of entanglement in a photon-pair. Now, it is convenient
to apply the integration transformation, Ω = νp − νs+νi

2 , in Equation (23). νj (with j = p, s, i)
represents the frequency detuned from the center frequency, ω̄j. From the phase-matching condition
∆k, each k j(ωj) (with j = p, s, i) can be extended into a Taylor series around the center frequency which

is given by ∆k = kp1

(
ω̄p1 +

νs+νi
2 + Ω

)
+ kp2

(
ω̄p2 +

νs+νi
2 −Ω

)
− ks (ω̄s + νs)− ki (ω̄i + νi). For the

degenerate pump beams, ωp = ωp1 = ωp2 = ω̄p + νp. As a result, the joint spectrum of the generated
photon pair can be given as

F(ωs, ωi) = B
∫ ∫

dωp1 dωp2e
−
( ωp1−ω̄p1

σp1

)2

e
−
(

ωp2−ω̄p2
σp2

)2

e−i ∆kL
2 Sinc

(
∆kL

2

)
,

F(νs, νi) = C e
−
(

νs+νi√
2σp

)2

Sinc
[

τsνs + τiνi
2

]
e−i τsνs+τiνi

2 ,

= Ce−i τsνs+τiνi
2 α(νs, νi)Φ(νs, νi),

(24)

where B and C are normalized constants which do not contribute to the joint spectrum property, σp1,2

are the bandwidths of pump beams, and τj =
(

1
vp
− 1

vj

)
L (with j = s, i) represents the group delay

between the pump and signal (j = s) or idler (j = i). v indicates the group velocity. If the group velocity
of pump photon is the same as that of signal photon, both exist in the medium at the same time such
that τs = 0. If they have different group velocities, they gradually become temporally separated in the
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fiber which is called temporal walk-off. α(νs, νi) is the pump envelope function which is governed by
the energy conservation and depends on the spectral envelope of the pump beam. Φ(νs, νi) is called
the phase-matching function which accounts for the momentum conservation and depends on the
dispersion property in the fiber. For example, Figure 15 represents a JSA whose formula is given in
Equation (24). Here, the pump beam centered at 725 nm and a 12-cm long MNF with 615 nm-diameter
are used for numerical calculation. For the degenerate pump beams at 725 nm, temporal walk-off
between pump beams is negligible in which they are overlapped for the length of the fiber. In Ref. [43],
the signal and idler photons are generated at 632 nm and 850 nm, respectively. There are central and
side lobes which are related to the wings of the sinc function. Due to relatively narrow bandwidth of
pump beam (∆λp = 1 nm) and long fiber length, bandwidths of signal and idler photons are about
2 nm and 5 nm, respectively. Another example is shown in Figure 16. For the pump beam centered
at λp = 1064 nm and ∆λp = 3 nm bandwidth, signal and idler are generated at 800 nm and 1.5 µm,
by using a 5 cm-long and 950 nm-diameter MNF. As a result, relatively broader bandwidth of pump
beam and shorter fiber length than the previous case, lead signal and idler photons to have broad
bandwidths about 5 nm and 15 nm.

Figure 15. (a) Pump envelope function, |α(νs, νi)|2, governed by energy conservation.
(b) Phase-matching function, |Φ(νs, νi)|2, governed by momentum conservation. (c) Joint spectral
amplitude, |F(νs, νi)|2, as expressed in Equation (24). λp = 725 nm, ∆λp = 1 nm, and a 12 cm-long
MNF with the 615 nm-diameter are used for numerical simulation.

Figure 16. (a) Pump envelope function, |α(νs, νi)|2, governed by energy conservation.
(b) Phase-matching function, |Φ(νs, νi)|2, governed by momentum conservation. (c) Joint spectral
amplitude, |F(νs, νi)|2, as expressed in Equation (24). λp = 1064 nm, ∆λp = 3 nm, and a 5 cm-long
MNF with the 950 nm-diameter are used for numerical simulation.

In Figures 15 and 16, the JSA describes strong spectral correlation between the signal and idler
photons because of energy and momentum conservation constraints. In other words, if the signal
(idler) photon is detected to herald the production of the idler (signal) one, the heralded photon is not
in a pure state but in a mixed state. This is not suitable for the Linear Optics Quantum Computing
(LOQC) protocol which is based on frequency-uncorrelated photons, allowing direct heralding of
single photons in pure state. Generally, in photonic quantum computing, the error rates of logic gates
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increase with photon state impurity which decreases the Hong-Ou-Mandel (HOM) dip visibility [55].
In the heralded process, the detection of one photon in a twin-photon source indicates that the
other photon is projected into a single-photon state. Photon-pairs created in SFWM are usually
frequency-entangled due to energy and momentum conservation constraints [56,57]. Therefore,
in this case, the heralding process projects the twin photon into a mixed state [58]. Even though this
entanglement can be eliminated by using spectral and spatial filters, it degrades the production rate
of created photons and heralding efficiency [59]. Here, we show that frequency-entangled states can
be factorable states by controlling pump bandwidth and group delay. In the JSA, |F(νs, νi)| given in
Equation (24), α(νs, νi) always exhibits an anti-diagonal slope in frequency space, since the maximum
value is governed by the relation νs + νi = 0. On the other hand, the slope of Φ(νs, νi) is determined
by the condition τsνs + τiνi = 0, so that the angle of the slope in frequency space depends on the
signs of the group velocities of pump, signal, and idler. We now present mathematical condition for

generating factorable states by using Gaussian approximation, Sinc
[

τsνs+τiνi
2

]
' Exp

[
−r (τsνs+τiνi)

2

4

]
with r = 0.193. Consequently, JSA can be given as [60,61]

F(νs, νi) = Ce−i τsνs+τiνi
2 Exp

[
− (νs + νi)

2

2σ2
p

]
Sinc

[
τsνs + τiνi

2

]
,

' Ce−i τsνs+τiνi
2 e

[
− ν2

s
2

(
1

σ2
p
+

rτ2
s

2

)]
e

[
−

ν2
i
2

(
1

σ2
p
+

rτ2
i

2

)]
e

[
−νsνi

(
1

σ2
p
+

rτsτi
2

)]
.

(25)

In order to make a factorable state in the JSA, the frequency entangled term between the signal

and idler, Exp
[
−νsνi

(
1

σ2
p
+ rτsτi

2

)]
, should be eliminated. Therefore, the factorable condition can be

given by
1
σ2

p
+

rτsτi
2

=
1
σ2

p
+

rL2

2

(
1
vp
− 1

vi

)(
1
vp
− 1

vs

)
= 0. (26)

There are two conditions for factorizing photon-pair state. If, for the broad pump width, σp � τj, either
vp = vs or vp = vi is satisfied, generated photons are factorable. But, since the pump wavelength is
very close to the wavelength of either signal or idler photon, it is difficult to suppress the pump noise.
The second condition is that the two terms 1/σ2

p and rτsτi/2 are canceled each other. In this case, group
delays τs and τi have different signs and the phase-matching function exhibits a positive slope. The
most conventional way to reduce the correlation between the signal and idler photons is to use spectral
filters. By choosing narrowband signal and idler photons, they consist of a single spectral mode that
makes them uncorrelated. However, using a filter with narrow bandwidth brings about a reduction in
the probability that the photon transmits through it, and reduces the efficiency of generation. Figure 17
illustrates the possibility of generating experimentally realizable uncorrelated photon-pairs without
employing spectral filters. Here, for 1164 nm pump, a 5 cm-long MNF with 810 nm-diameter can
generate uncorrelated photon-pairs with 825 nm and 1.55 µm. In this condition, idler photons at 1.55
µm are compatible with the telecom-band fiber-based system, while the signal photons at 825 nm
have high detection efficiency in a Si-based single photon detector that makes it suitable to build
heralded single photon sources in telecom-band with high efficiency. Also, the Raman noise can be
significantly suppressed due to the large detuning between pump and signal/idler photons. As
a result, in Figure 17c, uncorrelation between photon-pairs is not completely observed due to the
sinc-shaped phase-matching function. The secondary lobes along the vertical axis always cause a small
amount of correlation between signal and idler, although the main peak is not correlated. In this case,
we are able to suppress the secondary peaks of the sinc function by using a spectral filter. Because of the
side lobes which are less than 10% of the total intensity, the photon flux suffers from a little reduction
in a high peak signal. It is on the contrary to the correlated main peak cases in Figures 15 and 16.
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Figure 17. (a) Pump envelope function, |α(νs, νi)|2, governed by energy conservation.
(b) Phase-matching function, |Φ(νs, νi)|2, governed by momentum conservation. (c) Joint spectral
amplitude, |F(νs, νi)|2, as expressed in Equation (24).

8. Conclusions

We demonstrated theoretical study about the single-mode guiding properties and the spectral
properties of entangled photon pairs via SFWM process in MNFs. Numerical simulations based on the
exact solutions of the Maxwell’s equations manifested characteristics of essential parameters, such as
the propagation constants for guided optical modes, field distributions, fraction of power, and effective
diameters. These parameters are important in quantum sensing and detection implementing
the light-matter interaction via evanescent field. In addition to the pronounced evanescent field,
small optical area significantly enhances entangled photon-pair generation via the SFWM process in
MNFs. Based on the obtained parameters, group velocity and GVD are used for investigating spectral
properties of entangled photon-pairs. As a result, we can estimate phase-matching condition and
JSA depending on the pump wavelength and tapered diameters of MNFs in NIR and telecom-band
regimes, and show the possibility of uncorrelated photon-pair generation via MNFs that are suitable
for LOQC protocol. Our theoretical work provides useful guidelines to design micro/nanofiber-based
quantum sensing and quantum light source used for quantum technologies.
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