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Abstract: Dissolved oxygen (DO) concentration is a vital parameter that indicates water quality.
We present here DO short term forecasting using time series analysis on data collected from
an aquaculture pond. This can provide the basis of data support for an early warning system,
for an improved management of the aquaculture farm. The conventional forecasting approaches
are commonly characterized by low accuracy and poor generalization problems. In this article,
we present a novel hybrid DO concentration forecasting method with ensemble empirical mode
decomposition (EEMD)-based LSTM (long short-term memory) neural network (NN). With this
method, first, the sensor data integrity is improved through linear interpolation and moving average
filtering methods of data preprocessing. Next, the EEMD algorithm is applied to decompose the
original sensor data into multiple intrinsic mode functions (IMFs). Finally, the feature selection
is used to carefully select IMFs that strongly correlate with the original sensor data, and integrate
into both inputs for the NN. The hybrid EEMD-based LSTM forecasting model is then constructed.
The performance of this proposed model in training and validation sets was compared with the
observed real sensor data. To obtain the exact evaluation accuracy of the forecasted results of the
hybrid EEMD-based LSTM forecasting model, four statistical performance indices were adopted:
mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and mean
absolute percentage error (MAPE). Results are presented for the short term (12-h) and the long term
(1-month) that are encouraging, indicating suitability of this technique for forecasting DO values.
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1. Introduction

Water quality (WQ) is usually determined by the general composition of water in relation to its
physical, biological, and chemical properties [1,2]. DO (dissolved oxygen) is one of the freshwater
properties and undoubtedly one of the most important components for the survival of the aquatic life.
DO concentration is an important WQ indicator of water pollution in the aquaculture ecosystem [3].
In the aquaculture farms, the required concentration of dissolved oxygen typically depends on the
fish species and the water temperature. However, concentrations below 3 mg/L are related to stress
in the aquatic species, increasing mortality and disease in most of the species. If this drop in DO
concentration can be accurately forecasted, the aquaculture farmers can take early remediation actions
to avert this catastrophe by increasing DO concentration, for example, through activating an aeration
system [4,5].

Given the crucial role of DO in aquafarming [6], the short-term forecasting of DO concentration
is critical in ensuring good WQ management in aquaculture. The short-term forecasting will enable
aquaculture farmers to foresee any falling DO concentrations in their farms and give them time to take
remedial action to avoid loss/damage to aquatic life. Apparently, it is imperative that in aquaculture,
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short-term forecasting models are adopted for regular monitoring and control of DO concentration
to prevent the potential death of aquatic lives which results from low DO concentration. In other
words, the need for efficient DO concentration forecasting models in aquaculture industry cannot be
over emphasized.

Given the above-mentioned importance of water quality monitoring [7–9], especially DO
concentration for improved productivity in aquaculture, this paper proposes a hybrid prediction model
to solve the challenge of poor DO concentration forecasting accuracy in aquaculture management.
The hybrid model is designed by combining ensemble empirical mode decomposition (EEMD)
technique with long short-term memory (LSTM) neural network (NN). The applied EEMD-based
LSTM (long short-term memory) method allowed for the decomposition of the original sensor data
into multiple intrinsic mode functions (IMFs), which are applied to improve DO concentration
forecasting accuracy.

The rest of the paper is organized thus: Section 2 presents the related literature review. Section 3
discussed the methodology used in this study. Section 4 contains the experiments discussion and
results. Section 5 presents the general discussion and Section 6 concludes the paper.

2. Related Literature Review

Several models based on different prediction methods have been developed for DO concentration
forecasting in aquaculture ecosystems [10–16]. Xiao et al. [10] applied back propagation (BP) NN
method, with a combination of purelin, logsig, and tansig activation functions to propose a prediction
model for DO concentration in aquaculture. Wijayanti [11] proposed a forecasting model based on a
smooth support vector machine (SSVM) for short-term forecasting of the aquaculture water quality.
Guo et al. [12] proposed a numeric forecasting model for DO status through a two-stage training for
classification-driven regression (CDR). Xue et al. [13] applied neural network and decision tree to
conduct forecasting and warning system regarding DO concentration in carp aquaculture. The effect
of their proposed model in practical application shows that the designed system can use both neural
network and decision tree methods to forecast DO concentration and conduct early warning by value
forecasting and rule-based reasoning, respectively. Liu et al. [14] proposed a prediction model for water
quality in smart mariculture with deep bi-directional stacked simple recurrent unit (Bi-S-SRU) learning
network. Yan et al. [15] applied a deep belief network and least squares support vector regression
(LSSVR) machine to propose a forecasting model based on cross-section water quality. Furthermore,
Liu et al. [16] used support vector regression (SVR) machine to propose a hybrid forecasting approach
with genetic algorithm optimization for aquaculture ponds DO content.

Although, these studies reported above have shown good performance, as demonstrated in the
papers, they all share a common weakness, in the sense that they are limited to single scale feature of
the dataset used for training the proposed models. In other words, each of the studies only obtain
the surface features of the datasets. However, study has shown that multi-scale prediction methods
can obtain more features for the forecasted signals by decomposing the original signal into several
sub-sequences [17,18]. The decomposition shows that each sub-sequence reveals the disparate intrinsic
features of the original signal. The empirical mode decomposition (EMD) method is usually applied
for original signal decomposition into its intrinsic multi-scale characteristics [19]. Generally, prediction
methods that are based on signal’s multi-scale characteristics are widely applied in different fields
like short-term rainfall forecasting [20], short-term traffic flow prediction [21–23] and short-term
wind power forecasting [24,25]. In the fields of water quality forecasting in aquaculture environment,
Li et al. [17] applied the ensemble empirical mode decomposition method to propose an efficient
hybrid model for DO concentration forecasting in aquaculture based on original signal multi-scale
features, in order to increase the forecasting accuracy of DO content [26] in the aquaculture environment.
The experimental results of their proposed hybrid model established that the EEMD method is reliable
and effective for the forecasting of DO concentration in intensive aquafarming. From the analysis
of these related literatures, it can be seen that novel hybrid forecasting models that are based on
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multi-scale features of the original datasets are not only effective and reliable, but also suitable for water
quality data forecasting in the field of aquaculture. Hence, our study seeks to develop a novel accurate
hybrid forecasting model for DO content prediction in aquaculture environment, by combining the
potentials of EEMD method with LSTM [27] neural network.

Although a similar study to our proposed novel hybrid EEMD-based LSTM forecasting model was
carried out by Li et al. [17] as shown above, their study applied least squares support vector regression
(LSSVR), back propagation (BP) neural network, and radial basis function (RBF) neural network.
In principle, a linear system is solvable by LSSVR [25], but its limitation lies in solving a large dataset
because of its high computational complexity, which is usually of order O

(
n3

)
(where n represents

size of the training set). This is known to severely limit the benefit of applying LSSVRs in large scale
applications. Additionally, like multilayer perceptron neural network (MLPNN), the artificial NNs
used in [17], which are back-propagation neural network (BPNN) and radial basis function neural
network (RBFNN), have a common challenge of long-term dependency problem. In this study, we used
LSTM neural network because of its ability to overcome these above-mentioned problems. Hence,
as opposed to the existing solutions, our proposed novel hybrid EEMD-based LSTM water quality
forecasting model can overcome the identified research gap, as stated above. This is achieved using
the EEMD method and LSTM neural network.

3. Methodology

3.1. Proposed Model Design

The proposed forecasting model combined EEMD method and LSTM neural network technique
to form the hybrid EEMD-based LSTM forecasting model. The main implementation process of EEMD
method and LSTM neural network technique is described in the next section.

3.1.1. Ensemble Empirical Mode Decomposition

The EMD method [28] is a widely applied non-linear signal adaptive decomposition method.
The EMD algorithm has demonstrated a great potential in decomposing a non-stationary and non-linear
time series data into IMFs and a residual through an iterative process with individual intrinsic time
scale properties [17]. Ensemble EMD (EEMD) is an improved version of the EMD methods, developed
by Torres et al. [29], which was aimed at overcoming the problem of intrinsic drawbacks of mode
mixing that is associated with the conventional EMD algorithm [17].

EEMD is a noise-aided time series data analysis method. In EEMD method of time series data
analysis, white noise is added to enable the separation of contrasting time series scales, which in turn,
leads to the improved decomposition efficiency of the EMD method. The introduced white-noise is
comprised of components of disparate scale which would systematically fill the entire time-frequency
space. The disparate scale components of the signal are spontaneously projected onto proper scales
of reference initiated by the Gaussian white-noise, as the systematically distributed white-noise is
introduced to the signal. Since all the decomposed components of the introduced Gaussian white-noise
consist of both the signal and the introduced white noise, all the individual trials usually end up
with noisy results. However, the white-noise can be almost completely cancelled out with the aid of
ensemble mean of whole trials, because the white-noise in each of the trials are unique in different
trials [30]. Consequently, the actual underlying components of the water quality time series data
can be represented by the ensemble mean. In other words, EEMD method sums up the components
and adopts the average as the true decomposition results. Finally, the result of decomposition solves
the mode mixing drawbacks associated with conventional EMD method. It is a useful method for
extracting underlying and crucial components from the water quality time series data.

For the DO time series data x(t), the EEMD method follows a certain procedure, which can be
described as follows.
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Stage 1: Initialize an ensemble number M and the amplitude of the introduced
Gaussian white-noise.

Stage 2: Perform the mth trial for introducing disparate white-noise Wm(t) to x(t), in order to
generate the noise-augmented time series data xm(t), where

xm(t) = x(t) + Wm(t) (1)

Stage 3: Determine all the local minima and maxima of xm(t) and use them to generate both lower
and upper envelopes, with the help of cubic spline interpolation functions.

Stage 4: Compute the mean m1(t) of both lower and upper envelopes.
Stage 5: Calculate the difference h1(t) that exists between the mean computed in stage 4 and the

signal xm(t), using,
h1(t) = xm(t) −m1(t) (2)

Stage 6: If the properties of IMF are satisfied by the h1(t), that is, from the signal xm(t), C1(t) = h1(t)
becomes the first IMF component. Otherwise, replace xm(t) with h1(t) and return to Stage 3.

The two properties of IMF are described as follows: (i) the number of the zero crossing and
extrema must either equal or differ at most by 1 over the entire data x(t), and (ii) at any given point,
the mean value h1(t) of the generated envelopes given by both local minimum and local maximum
must be zero.

Stage 7: Separate the residue R1(t) from the rest of the dataset using,

R1(t) = xm(t) −C1(t) (3)

Let the residue R1(t) be a new signal and sift out the remaining IMFs by repeating Stage 3 through
Stage 7 n times, until the stopping criterion is satisfied. The applied stopping criterion can be either of
the following: (i) when the residue Rn(t) is reduced to a monotonic function such that no more IMF
can be extracted from it; (ii) when the residue Rn(t) or IMF component C1(t) becomes smaller than
the predetermined value. Then, after the EEMD decomposition process, the original signal xm(t) can
be mathematically expressed as the sum total of each of the IMFs C1(t) components and the residue
R1(t). Hence,

xm(t) =
n∑

i=1

Ci(t) + R1(t) (4)

where n and Ci(t) denote the total number of the IMFs C1(t) components and the ith IMF, respectively;
and R1(t) represents the final residue.

Stage 8: By adding a different noise in each trial, repeatedly execute Stage 2 to Stage 7 until m = M
if m < M, through a consecutive increment of the value of m by using m = m + 1.

Stage 9: Determine the ith ensemble mean Ci of the M trials for individual IMF, by way of expression,

Ci =
1
M

M∑
m=1

Ci, m i = 1, 2, 3, · · · , n (5)

and the ensemble residue Rn can be expressed as

Rn =
1
M

M∑
m=1

Rn, m. (6)

Therefore, the original DO time series data are efficiently decomposed through EEMD method
into n ensemble IMFs and a single ensemble residue. In each frequency band, the contained IMF
components are individually different, and can change with the variation of the DO dataset x(t).
Additionally, the ensemble residue denotes the general trend of the DO dataset x(t).
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3.1.2. LSTM Neural Network

As depicted by Figure 1, a set of repeating block-chain facilitates effective learning of the time
series information by the LSTM NN. The horizontal line (from Ct−1 to Ct) which runs from one block
to another above the graph is called the cell state. Cell state runs across the blocks with slight linear
interactions to ensure that constant state information is maintained [31]. Additionally, LSTM NN

uses three different gates (see
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Contrarily, LSTM NN is designed to overcome this problem by using gates which control the
processes of memorizing necessary information and forgetting the unnecessary information. This helps
LSTM NN to forecast the output of the next time series data, based on the feature of the previous time
series data. The equation below illustrates the calculation processes involved.

(a) Forget gate equation:

Ft = σ
(
W f × [ht−1, Xt] + b f

)
(7)

where Ft is a vector with values from 0 to 1, with σ, W f , and b f representing the logistic sigmoid
function, weight matrices and bias of the forget gate, respectively. From (3), the sigmoid layer
determines if the new information is necessary to be used for update or unnecessary and ignored.
Then, tanh function adds weight to each value that passed and decides their level of importance
ranging from −1 to 1. Similar operations are repeated in input and output gates shown in (8)
through (11).

(b) Input gate equations:
It = σ(Wi × [ht−1, Xt] + bi) (8)

Ît = tanh(Wi × [ht−1, Xt] + bi) (9)
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(c) Output gate equations:
Ot = σ(Wo × [ht−1, Xt] + bo) (10)

ht = Ot × tanh(Ct) (11)

(d) Cell state equation:

Ct =
{
(Ft ×Ct−1) +

(
It × Ît

)}
(12)

where Wi and Wo denote the weight matrixes, bi and bo represent the network’s bias vectors, of
the input and output gates. Tanh represents the hyperbolic tangent function.

3.1.3. Novel Hybrid EEMD-Based LSTM Model

The proposed novel hybrid EEMD-based LSTM forecasting model is depicted in Figure 2. With the
proposed new model, the real DO concentration data set is first decomposed by EEMD into several
components to improve the forecast accuracy. The detailed procedures illustrated in Figure 2 show the
three crucial steps that lead to the development of the new hybrid EEMD-based LSTM forecasting
model. In the first step, DO time series data x(t) are decomposed into several IMFs and a residual
item RN(t) by EEMD algorithm. The data set decomposition is performed through an iterative sifting
process, which is expressed as

x(t) =
N∑

i=1

IMFi(t) + RN(t). (13)
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In the second step, each IMF and residual item is normalized and used for forecasting by the LSTM
NN. Finally, reverse normalization of individual forecasting results of the LSTM NN is carried out
prior to combining all of them together through summation operation to get the final forecasted values,
as illustrated in Figure 2. When the final forecasted result is obtained, performance evaluation of the
proposed novel hybrid EEMD-based LSTM forecasting model is carried out through the application
of three statistical metrics such as mean absolute error (MAE), mean square error (MSE), root mean
square error (RMSE), and mean absolute percentage error (MAPE).

4. Experiments and Results

4.1. Water Quality Dataset Acquisition

The data used for the experiments were collected from Laizhou Mingbo mariculture, based at
Laizhou City, Shandong Province, China, by a research team at Chinese Agriculture University. A team
of researchers from the Chinese Agriculture University visited Laizhou Mingbo farm in Autumn 2019
and collected water quality data. They were responsible for deploying the sensors and their necessary
maintenance for the four-month duration of the data collection. The collected raw data consists
of seven water quality parameters: DO, pH, water temperature, salinity, Ammonia, and Nitrogen.
This choice of parameters is governed by the availability of suitable sensors and the monitoring needs
of the mariculture farm. In the presented study, we have investigated forecasting techniques using DO
datasets. The reasons for our choice are already indicated in Sections 1 and 2 above.

4.2. Data Normalization

After pre-processing the sensor data, 12,852 groups of chronological data are used in constructing
the improved EMD-based hybrid LSTM forecasting model. The collected water quality data are
divided into two parts: the first 75% of the dataset is used for training the developed hybrid model and
the last 25% of the dataset is used for model testing in order to analyze the forecasting performance of
the proposed novel hybrid EEMD-based LSTM model. The collected raw data are shown in Figure 3.
The structural representation of the data set can be expressed as follows:

X =
[
X
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]
N×M

=


x11 x12 · · · x1m
x21 x22 · · · x2m

...
...

. . .
...

xn1 xn2 · · · xnm

 (14)

where X represents the data matrix at a given time step within the time series, xi j represents the
jth feature of ith week, N and M denote the length and number of features of the time series data,
respectively. Finally, the normalization of the data set was done by removing the dimension of each
feature using normalization equation, x̃i j:

x̃i j =
xi j −mean(x· j)

std(x· j)
(15)

where x̃i j denotes the normalized data set, mean(x· j) represents the mathematical expectation of (x· j),
and std(x· j) represents the standard variance of (x· j).

4.3. Problem Formulation

Assuming T = (
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the forecast target that is selected, respectively. Therefore, our goal is to forecast the short-term future
trends of the target sequence expressed as =

(
x
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4.4. Performance Evaluation Metrics

In this section, the adopted performance evaluation metrics such as MAE, MSE, RMSE and MAPE
were used to measure the forecasting accuracy of the new model. These error metrics show the
difference between the forecasted values and original (real DO concentration) values and the smaller
the differences; better is the performance of the proposed novel hybrid EEMD-based LSTM forecasting
model. The error metrics formulas are given as:

MAE =
1
N

N∑
i=1

|Vi − Fi| (16)

MSE =
1
N

N∑
i=1

(Vi − Fi)
2 (17)

RMSE =

√√√
1
N

N∑
i=1

(Vi − Fi)
2 (18)

MAPE =
1
N

N∑
i=1

∣∣∣∣∣Vi − Fi
Vi

∣∣∣∣∣ (19)

where N denotes the number of data points, Vi and Fi represent the real and forecasted
values, respectively.

5. Discussions

Our study used an hourly centered moving average value for the DO concentration time series
data. In this study, EEMD, which is a powerful technique for signal decomposition, was used
for decomposing the non-linear and non-stationary signal. Decomposing the DO concentration
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time series sensor data is an integral part of the proposed hybrid EEMD-based LSTM forecasting
model, for forecasting the short-term values of the DO concentration. The adopted EEMD technique
decomposed the original DO concentration sensor time series data into eight (8) relatively stable IMFs
(IMF 1 to IMF 8) and one residual item (see Figure 4). The EEMD amplitude of Gaussian white noise
was set to 0.2. Finally, all the extracted sub-band signals by the adopted EEMD technique were utilized
in the decomposition step of the proposed hybrid EEMD-based LSTM forecasting model. The EEMD
trend was extracted through the summation of low-frequency IMFs. Figure 5 depicts the non-stationary
continuous signal of the real DO concentration composed of sinusoidal waves with a distinct change
in frequency.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 15 
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In Figure 3 is shown the distribution of the collected DO concentration raw dataset; it can be
observed that at a certain period, the level of DO concentration dropped to its lowest level, by up to
4.0 mg/L and 3.9 mg/L. The proposed hybrid model was applied in this area and the result is presented
in Figure 6. Figure 6 shows the area with DO concentration downward decrease to a meagre 4.0 mg/L
up to 3.9 mg/L before picking up again by increasing towards DO concentration of up to 5.25 mg/L.
The graphs in Figures 7 and 8 reveal that the new hybrid model provided good results and successfully
forecasted DO concentration with a high-level of accuracy for both Short-term forecast and Long-term
forecast. It is also noteworthy to mention that Figure 8 illustrates fluctuations in the range of 7.0 mg/L
to 8.5 mg/L, which are not critical for aquaculture, since aquatic life can only suffer harm, with a
possibility of death, when such DO concentration decreases. Figure 9 shows error graphics of the
proposed hybrid EEMD-based LSTM forecasting model performance: short- and long-term forecast.
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concentration values.

In Table 1, the error statistics for both short-term and long-term DO content forecasting performance
of our proposed hybrid model are shown. The steep increase in error gap between the short-term and
long-term DO content forecasting performance of our proposed hybrid model indicates that the nearer
the forecast future the higher the forecast accuracy, and vice versa. Figure 9 shows the forecasting error
statistics, using bar charts for both short-term and song-term DO concentration to further emphasize
the increase in prediction error as the forecasting period increases.
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Table 1. Error Statistics for Short-term and Long-term DO Content Forecasting.

Error Statistics 12 Hour Forecast 1 Month Forecast

MAE 0.0753 0.1666
MSE 0.0065 0.0385

RMSE 0.0807 0.1962
MAPE 0.0093 0.0206

In Table 2, the performance of the proposed hybrid EEMD-based LSTM NN is compared with
another related hybrid water quality prediction model, based on sparse auto-encoder (SAE) and LSTM
NN, SAE-BPNN, single LSTM and BPNN developed by Li et al. [27]. The tabulated error statistics
indicate that our proposed hybrid model outperforms the other models as listed in Table 2, in terms
of the error margin of the forecasted data. This performance gain over the other related prediction
models is because our proposed hybrid model applied the EEMD method to effectively decompose
the original signal into its constituent several intrinsic sub-sequences. Consequently, the proposed
hybrid multi-scale forecasting model can get more features through the decomposition process for
the forecasted signals, which further results in improved forecasting accuracy. Amongst the models
proposed in [27], the hybrid SAE-LSTM model demonstrated the least error in terms of prediction
accuracy. However, the tabulated error statistics in Table 2 indicate that our Hybrid EEMD-based
LSTM outperforms the SAE-LSTM model, due to the potentials of the applied EEMD method.

Table 2. Performance Comparison with Related Forecasting Models *.

Error Statistics LSTM NN BPNN SAE-LSTM NN SAE-BPNN EEMD-LSTM NN

Run Time(s) 23.2 3.6 29.6 9.1 2.37
MAE 0.1590 0.4530 0.1260 0.4060 0.0753
MSE 0.0398 0.3013 0.0242 0.2428 0.0065

RMSE 0.1995 0.5489 0.1556 0.4927 0.0807
MAPE 0.0160 0.0450 0.0130 0.0419 0.0093

* Back-propagation neural network (BPNN) model, radial basis function neural network (RBFNN) model,
long short-term memory (LSTM) model, sparse auto-encoder (SAE) and LSTM (SAE-LSTM) NN model,
and SAE-BPNN model [27], and our proposed ensemble EMD based LSTM (EEMD-LSTM) NN model.

6. Conclusions

This paper proposes a hybrid prediction model to solve the challenge of poor DO concentration
forecasting accuracy [17,26,27] in aquaculture management. The hybrid model was designed by
combining the EEMD technique with LSTM NN. The applied EEMD method allowed for the
decomposition of the original sensor data into multiple IMFs. Furthermore, this method is used
to carefully select IMFs that are strongly correlated with the original sensor data through a feature
selection process, and integrate both into inputs for the neural network. The actual experimental WQ
data from a fish farm show that the hybrid model provides good results and outperforms related
models with high accuracy, as indicated by error metrics shown in Table 2. For future work, a hybrid
EEMD-based multi-variate prediction model can be explored to propose a more comprehensive water
quality forecasting and analysis. Additionally, more WQ measuring sites will also be considered to
expand this model.
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