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Abstract: Climate change increases the frequency and intensity of heatwaves, causing significant
human and material losses every year. Big data, whose volumes are rapidly increasing, are expected
to be used for preemptive responses. However, human cognitive abilities are limited, which can lead
to ineffective decision making during disaster responses when artificial intelligence-based analysis
models are not employed. Existing prediction models have limitations with regard to their validation,
and most models focus only on heat-associated deaths. In this study, a random forest model was
developed for the weekly prediction of heat-related damages on the basis of four years (2015–2018) of
statistical, meteorological, and floating population data from South Korea. The model was evaluated
through comparisons with other traditional regression models in terms of mean absolute error,
root mean squared error, root mean squared logarithmic error, and coefficient of determination (R2).
In a comparative analysis with observed values, the proposed model showed an R2 value of 0.804.
The results show that the proposed model outperforms existing models. They also show that the
floating population variable collected from mobile global positioning systems contributes more to
predictions than the aggregate population variable.
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1. Introduction

According to the National Center for Environmental Information of the National Oceanic and
Atmospheric Administration, the average annual global temperature has reached an all-time high
over the past five years (0.75–0.95 ◦C rise from the average annual temperature in the 20th century)
and is continuing to gradually increase. Global warming has considerably changed the climate in
recent decades, increasing the probability and intensity of meteorological and climatic disasters [1,2].
The duration and intensity of heatwaves are expected to increase with an increase in the average
annual temperature, and deaths from heatwaves are expected to double [3]. The record heatwave
in the United Kingdom in 2003, which killed 70,000 people, is expected to become normal summer
weather by 2040 [4].

Because heatwaves cause human and physical disasters every year, it is important to minimize
disaster damage by establishing timely and preemptive disaster responses. A disaster response is
a continuous decision making process conducted on the basis of a variety of information and past
experiences that are continuously gathered from a range of locations. Further, disaster response is
conducted from the moment a disaster is perceived to have occurred until the time when it ends.
In the past, data collection techniques were less effective and provided limited information for use in
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contextual judgment and decision making. Consequently, owing to the lack of information available for
contextual judgment and decision making, disaster responses were highly dependent on the subjective
experiences of decision makers. Furthermore, although data collection technology has developed
rapidly with an increase in the information available for decision making, the capability of humans to
process and use this information in disaster response is limited, especially in cases that require swift
decision making.

The importance of utilizing big data and artificial intelligence (AI)-based analysis for the rapid
processing of various types of data has been recognized. Big data refers to large and diverse forms
of data that cannot be processed by traditional database systems. Further, big datasets can include
signals, images, and documents whose sizes increase exponentially; such data are abundant, owing to
the development of sensing and social media-oriented communication technologies within the present
Internet of Things environment [5,6]. Big data systems not only utilize a variety of data quickly but are
also expected to play a crucial role in analyzing meaningful information. However, early systems only
focused on data collection and storage [7]. To produce meaningful results from big data, AI technology
as well as simple statistical and visualization functions must be employed for analysis and prediction.

Heatwave definitions vary among different countries [8]; however, heatwaves are generally
defined on the basis of the normal weather and temperatures corresponding to the seasons of a
region, and they are said to occur when there is a large deviation from the normal climate pattern
in a given region. These extreme weather conditions occur locally and extensively, which limits
rapid disaster response. In particular, because such extreme weather conditions occur extensively
throughout a region, response procedures, such as preparing resources immediately in the event of
a disaster, are limited. This indicates the need to develop early warning systems to guide disaster
responses. Previous studies have focused on mortality as an endpoint for the analysis of damage
caused by heatwaves [9–11], and only few studies have focused on morbidity as an indicator [12].
In addition, most studies have adopted only weather-related parameters as predictor variables of
mortality. However, even under the same weather conditions, the damage pattern can vary, and it
depends on other variables, such as the vulnerable population. This emphasizes the need to consider
various variables as well as weather-related parameters to predict heatwave damage.

In this study, a heat-related health prediction model was developed on the basis of a machine
learning algorithm for early warning systems. The purpose of this study is to help decision makers
to preemptively respond, reducing human and economic losses. This paper is organized as follows:
Section 2 describes the architecture of the random forest (RF) architecture and variables that can
represent damage caused by heatwaves obtained from a big data collection site operated in South Korea.
Experimental results, including variable evaluation, model optimization, and RF’s accuracy evaluation
in comparison with the tradition regression models is mention on Section 3. A trained model was
applied to the site and visualized—this is also specified in Section 3. Section 4 presents the discussion
and conclusion of this study.

2. Methodology

2.1. Test Area

South Korea was selected as the test bed, and its heatwave characteristics were investigated
to establish the range and duration of the collected data for model training. The typical weather
pattern that causes heatwaves in South Korea is a significant rise in temperature during the daytime,
owing to stagnant high atmospheric pressure, which is a widespread occurrence across the country [13].
Although heatwave standards vary by country, a heatwave warning in South Korea is issued when the
daily maximum temperature is expected to be above 33 ◦C for at least 2 consecutive days. Alerts are
concentrated mainly from June to August. Heatwave occurrences in South Korea exhibit substantial
interannual variability, but recently, they have become more frequent in late May and early September,
and their frequency and intensity have increased [14,15]. In particular, record-breaking heatwaves
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occurred in 2016 and 2018, causing many casualties [16]. The Korea Disease Control and Prevention
Agency (KDCA; formerly the Korea Centers for Disease Control and Prevention) has been operating a
nationwide thermal disease monitoring system since 2011 to determine the weekly health damage
caused by heatwaves from late May to early September every year. South Korea has 17 administrative
districts composed of 8 municipalities and 9 provinces. In accordance with the characteristics of these
test beds, we set the range resolution to match the 17 administrative divisions, and the temporal
resolution was set to a 1-week period to match the disease monitoring system data from the KDCA.

2.2. Variable Selection

Relevant variables were selected to predict heat-related damage. Heat-related diseases mainly
occur in the form of cardiovascular and respiratory diseases and heatstroke [17]; consequently,
various epidemiological studies of their occurrence have been conducted worldwide [17–19]. Among the
most important characteristics of the damage caused by heatwaves and the corresponding vulnerabilities
are the damage patterns of disasters, which cannot be obtained from temperature variables alone [20,21].
Studies have shown that the damage caused by disasters is related to geographic features [22,23],
surface relative humidity [24–26], wind speed [27,28], population density [29], economic status [30],
and vulnerable occupational groups (laborers, construction, and agricultural workers) [31–34]. On the
basis of important characteristics determined in previous studies, we selected the following variables:
temperature, humidity, wind speed, number of vulnerable occupational groups, insurance premiums
per person, personal income per person, floating population, and registered population of residents
(the number of people counted by the administration). The vulnerable population can be inferred
from data on insurance premiums, income, and vulnerable occupational groups; further, as the values
of these indicators increased, the number of patients with thermal diseases increased. However,
both the aggregate and floating populations were used as population variables, and it was expected
that the floating population, which reflects real-time information, would be a more useful variable for
predictions than the aggregate population.

2.3. Random Forest Regression

RF is an ensemble machine learning method that combines several separately trained models to
create a strong learner that can be applied for classification and regression [35]. Such a combination of
individual models can reduce overfitting and improve generalization. Therefore, RF has the advantages
of high prediction accuracy and algorithm robustness. When training ensemble classifiers, techniques
involving the use of different datasets or properties are applied to create different training models.
As shown in Figure 1, RF is based on the bootstrap method which is resampling technique that involves
random sampling of a dataset with replacement. Then repeats the process k times to obtain several
independent and identically distributed training subsets {Strain,1, Strain,2, . . . , Strain,k}, which have n
samples. Then, m features from the n samples are selected without accepting duplicate samples.
Prediction results from different decision trees build each training subset. The most commonly obtained
forecast results are selected and determined by the final forecast [35,36]. In conclusion, although some
trees created in RF may be exposed to overfitting, overfitting of the RF can be prevented by generating
a large number of trees. RF algorithms have been applied to various disaster fields to predict [37,38],
forecast, and evaluate risks [39,40].
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A loss function measures the similarity between the values predicted by a model and the correct
values. To increase the accuracy of a model, the loss should be reduced as the model is trained.
Different loss functions are used depending on the characteristics of the model (classification or
regression) and dataset. The representative loss functions for measuring errors in regression models
are mean absolute error (MAE) and mean squared error (MSE):

MAE =

∑N
i=1

∣∣∣yi − ŷ
∣∣∣

N
(1)

MSE =

∑N
i=1(yi − ŷ)2

N
(2)

where N is the total number of data points, y is the real (observed) output value, and ŷ is the predicted
output value. When determining the MAE, the difference between the observed and predicted values
of each data point is summed, and when determining the MSE, the square of the difference between
observed and predicted values is summed. Therefore, the MSE is more sensitive to outlier values than
the MAE. When the temperature exceeds a certain range, the heatstroke patients with thermal damage
is characterized by a rapid increase in the incidence of patients. Consequently, MAE was considered as
a loss function in this study to apply the characteristic of the target data.

To evaluate regression models, the proximity of predicted values to the observed data is quantified
on the basis of the MAE, root mean squared error (RMSE), root mean squared logarithmic error
(RMSLE), and coefficient of determination (R2), which are mainly used to evaluate accuracy [41,42].
However, the mean deviations of MAE, RMSE, and RMSLE (the lower the value, the higher the
accuracy) have different values depending on the scale; therefore, it is difficult to make inferences using
the absolute values alone. In contrast, R2 is a relative value because it is the variance ratio of dependent
variables predicted from independent variables; thus, the performance can be intuitively determined.
R2 generally ranges from 0 to 1. Note that if the R2 value of a model is 0.7 or more, the model is usually
considered reasonable [43].

The RF model was established to predict the number of patients with heat-related diseases caused
by heatwaves. Socioeconomic, demographic, meteorological, and demographic data were collected
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and used as input variables for the model. The Boruta algorithm was used to filter the variables in the
RF model [38]; this algorithm uses a Z score calculated by dividing the average loss by its standard
deviation. It was implemented using an R package [44] to confirm whether certain variables can be used
as predictive model inputs. Typical parameters of the random forest algorithm are ntree and max depth.
To select optimal hyperparameters, the minimum loss function value (MAE) was found by increasing
the number of decision trees (n-tree) and their maximum depth (max depth). After separating the
dataset comprising the selected variables into training and test datasets, we evaluated the model
trained using the training dataset by comparing it with other traditional regression models. Finally,
the mean decrease in impurity (i.e., Gini importance) was used to extract the variable importance
values, i.e., to determine the predicted contribution of each variable’s model.

3. Results of Predicting the Number of Heatwave-Related Patients

3.1. Data Collection and Pre-Processing for Model Training

The variables and target data are listed in Table 1 with their data sources and renewal cycles.
The variables are categorized as static or dynamic. Further, the abbreviations of the variables are used
hereafter in the main text, figures, and tables. The static variables were pre-collected from a government
agency that manages big data. They are universally updated quarterly and yearly, making them less
volatile when predicting the number of heatwave-related patients in summer. In contrast, the dynamic
variables, such as floating population and weather information, change with time. In South Korea,
big data regarding the floating population are estimated on the basis of mobile big data collected hourly
and monthly by SK Telecom’s nationwide mobile communication base stations, and the estimated
data are obtained from the Statistical Data Center. They are also estimated using public big data and
communication data provided by the Seoul Open Data Plaza. Weather data are collected hourly and
were provided by the Korea Meteorological Administration (KMA).

Table 1. Descriptions of variables to predict the number of heatwave-related patients.

Variable Description Abbreviation Units Data Source

Static variables—socioeconomic and
demographic data

Korean statistical
information service

Per capita income Income ×$1000
Insurance premiums per person Insurance ×$1000
Resident registration population RRP ×1

Number of vulnerable occupational groups
(agricultural, manufacturing,

and construction workers)
V-groups ×1000

Dynamic variables—meteorological data KMA
Maximum temperature of the week Max Tem ◦C
Minimum temperature of the week Min Tem ◦C

Mean temperature of the week Mean Tem ◦C
Median temperature of the week Median Tem ◦C
Variance temperature of the week Variance Tem ◦C

Mean humidity of the week Mean Hum %
Mean wind speed of the week Mean wind speed m/s

Dynamic variables—demographic data Statistical data center
Floating population FP ×1

However, the weather data, particularly those collected from sensors, may have missing values
due to sensor defects. To address the problem of missing values, we used datasets consisting of
columns with no missing values in order to predict the missing values of other datasets. Target data
were based on weekly data obtained from the thermal disease monitoring system managed by KDCA
(patients with heat-related diseases and deaths caused by heatwaves in emergency rooms nationwide);



Appl. Sci. 2020, 10, 8237 6 of 12

data regarding heat-related diseases such as heat stroke, exhaustion, cramps, fainting, and edema were
also provided as weekly data. The resolution of the entire dataset was unified through considering
the data properties of the features and targets; the temporal resolution was set to 1 week, and the
range resolution was set on the basis of the South Korean administrative divisions. The datasets were
randomly used for classification—80% were used as learning data and the remaining 20% as test data.
Finally, variables were normalized before being inputted into the RF model to avoid creating a model
that depends on specific variable units owing to the different ranges of each variable.

All variables were confirmed using the Boruta algorithm. The contribution of each variable to the
RF prediction model is shown in Figure 2. The edges of each box represent the quartiles, and the line
through each box represents the median. Each bar represents the 1.5 interquartile range of the nearer
quartile, and the open circles represent outliers. The blue boxes correspond to the minimal, average,
and maximum Z scores of a shadow attribute in the Boruta algorithm. The green boxplots correspond
to confirmed important attributes. It was confirmed that all collected data from the Boruta algorithm
can be used as variables of the predictive model.
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Figure 2. Contribution ranking importance of the 12 independent variables in the random forest
(RF)-based variable reduction algorithm from the Boruta package [44] in R.

3.2. Hyper-Parameter Optimization

The experiment was conducted using the Scikit-learn (v.0.22.2) Python package [45] to implement
the RF; the hardware platform was an Intel (R) Core (TM) i9-9900k 3.60 GHz CPU with 32 GB of
RAM. The out-of-bag (OOB) error is mainly used to measure errors in machine learning models,
such as bootstrap aggregation (bagging), which can be substituted for test errors [46]. The lowest
MAE was found for the training, OOB, and test errors as n-tree and max depth increased, and is
shown in Figure 3. When the number of decision trees was more than 100, all graphs remained almost
unchanged, and when the number of decision trees was 181, the lowest OOB error was found (4.59).
The training and test errors at this time were 1.67 and 3.94, respectively.
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Figure 3. Hyperparameter optimization in the RF regression model: (a) training curves with respect to
number of trees and (b) training curves with respect to maximum depth of trees.

On the other hand, when the number of decision trees was 181, the maximum depth of the
decision tree remained constant from over 40, and the lowest OOB error (4.58) was found when the
depth was 46. The train error and test error at this time were 1.69 and 3.94, respectively. Therefore,
the hyperparameters were determined with 181 decision trees and 46 tree depths.

3.3. Model Comparasion

The RF model was trained on the basis of the determined hyperparameters, and test data were
applied to the regression model. The linear regression relationship between the predicted data from
the model and test data is shown in Figure 4. The black line in the graph represents the regression
line. The x-axis represents the weekly predicted number of patients with heat-related diseases in a
specific region, as predicted by the model, and the y-axis indicates the weekly number of real patients
with heat-related diseases in the region. The translucent band around the regression line area indicates
the size of the confidence interval, which was 95% in this case. The red dotted line indicates when
the model accurately reflected reality (slope: 1). The linear fitting slope of this RF model was 1.11.
In particular, when high values were predicted, they tended to be underestimated compared to the
observed values; however, the models were confirmed to be relatively reasonable.
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To compare the accuracy of the regression model more quantitatively, Table 2 compares its results
with those of other regression models. In particular, the RF model is compared with linear regression,
decision tree, and support vector machine (SVM) models. All models were trained using the same
training set, and all the trained models were evaluated by the same test set. However, some of the
values predicted by the SVM model were negative; because the values must be greater than or equal to
zero, we treated all negative values as zeros. As shown in Table 2, the best values for all the considered
metrics, including MAE (3.816), RMSE (8.655), RMSLE (0.645), and R2 (0.803), were obtained for the RF
model. This means that the RF is more accurate than other models for making predictions, and the R2

value of 0.803 proves that this model is reasonable.

Table 2. Comparisons of performance evaluation.

Method MAE RMSE RMSLE R2

Logistic regression 5.301 12.460 0.855 0.593
SVM 5.184 8.800 0.956 0.797

Decision tree 5.524 13.384 0.803 0.531
Random forest 3.816 8.655 0.645 0.804

The bold is the best result among other methods.

3.4. Feature Importance

Figure 5 shows the estimated variable importance rankings corresponding to the model.
The weekly mean temperature variable, which had a value of 0.440, contributed the most in this
model, followed by the vulnerable occupational groups (0.129), weekly median temperature (0.102),
floating population (0.098), and weekly max temperature (0.085) variables. These five variables can
be considered the main variables for prediction, whereas the rest are less important. Interestingly,
the variable importance rankings proved that the floating population variable, which changes with
time, had a greater effect on prediction than the population of registered residents. However, regional
economic indicators had less impact on diseases related to heatwaves, as observed from the low values
for income (0.020) and insurance (0.013).
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3.5. Model Application and Visualization

To apply the validated model, we predetermined the dynamic variables from predictions.
Because the time series of variables and result values were the same, the predicted variable values must
be used for prediction. With regard to static variables, we employed the latest data as inputs among
the information that is updated periodically, which is the same as in model learning. The values of the
dynamic population were replaced with dynamic variables using weather forecast data provided by



Appl. Sci. 2020, 10, 8237 9 of 12

KMA on a weekly basis and a time series forecasting library, called Prophet [47], which is provided
by Facebook.

The performance results and visualization of the model are shown in Figure 6. From the end of
May, which was when heatwave management began, the substituted variables were inputted into the
model for 4 weeks, and then the predicted values were obtained and compared with the observed
values obtained from KDCA on the weekend. The forecasted and observed values for Seoul were
compared for 4 weeks, and in the second week of June, the predicted values for each administrative
district of South Korea were numerically quantified to visualize the high-risk areas and provide
information to heatwave disaster response decision makers. The high-risk areas are shown in dark
colors, whereas the lower risk areas are shown in lighter colors. Considering objectivity by region,
we used the number of patients and the predicted floating population ratios to calculate the risk.
Four weeks of data were applied to real-world situations, resulting in an R2 value of 0.70.
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4. Discussion and Conclusions

Heatwave damage prediction has been investigated in the United States, Europe, and Asia [9,48–50].
However, existing predictions are limited to practical notification systems owing to unrepresentative
data and insufficient data accuracy [51]. According to previous research, this problem is due to the use
of heatwave mortality alone as the endpoint of damage. Because the mortality rate of heatwaves is
exceedingly small compared to that of the general population, it is more effective to predict risk by
morbidity, which is relatively higher in proportion than heatwave mortality.

“Temperatures exceeding 33 ◦C” is the only available criterion for identifying the danger of
heatwaves in South Korea, which allows the government to raise risk awareness by alerting the
public. However, the damage to the population (deaths and sickness) caused by heatwaves varies
even at the same temperature. Therefore, using only temperature data cannot determine the level
of damage to peoples’ health. On the basis of epidemiological investigations performed in previous
research, we selected relevant variables and evaluated them by the Boruta algorithm. Then, a random
forest-based heatwave damage prediction method was proposed, and its performance was compared
with other traditional models. Previous studies considering demographic information have mainly
used data with static characteristics, such as monthly statistical information. More accurate predictions
were achieved by matching the exposure to heatwaves in a specific area to the population in that area
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using dynamic population data updated more frequently, allowing this variable to contribute more to
the prediction.

In the evaluation of the importance of variables, the average temperature variable and the
number of occupational groups that are considered to be vulnerable to heat waves were highly
evaluated (the average temperature for a week is the sum of the week, that is, the accumulated
temperature). This result supports the importance of predicting the cumulative temperature in advance
and responding in advance in order to minimize heat damage. In addition, it provides grounds that
preemptive responses from the government, such as operation of sprinkler trucks and installation of
shade curtains, should be made in areas with many vulnerable occupations. The learning process
performed to build the machine learning model used independent variables based on previously
recorded data. However, it is difficult to apply big data to a real-time environment owing to limitations
such as irregularity in the frequency of data. Furthermore, when the time series of the dependent and
independent variables are configured identically in training, the conditions for predictions are not
effectively established in practical systems. Therefore, a method that employs predicted variable values
was proposed. Although the accuracy of predicting future patients by applying predicted data is lower
than the test accuracy during validation, the R2 value of 0.70 supports the fact that this model provides
reasonable information. Governments can use the methods developed in this study to provide disaster
response decision makers with a reasonable basis for prioritizing an administrative area to provide a
preemptive response and disaster support.

Nonetheless, this study has several limitations. First, the temporal resolution of the predicted
values is relatively coarse-grained; thus, it is impossible to provide daily predictions for heatwaves,
which are expected to occur every day. Most studies on heatwaves in South Korea have provided
weekly information [11,49]. As a result, it was inferred that the resolution of target values (heat patients)
is tailored to the minimum information time unit of data source. Secondly, during the experiment,
data obtained across the country were input into one learning algorithm, and regional differences
between administrative districts were not considered. South Korea is a relatively small country;
although the regional environmental difference is relatively smaller than that in larger countries,
the differences in geography and weather between its eastern and western regions are substantial.
Therefore, developing individual algorithms for each region can improve model performance.
This problem can be solved because the model can be trained for each region if sufficient datasets are
available. Since 2018, South Korea has been managing vulnerable populations by operating heatwave
shelters. The prediction model established in this study will contribute to future studies to select
regions at risk of heatwaves and provide decision makers with a basis for installing heat shelters using
high regional resolutions and estimating the cumulative number of patients relative to the population.
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