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Abstract: In the bio-inspired area of membrane computing, a novel computing model with a generic
name of P system was introduced around the year 2000. Among its several variants, string or array
language generating P systems involving rewriting rules have been considered. A new picture array
model of array generating P system with a restricted type of picture insertion rules and picture array
objects in its regions, is introduced here. The generative power of such a system is investigated by
comparing with the generative power of certain related picture array grammar models introduced
and studied in two-dimensional picture language theory. It is shown that this new model of array
P system can generate picture array languages which cannot be generated by many other array
grammar models. The theoretical model developed is for handling the application problem of
generation of patterns encoded as picture arrays over a finite set of symbols. As an application,
certain floor-design patterns are generated using such an array P system.

Keywords: membrane computing; P system; array languages

1. Introduction

In the area of membrane computing [1–3], the novel computing model of P systems, introduced
by Păun [4], has served as a framework for dealing with problems in different areas of applications [5],
such as optimization problems [6–9], robots [10–12], power systems fault diagnosis [13–15], modelling
complex market interactions [16], image process [17] and clustering [18], and for Turing computing
power [19–22] and computing efficiency [23–28], both in its basic form and in its several variants.
One such area of application of P systems is formal language theory with different models of P systems
having been developed [29–32] for handling the problem of generation of classes of languages, starting
with the seminal work of Păun [4]. In the extension of language theory to two dimensions, P systems
have also played a significant role with different kinds of P systems with array objects and array
evolving rules having been introduced (see, for example, [33–35]).

The operation of insertion on words [36–39] has been studied in string language theory in the
context of DNA computing [40]. Fujioka [41] considered this operation in two-dimensional picture
arrays and introduced a picture array generating model. This model has a feature which is analogous
to the pure 2D context-free grammar [42] where the operation is rewriting in parallel all symbols in
a column or a row of a (rectangular) picture array by strings of equal length while in [41], insertion
(instead of rewriting ) of strings of equal length is done in parallel between columns or between rows.
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Here we consider a restricted type of insertion rules with the “contexts” of length at most
one, in the regions of a cell-like P system with the objects in the regions being rectangular picture
arrays. The main objective of this study is to develop a new theoretical model of an array P system
based on the bio-inspired computing model in the area of membrane computing, endowed with the
capability to handle the problem of generation of two-dimensional patterns encoded as picture arrays.
We compare the generative power of the resulting array P system model introduced here with other
well-investigated picture array generating models. We also exhibit an application to generation of
floor-design patterns, called “kolam” patterns [43]. A preliminary version of this paper was presented
in the conference ACMC 2018 [44].

In Section 2, needed notions and notations relevant to the study undertaken are briefly described,
with Section 2.1 providing the basic notions and Section 2.2 recalling picture-insertion system in
a restricted form. In Section 3, the new model of array P system with restricted picture insertion
rules (APRPIS) is introduced. In Section 4, APRPIS with one and two membranes are compared.
In Section 5, comparison with Pure 2D context-free grammars is done while in Section 6, comparison
with certain standard array generating models is carried out. Section 7 provides an application of the
new model to generation of floor-designs. In the final Section 8, concluding remarks are given.

2. Preliminaries

For notions related to formal language theory, the reader can refer to [45] and to [42,46,47] for
two-dimensional array grammars and languages. For P systems and array P systems, we refer to [4,34].

2.1. Basic Notions

A finite set V of symbols is called an alphabet. A word or a string α = a1a2 . . . am, ai ∈ V, 1 ≤ i ≤
m, (m ≥ 1) of length m over an alphabet V is a finite sequence of symbols belonging to V. The length of
a word α is denoted by |α|. The set of all words over V, including the empty word λ with no symbols,
is denoted by V∗. For any word w = a1a2 . . . an, tw is the vertical word with the word w written

vertically. For example, if α = bab over the alphabet {a, b}, then tα is
b
a
b

. If w is a single symbol of the

alphabet, then we write tw as w itself. A rectangular p× q array (also called picture array) X over an
alphabet V is of the form

X =

a11 · · · a1q
...

. . .
...

ap1 · · · apq

where each aij ∈ V, 1 ≤ i ≤ p, 1 ≤ j ≤ q. The number of rows of X and the number of columns of X
are respectively denoted by |X|r and |X|c. The set of all rectangular arrays over V is denoted by V∗∗,
which includes the empty array λ. V++ = V∗∗ − {λ}. A picture language is a subset of V∗∗.

The column catenation X ◦Y of two arrays X and Y with the same number of rows is formed by
juxtaposing Y to the right of X. The row catenation X �Y of two arrays X and Y with the same number
of columns is formed by juxtaposing Y below X. For example, if

X =

a b a a b
b b b a a
a a b a b
a a b b b

, Y =

b b a
b b b
a a b
a b b

, Z =

b b a b b
b a b a b
a a a b b

,
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then

X ◦Y =

a b a a b b b a
b b b a a b b b
a a b a b a a b
a a b b b a b b

, X � Z =

a b a a b
b b b a a
a a b a b
a a b b b
b b a b b
b a b a b
a a a b b

.

2.2. Picture-Insertion System

A picture-insertion system has been considered in [41] with insertion in a picture array being
done between columns or between rows, extending the notion of insertion in words [40]. We recall the
definition of this system [41] with a special case, namely, with “contexts" of length one in the rules and
call this system as a restricted picture-insertion system.

Definition 1. A restricted picture-insertion system (RPIS) is a 4-tuple Γ = (Σ, Ic, Ir, A) where

(i) Σ is an alphabet;
(ii) Ic = {ci | 1 ≤ i ≤ m}, (m ≥ 1) where ci, called a column insertion table, is a finite set of column

insertion rules with alphabetic contexts of the form (a, α, b), a, b ∈ Σ ∪ {λ}, α ∈ Σ∗ such that for any
two rules (a1, α, b1), (a2, β, b2) in ci, we have |α| = |β| and either both the left contexts a1 and a2 are in
Σ (likewise the right contexts b1 and b2 are in Σ) or both are λ ;

(iii) Ir = {rj | 1 ≤ j ≤ n}, (n ≥ 1) where rj, called a row insertion table, is a finite set of row insertion
rules with alphabetic contexts of the form (d, tγ, e), d, e ∈ Σ ∪ {λ}, γ ∈ Σ∗ such that for any two
rules (d1, tγ, e1), (d2, tδ, e2) in rj, we have |γ| = |δ| and either both the up contexts d1 and d2 are in Σ
(likewise the down contexts e1 and e2 are in Σ) or both are λ;

(iv) A ⊆ Σ∗∗ − {λ} is a finite set of axiom arrays.

For picture arrays P, Q ∈ Σ∗∗, a one-step derivation in the RPIS Γ, denoted by P ⇒ Q, yields
Q from P whenever either (i) or (ii) holds: (i) if ta1 · · · am and tb1 · · · bm are two adjacent columns,
namely, columns j and j + 1 for some j, 1 ≤ j ≤ n− 1, in the picture array P of size m× n, and if
(ai, αi, bi), 1 ≤ i ≤ m are column insertion rules in a column insertion table in Ic, then the rules can
be applied in parallel by inserting αi in the ith row between ai and bi for all i, 1 ≤ i ≤ m or (ii) if
d1 · · · dn and e1 · · · en are two adjacent rows, namely, rows k and k + 1 for some k, 1 ≤ k ≤ m− 1, in the
picture array P of size m× n, and if (di, tβi, ei), 1 ≤ i ≤ n are row insertion rules in a row insertion
table in Ir, then the rules can be applied in parallel by inserting tβi in the ith column between ei and di
for 1 ≤ i ≤ n. Likewise insertions to the immediate left or right (respy. immediate up or down) of a
column (respy. row) in the picture array P can be defined by requiring the corresponding left or right
or up or down contexts in the rules used, to be λ.

The picture language L(Γ) generated by Γ consists of picture arrays derived in one or more
finite number of derivation steps starting with an axiom array in A. The family of picture languages
generated by RPIS is denoted by RPIL.

Example 1. Consider the RPIS Γ1 = (Σ, Ic, Ir, A}) where Σ = {a, b}, Ic = {c1}, Ir = {r1}, where

c1 = {(a, ab, b)}, r1 = {(a, a, λ), (b, b, λ)}

and A consists of the array
a b
a b

.

Γ1 generates a picture language L1 consisting of picture arrays X ◦Y with X over a and Y over b
and |X|r = |Y|r, |X|c = |Y|c. A member of L1 is shown in Figure 1.
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a a a b b b
a a a b b b
a a a b b b
a a a b b b

Figure 1. A picture array in the language L1.

Starting with the axiom array in A, in any step of a derivation, the application of the column
insertion rule of c1 inserts ab in every row between a and b while the application of the row insertion
rule of r1 inserts in every column and just below a row, the symbol a below a and the symbol b below
b. In other words, for example, a derivation in which rules of c1 and then rules of r1 are applied,
is shown below:

a a b b
a a b b
a a b b

⇒c1

a a a b b b
a a a b b b
a a a b b b

⇒r1

a a a b b b
a a a b b b
a a a b b b
a a a b b b

.

3. Array P System with Restricted Picture Insertion Rules

Linking the two areas, namely, membrane computing and picture languages, an array P system
with array-rewriting rules, was introduced in [33], which is one of the earliest models in this topic.
This model motivated extensive research with several variants of array P systems being introduced
based on different considerations (See, for example, [35] and references therein). We now introduce a
new kind of array P system with picture arrays as objects and with restricted picture insertion rules in
the regions.

Definition 2. An array P System with restricted picture insertion rules (APRPIS) is Π =

(Σ, µ, F1, . . . , Fm, R1, . . . , Rm, io), where: Σ is the alphabet, µ is a membrane structure with m membranes
labelled in a one-to-one way with 1, 2, · · · , m; Fi, 1 ≤ i ≤ m, is a finite set (can be empty) of axiom picture
arrays over Σ in the ith region of µ; Ri, 1 ≤ i ≤ m is a finite set of column or row insertion tables as in a RPIS
in the ith region of µ; each of the tables has an attached target here, out, in. (as usual, here is omitted and is
understood). io is the label of an elementary membrane of µ (the output membrane).

A computation in APRPIS is defined in the same way as in an array-rewriting P system [34,35] with
the successful computations being the halting ones: each array, from each region of Π, which can be obtained
by applying the restricted picture insertion rules to the arrays associated with that region, should be obtained
but rules of only one table is applied; the array obtained in a region is placed in the region indicated by the
target associated with the table of rules used; the target here indicates that the array remains in the same region,
out indicates that the array is sent to the immediate outer region except for the outermost skin membrane in which
case the array sent out is “lost” in the environment; and in indicates that the array is sent to the immediately
inner membrane, nondeterministically chosen (but if no innner membrane exists, then the table of rules with
the target indication in cannot be used). A computation is successful only if it stops and a configuration is
reached where no table of rules can be applied to the existing arrays. The result of a halting computation consists
of the arrays placed in the output membrane with label io in the halting configuration. The set of all such
arrays computed or generated by the system Π is denoted by AL(Π). The family of all array languages AL(Π)

generated by systems Π as above, with at most m membranes, is denoted by APm(RPIS).

We illustrate with an example.
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Example 2. Consider the APRPIS Π1 = (Σ, [1 [2 ]2 ]1, F1, F2, R1, R2, 2) where Σ = {a, b, e}, F1 =

{ a b
a b

}, F2 = φ. R1 consists of the column insertion tables (c1, in), (c2, in) and R2 consists of row insertion

table (r, out) where
c1 = {(a, ab, b)}, c2 = {(a, e, b)}, r = {(a, a, λ), (b, b, λ)}.

In a computation in Π1, since only the region 1 has an axiom picture array
a b
a b

, application of

the rule of the table c1 will insert ab between a and b in every row and the resulting array is sent to
region 2 due to target indication in. Application of the rules in r in region 2 inserts a row below one of
the rows with a below a and b below b and the array is sent back to region 1 due to target indication
out. The process can repeat. If in region 1, the rule of the table c2 is applied then e is inserted between a
and b in every row resulting in an array of the form

a · · · a e b · · · b
...

. . .
...

...
...

. . .
...

a · · · a e b · · · b

and the array is sent to the output region 2. The computation halts as no other rule could be applied.
Note that in the rules in r there is no rule that allows insertion below e and hence the rules of the
table r can no longer be applied. The arrays generated are of the form M1 ◦ M2 ◦ M3 where M1

is an array over a, M3 is an array over b and M2 is an array with only one column of e′s. Also,
|M1|c = |M3|c = |M1 ◦M2 ◦M3|r. In otherwords, the number of rows of the array generated equals
the number of columns of M1 which equals the number of columns of M3. One such array is shown in
Figure 2.

a a a e b b b
a a a e b b b
a a a e b b b

Figure 2. A picture array generated by Π1.

4. A Hierarchy between One Membrane and Two Membranes

We now compare the families AP1(RPIS) and AP2(RPIS) and establish that AP1(RPIS) is
properly included in AP2(RPIS). It remains to explore whether the hierarchy collapses or not for
higher number of membranes.

Theorem 1.
RPIL = AP1(RPIS) ⊂ AP2(RPIS)

Proof. In a RPIS as well as APRPIS with one membrane, the rules are only the RPIS rules and
so it is clear that RPIL = AP1(RPIS). Also by definition, the inclusion AP1(RPIS) ⊆ AP2(RPIS)
follows. The proper inclusion follows from Example 2 on noting that in any picture array M generated,
the number of columns = 2× the number of rows +1. If there is only one membrane, there is no way
to control application of the rules of the column and row tables as all the tables of rules are in the
same region.

5. Comparison with Pure 2D Context-Free Grammars

We now compare the generative power of APRPIS with certain similar picture generating models.
The insertion rules considered both in RPIS and APRPIS are restricted forms of the insertion rules
considered in the picture insertion system defining the class INPA [41]. Yet we show that there are
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picture array languages generated by APRPIS with two membranes that are not in the class INPA.
Also, in [42], a picture array generating model, called pure 2D context-free grammar (P2DCFG),
is proposed and the generative power of this model is investigated. In this model, all symbols in a
column or in a row of a m× n picture array are rewritten by pure context-free rules [42] of the form
a→ α with α in all the rules in a table having the same length. The family of languages generated by
P2DCFG is denoted by P2DCFL. Two variants of P2DCFG, called (l/u)P2DCFG and (r/d)P2DCFG
which are incomparable with P2DCFG have also been considered [48,49]. In a (l/u)P2DCFG the
symbols in the leftmost column or the uppermost row only are rewritten while in a (r/d)P2DCFG the
symbols in the rightmost column or the lowermost row are rewritten. We show that there are picture
array languages that can be generated by APRPIS with two membranes but cannot be in P2DCFL,
(l/u)P2DCFL and (r/d)P2DCFL.

Theorem 2.

1. AP2(RPIS)− P2DCFL 6= φ

2. AP2(RPIS)− (l/u)P2DCFL 6= φ

3. AP2(RPIS)− (r/d)P2DCFL 6= φ

4. AP2(RPIS)− INPA 6= φ

Proof. Consider the picture array language L2 consisting of m × (3n + 2) arrays (m ≥ 2, n ≥ 1),
such that an array in L2 is of the form M1 ◦M2 ◦M3 ◦M4 ◦M5 where M1, M3, M5 are m× n arrays
over {a}, {b}, {d} respectively and M2, M4 are m× 1 arrays over {e}. The language L2 cannot belong
to any of the families P2DCFL, (l/u)P2DCFL and (r/d)P2DCFL because in P2DCFG generating in
different modes, a language in any of these families, symbols in an array can be rewritten in only
one column at a time. The language L2 cannot also belong to the class INPA for a similar reason.
This means that the array with columns of a′s in the beginning, columns of b′s in the middle and
columns of d′s in the end, equal in number, cannot be generated.

The language L2 is generated by the APRPIS Π2 with two membranes where

Π2 = ({a, b, d, e}, [1 [2 ]2 ]1, F1, F2, R1, R2, 2)

with F1 = { a b d
a b d

, } F2 = φ. R1 consists of the column insertion table. (c1, in) and a row insertion

table (r, here) and R2 consists of the column insertion tables (c3, out), (c2, here), (c4, here) where

c1 = {(a, ab, b)}, c2 = {(a, e, b)},

c3 = {(b, d, d)}, c4 = {(b, be, d)},

and
r = {(a, a, λ), (b, b, λ), (d, d, λ)}.

The region 1 alone has an axiom picture array. So a computation in Π2 can start in this region with
the applicable tables of rules. If the rule of column insertion table c1 is applied then ab will be inserted
in every row between two adjacent columns of a′s and b′s and the array is sent to region 2. If in this
region the rule of column insertion table c3 is applied then d will be inserted in every row between two
adjacent columns of b′s and d′s and the array is sent back to region 1. The process can repeat. At any
time, the rule of the row insertion table r can be applied, thus inserting in the picture array a row of the
form a · · · ab · · · bd · · · d. If at any time, instead of c3, the rule of the column insertion table c2 (respy. c4)
is applied in region 2, then a column of e′s will be inserted between two adjacent columns of a′s and
b′s (respy. columns of b′s and d′s ). A correct sequence of application of the rules is to apply now in
region 2, the rule of the column table c2 followed by c4 or c4 followed by c2, thus generating a picture



Appl. Sci. 2020, 10, 8306 7 of 14

array of the form shown in Figure 3. Region 2 is the output region and arrays collected here form the
picture array language generated which is L2.

a · · · a e b · · · b e d · · · d
...

. . .
...

...
...

. . .
...

...
...

. . .
...

a · · · a e b · · · b e d · · · d

Figure 3. A picture array generated by Π2.

6. Comparison with Certain Standard 2D Grammar Models

A well-known class of two-dimensional picture array languages, called the family
of context-sensitive matrix languages (CSML), was introduced by Siromoney et al. [50].
The corresponding class of grammars, known as CSMG involves two phases of generation with
the first phase generating a string s over intermediate symbols and in the second phase all the
intermediate symbols in s are rewritten in parallel by regular nonterminal rules of the form A→ aB,
or together terminated by regular terminal rules of the form A→ a, (A, B are nonterminals and a is a
terminal symbol), thus generating the columns of the picture array. The words in the first phase form a
context-sensitive language. An extension, called TCSML of the family CSML was introduced in [51]
by having in a CSMG, an additional feature of tables of nonterminal rules or tables of terminal rules in
the second phase. It was shown in [51] that CSML ⊂ TCSML. We show here that there are picture
array languages that cannot be in TCSML but can be generated by APRPIS with two membranes.

Theorem 3. AP2(RPIS)− TCSML 6= φ

Proof. Consider the picture array language L3 consisting of (2m + 1)× (2m + 1) arrays, (m ≥ 1),
such that an array in L3 is of the form (M1 ◦M2 ◦M3) �M4 � (M3 ◦M2 ◦M1) where M1, M3 are m×m
arrays over {a}, {b} respectively, M2 is an m× 1 array over {e} and M4 is an 1× (2m + 1) array over
{e}. A member of L3 is shown in Figure 4. The language L3 cannot belong to the family TCSML.
In fact in a grammar generating a picture array in a language in TCSML, the number of rows above
and below a distinct row of a generated array, cannot be maintained to be equal as the application of
the tables of rules cannot be controlled.

The language L3 is generated by the APRPIS Π3 with two membranes where

Π3 = ({a, b, e}, [1 [2 ]2 ]1, F1, F2, R1, R2, 2)

with F1 = { a b
b a

}, F2 = φ. R1 consists of the column insertion tables (c1, in), (c2, in) and R2 consists

of the row insertion tables (r3, out), (r4, here) where

c1 = {(a, ab, b), (b, ba, a)}, c2 = {(a, e, b), (b, e, a)},

r3 = {(a, tab, b), (b, tba, a)}, r4 = {(a, e, b), (b, e, a), (e, e, e)}.

Starting with the axiom picture array in region 1, a computation in Π3 can start in this region
with the applicable tables of rules. If the rules of column insertion table c1 are applied then ab will
be inserted in every row between the two symbols a and b in two adjacent columns while ba will be
inserted in every row between the two symbols b and a in the same two adjacent columns, thus adding
two columns to the picture array. The array generated is sent to region 2. If in this region the rules of
row insertion table r3 is applied then ab will be inserted in all columns between the symbols a and b in
two adjacent rows while ba will be inserted between the symbols b and a in the same two adjacent
rows, thus adding two rows to the picture array and the array is sent back to region 1. The process can
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repeat. If at any time, the rules of the column insertion table c2 are applied in region 1, then a column
of e′s will be inserted between the two adjacent columns ta · · · ab · · · b and tb · · · ba · · · a and the array
is sent to region 2. A correct sequence of application of the tables of rules is to apply now in region 2,
the rules of the row table r4, thus generating a picture array of the form shown in Figure 4. Region 2 is
the output region and arrays collected here form the picture array language generated which is L3.

a · · · a e b · · · b
...

. . .
...

...
...

. . .
...

a · · · a e b · · · b
e · · · e e e · · · e
b · · · b e a · · · a
...

. . .
...

...
...

. . .
...

b · · · b e a · · · a

Figure 4. A picture array generated by Π3.

Head [52] introduced splicing systems while proposing a theoretical model of DNA recombination.
Berstel et al. [53] introduced a variant of splicing system, known as flat splicing system and noted
([53] P4) that the flat splicing system involving the operation of flat splicing on words and the
insertion system [40] involving the operation of insertion on words, have similarity but the systems
are incomparable. Extending the operation of flat splicing to picture arrays, a picture array generating
model, called array flat splicing system (AFS), was introduced and investigated in [54]. Here we show
that picture array languages that cannot be generated by any AFS can be generated by APRPIS with
two membranes. The family of picture array languages generated by AFS is denoted by L(AFS).

Theorem 4. AP2(RPIS)− L(AFS) 6= φ

Proof. Consider the picture array language L4 consisting of m × (n + 2) arrays, (m ≥ 2, n ≥ 1),
such that an array in L4 is of the form M1 ◦ M2 ◦ M3 where M1, M3 are m × 1 arrays over
{x}, {y} respectively and M2 is an m × n array over {a}. A member of L4 is shown in Figure 5.
The language L4 does not belong to the family L(AFS) [54].

The language L4 is generated by the APRPIS Π4 with two membranes where

Π4 = ({x, y, a}, [1 [2 ]2 ]1, F1, F2, R1, R2, 2)

with F1 = { x a y
x a y

}. F2 = φ. R1 consists of the column insertion tables. (c1, here), (c2, in) and a row

insertion table (r, here) where

c1 = {(x, a, a)}, c2 = {(a, a, y)}, r = {(x, x, λ), (y, y, λ), (a, a, λ)}.

We note that the rule of the column insertion table c1 inserts a column of a′s but the array remains
in the region 1 itself. The rule of the column insertion table c2 has the same effect but the array is sent
to the output region 2. The rule of the row insertion table r inserts a row of the form xa · · · ay while an
array is generated.

x a a a a y
x a a a a y
x a a a a y
x a a a a y

Figure 5. A picture array generated by Π4.
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A class of array grammars called parallel contextual array grammars was considered in [55].
Several variants were introduced and their properties established. External parallel contextual array
grammar is one such variant generating rectangular picture arrays and the family of picture array
languages generated by this kind of array grammars is denoted by EPCA. Here we show that there are
picture array languages not in EPCA, which can be generated by (APRPIS).

Theorem 5. AP2(RPIS)− EPCA 6= φ

Proof. Consider the picture array language L5 = L′5 ∪ L′′5 . L′5 consists of 3× (2n + 1) arrays, (n ≥ 0),
such that an array M′ in L′5 is over {a} and is of the form as shown in Figure 6. L′′5 consists of
3× (2n + 3) arrays, (n ≥ 0), such that an array M′′ in L′′5 is over {a, b} and is of the form as shown in

Figure 7. The first and last columns of M′′ are respectively
a
b
a

and
b
a
b

while all other symbols are a.

The language L5 has been proved to be not in the family EPCA ([55] Lemma 4.5).
But the language L5 is generated by the APRPIS Π5 with two membranes where

Π5 = ({a, b}, [1 [2 ]2 ]1, F1, F2, R1, R2, 2)

with F1 = F2 = {M1 =

a a a
a a a
a a a

, M2 =

a a b
b a a
a a b

}. R1 consists of the column insertion tables.

(c1, here), (c2, in) where c1 = {(a, aa, a), (a, aa, b)}, c2 = {(a, aa, λ)}. R2 = ∅.
Since region 2 is the output membrane, the axiom arrays in this region will be collected in the

language generated. There are no rules in region 2. So in a computation in Π5 only the rules in region
1 can be applied to the arrays in region 1. Initially, the rules of the table c1 as well as the rule of the
table c2 are applicable and any of these should be applied to both the arrays M1 and M2. If the rules of
the table c1 are applied to both M1 and M2, then two columns of a′s are inserted yielding arrays

a a a a b
b a a a a
a a a a b

,
a a a a a
a a a a a
a a a a a

but the arrays remain in the same region 1 as the column table c1 has target here associated with it.
The process can repeat. If the rule of the table c2 is applied to any of the arrays generated in an earlier
step (including the axiom arrays), then again two columns of a′s are inserted into the array but the
generated array is sent to output region 2. Since there are no rules in region 2, these arrays cannot
evolve further and are collected in the language generated by Π5. The language generated is L5.

a a a a a
a a a a a
a a a a a

Figure 6. A picture array in L′5.

a a a a a a b
b a a a a a a
a a a a a a b

Figure 7. A picture array in L′′5 .
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7. An Application of the Model to “Kolam” Pattern Generation

A “kolam” pattern [43] is a visually pleasing floor design, more common in South India, drawn
with curly lines around points arranged in a particular pattern, resulting in the intended “kolam”
drawing. In [43] “kolam” patterns were considered as picture arrays in the two-dimensional plane with
the labels of the cells of the picture array representing primitive “kolam” patterns [56]. In fact array
grammars developed in [43] were used to generate the picture arrays and the labels were replaced by
the corresponding primitive patterns, thus yielding the kolam pattern composed of these primitive
patterns. Here we illustrate by constructing a APRPIS generating picture arrays representing a
particular set of “kolam patterns”, one member of which is shown in Figure 8. The labels of the arrays
stand for the primitive kolam patterns defining the “kolam”. An array representing this kind of a
kolam is shown in Figure 9.

Let Lk be the picture language consisting of (m + 2) × (2n + 3), m ≥ 1, n ≥ 1 picture
arrays p such that p(i, 1) = p(i, n + 2) = p(i, 2n + 3) = b, for i ∈ {1, m + 2}, p(1, j) = d1 for
2 ≤ j ≤ n + 1; n + 3 ≤ j ≤ 2n + 2, p(n + 2, j) = d2 for 2 ≤ j ≤ n + 1; n + 3 ≤ j ≤ 2n + 2, p(i, 1) = d3,
for 2 ≤ i ≤ n + 1, p(i, 2n + 3) = d4, for 2 ≤ j ≤ n + 1, p(i, n + 2) = e, for 2 ≤ i ≤ n + 1 and all other
p(i, j) = d. Here d1, d2, d3, d4, d, e stand for the “kolam" primitive patterns as in Figure 10 and b stands
for blank.

Figure 8. A “Kolam” pattern.

b d1 d1 d1 b d1 d1 d1 b
d3 d d d e d d d d4
d3 d d d e d d d d4
d3 d d d e d d d d4
b d2 d2 d2 b d2 d2 d2 b

Figure 9. Array representing the “kolam” in Figure 8.

Figure 10. A set of primitive “Kolam” patterns.

The picture language Lk is generated by the APRPIS with alphabet. {d1, d2, d3, d4, d, e, b},

membrane structure [1 [2 [3 ]3 ]2 ]1, axiom array
b d1 b d1 b
d3 d e d d4

b d2 b d2 b
in region 1 and no axiom array

in regions 2 and 3, with 3 as the output region. The sets R1, R2, R3 are the sets of tables of insertion
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rules in regions 1,2 and 3 respectively, where R1 contains a column insertion table (c1, in) and a row
insertion table (r1, here), R2 contains two column insertion tables (c2, out) and (c3, in). Here

c1 = {(d1, d1, b), (d, d, e), (d2, d2, b)}, c2 = {(b, d1, d1), (e, d, d), (b, d2, d2)

c3 = {(d1, d1, b), (d, d, d4), (d2, d2, b)},

r1 = {(b, d3, d3), (d1, d, d), (b, e, e), (b, d4, d4)}.

In a computation, the rules of table c1 insert a column of the form td1d · · · dd2 to the left of the middle
column of e′s while the rules of table c2 insert a similar column to the right of the middle column of e′s.
The generated array is sent to region 2 from region 1 on applying c1 while it is sent from region 2 to
region 1 on applying c2. The process can repeat adding equal number of columns to the left and right
of the middle column. The application of the rules of the table r1 inserts below the first row, a row
of symbols d3d · · · ded · · · dd4 as many times as needed and the generated array remains in region
1. When the rules of the table c3 are applied in region 2, it has the same effect as applying c2 but
the insertion is to the left of the last column and the array is sent to the output region 3, with the
computation halting. The generated arrays are the picture arrays of Lk and no other array is generated.
On replacing the labels of the squares in a generated picture array by the corresponding primitive
kolam patterns shown in Figure 10, we obtain the “kolam” itself. One such generated “kolam” is
shown in Figure 8. It is interesting to note that the “kolam” pattern in Figure 8 has a mathematically
pleasing feature of symmetrical subpatterns on the left and right of the middle line made of the
primitive pattern e shown in Figure 10.

8. Concluding Remarks

In the framework of membrane computing, a new picture array generating model, called array P
System with restricted picture insertion rules (APRIS) has been introduced. The generative power of
this model is exhibited by comparing it with many standard families of picture languages. The main
theoretical contribution is that the new model APRIS can generate picture array languages which
cannot be generated by the other picture array grammar models considered here. It will be of interest
to compare with other families of picture languages not considered here such as the family of picture
languages generated by internal parallel contextual array grammars [55]. As an application of this
new theoretical model, certain floor-designs, called “kolam” patterns are generated, thereby showing
that the model can handle the problem of generation of patterns encoded as picture arrays over a finite
set of symbols.
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33. Ceterchi, R.; Mutyam, M.; Pǎun, G.; Subramanian, K.G. Array-rewriting P systems. Nat. Comput. 2003, 2,
229–249. [CrossRef]

34. Subramanian, K.G. P systems and picture languages. In Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2007; Volume 4664, pp. 99–109.

35. Subramanian, K.G.; Sriram, S.; Song, B.; Pan, L. An Overview of 2D Picture Array Generating Models
Based on Membrane Computing. In Reversibility and Universality. Emergence, Complexity and Computation;
Adamatzky, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 30, pp. 333–356.

36. Fujioka, K. Morphic characterizations with insertion systems controlled by a context of length one.
Theoret. Comput. Sci. 2013, 469, 69–76. [CrossRef]

37. Haussler, D. Insertion languages. Inf. Sci. 1983, 31, 77–89. [CrossRef]
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