
applied  
sciences

Article

Automatic Fabric Defect Detection Method
Using PRAN-Net

Peiran Peng 1,2 , Ying Wang 1,2,*, Can Hao 1, Zhizhong Zhu 1, Tong Liu 3 and Weihu Zhou 1,2

1 Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
Troy_peng0327@163.com (P.P.); haocan@ime.ac.cn (C.H.); zhuzhizhong@ime.ac.cn (Z.Z.);
zhouweihu@ime.ac.cn (W.Z.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100083, China;

bhliut@buaa.edu.cn
* Correspondence: wangying1@ime.ac.cn; Tel.: +86-1511-796-6046

Received: 5 November 2020; Accepted: 25 November 2020; Published: 26 November 2020 ����������
�������

Abstract: Fabric defect detection is very important in the textile quality process. Current deep learning
algorithms are not effective in detecting tiny and extreme aspect ratio fabric defects. In this paper,
we proposed a strong detection method, Priori Anchor Convolutional Neural Network (PRAN-Net),
for fabric defect detection to improve the detection and location accuracy of fabric defects and decrease
the inspection time. First, we used Feature Pyramid Network (FPN) by selected multi-scale feature
maps to reserve more detailed information of tiny defects. Secondly, we proposed a trick to generate
sparse priori anchors based on fabric defects ground truth boxes instead of fixed anchors to locate
extreme defects more accurately and efficiently. Finally, a classification network is used to classify and
refine the position of the fabric defects. The method was validated on two self-made fabric datasets.
Experimental results indicate that our method significantly improved the accuracy and efficiency of
detecting fabric defects and is more suitable to the automatic fabric defect detection.

Keywords: fabric defect detection; deep learning; Faster R-CNN; extreme and tiny defects;
priori anchor

1. Introduction

Fabric defect detection is a necessary quality inspection process, which aims to classify and locate
defects in textiles. However, most fabric defects are categorized by the human vision, the inspection
accuracy of which is only 50–70% [1] and the inspection speed of which is only 6–8 m per minute [2].
Automatic defect detection technology based on deep learning dramatically improves the defects
detection accuracy and efficiency. Therefore, the research of the automatic fabric defect inspection
algorithms has been paid more and more attention.

However, there are more than 70 categories of fabric defects [3] in actual production. Most of
them are tiny and have extreme aspect ratios in images, such as coarse warp, coarse weft and
mispick. Currently, deep learning algorithms aiming to object detection are divided into one-stage
algorithms [4–9] and two-stage algorithms. One-stage algorithms such as RetinaNet have fast
inspection speed which meets the demands of on-line inspection, however its detection accuracy
is not satisfied. Compared with one-stage algorithms, two-stage algorithms [10–15] have higher
accuracy and positioning in objects detection. Faster R-CNN [13], as an excellent two-stage algorithm,
is easy to implement and has high accuracy on multiple objects detection, many researchers use the
network model for ship detection [16] and medical image detection [17,18]. However, the detected
objects occupy larger regions in images, and the shapes of the detected objects are moderate aspect
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ratios, such as people, airplanes, etc. Many methods, such as GAN [19], deep convolutional neural
network [20] and YOLO v3 [21], are effective in detecting fabric defects, but cannot detect exceedingly
small and extreme aspect ratios fabric defects well.

To improve the detection accuracy of tiny defects, some researchers use Feature Pyramid Network
(FPN) [22] to fuse feature maps of different scales. The Mask RCNN [14] method improves the tiny
defects detection accuracy, but the runtime of detection is much longer. Although these methods
improve the detection accuracy of tiny defects, its location accuracy for extreme shape defects is still
unsatisfied, because the preset fixed size anchors cannot accurately match extreme aspect ratios fabric
defects in images.

Anchor-free algorithms such as CenterNet [23] assume object as a point to improve the detection
accuracy of tiny objects and partly improve the detection ability of extreme objects. However, for
extreme long and narrow fabric defects, CenterNet still cannot detect them accurately. A Guided
Anchoring method [24] is proposed instead of fixed anchors, which decreases the detection speed
and increases the detection accuracy of the extreme defects. However, the Guided Anchoring method
cannot detect defects when defects distribution is too concentrated.

Inspired by the FPN and the Guided Anchoring, this paper proposes a Priori Anchor Convolutional
Neural Network (PRAN-Net) based on Faster R-CNN to detect tiny and extreme fabric defects. Firstly,
we introduce the FPN to reserve more detailed information, which adapts to tiny fabric defects.
Secondly, we proposed a trick to generate sparse priori anchors, which can match extreme aspect ratio
defects well and remove a large number of redundant anchors in order to improve the accuracy and
efficiency of the fabric defect detection. Finally, a classification network is used to classify and refine
the position of the fabric defects.

2. PRAN-Net Fabric Defect Detection Method Based on Faster R-CNN

Figure 1 shows the fabric defect detection process of the PRAN-Net based on the Faster R-CNN
proposed in this paper. First, the FPN [22] is used to extract feature maps at different scales from the
fabric images. Then, priori anchors are adaptively generated in each scale feature map as the defect
proposals. Finally, a classification network is established to classify and refine the position of defects in
fabric images by the defect proposals.

Figure 1. The fabric defect detection process of the PRAN-Net.

2.1. Feature Extraction Based on Multi-Scales Feature Maps

As shown in Figure 2, we use the typical deep residual network ResNet-101-FPN [25] as the
backbone to extract features of fabric defects. The whole network is divided into bottom-upline and
top-down line, which consists of several convolutional layers and upsampling layers. These two
lines are laterally connected with 1 × 1 convolutional layers, which are used to reduce the channel
dimensions. For the bottom-upline, the classical FPN obtain five scales feature maps. To reserve
enough information of tiny defects while getting rid of redundant information and increasing efficiency,
we only retain three feature maps with strides of {4, 8, 32} defined as {C1, C2, C3}, respectively. For the
top-down line, the high-level feature map is fused with the low-level feature map. M3 is the third scale
feature map in the merged maps obtained by the 1 × 1 convolution of C3. The upsampled M3 and the
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1 × 1 convolution result of C3 are summed to get M2. The same operation is done to M2 and C2 to get
M1. To reduce the aliasing effect of upsampling, {M1, M2, M3} are convoluted by a 3 × 3 convolution
kernel to get three new feature maps {P1, P2, P3}. The top-down line operation enables to reserve more
detailed information of defects by interlayer fusion, which is especially beneficial to detect tiny defects.

Figure 2. The schematic of features extraction in the PRAN-Net.

2.2. Priori Anchor Generation

Region Proposal Network (RPN) [13] is used to predict defect proposals in feature maps by
anchors. Generally, a series of fixed-size anchors set for each pixel of the feature map in RPN work
well to detect the moderate aspect ratio defects. Due to the extreme aspect ratios of most fabric defects,
fixed-size anchors cannot match defective regions exactly, which lead to defect location deviation.
Furthermore, a large number of fixed anchors are set in each feature map by sliding windows, most of
which have no contribution to detect defects and lead to extra calculation time. PRAN-Net generates
sparse priori anchors in images to locate diverse fabric defects accurately and efficiently.

The fabric defect in images determined by the location and the shape is represented by a quaternary
tuple (x, y, w, h), where (x, y) is the center coordinate of the defect, w and h are the width and height of
the defect, respectively. Assuming that the probability of a defect (x, y, w, h) locating in the image I
satisfies the following condition:

p(x, y, w, h
∣∣∣I) = p(x, y

∣∣∣I)p(w, h
∣∣∣x, y, I) (1)

where p(x, y
∣∣∣I) is the probability of the existing defect in the image I, and p(w, h

∣∣∣x, y, I) is the probability
of the specific shape (w, h) defects. Based on formula (1), the priori anchors are generated adaptively
in different scale feature maps in two steps: predicting coordinates of the defect center and predicting
the shape of the defect guided by the ground truth (GT) box of defect as shown in Figure 3.

Figure 3. The schematic of the priori anchor generation in the Priori Anchor Convolutional Neural
Network (PRAN-Net).
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2.2.1. Location Prediction

The first step is to predict the location of the priori anchor in each feature map by the location
prediction network Nl as shown in Figure 3. The semantic segmentation is made to get the defective
score map by a 1× 1 convolutional layer. Then, the defective scores are transformed by an element-wised
sigmoid function to get the defective probability map with the same size as the feature map. The pixels
whose value are larger than the set threshold ∆L are considered as the defect pixels. We determine
the defect sub-regions by gathering the defect pixels within the set distance between the adjacent
pixels. The GT box, presented by gt = (xg, yg, wg, hg) is the labeled defect in the original fabric image,
where xg and yg are the center coordinates of the GT, wg and hg are the width and height of the GT,
respectively. The GT box is mapped to each feature map as GT’, presented by gt′ = (x′g, y′g, w′g, h′g),
where (x′g, y′g) and (w′g, h′g) are the center coordinates and the shape. If (x′g, y′g) is in one of the
sub-regions, the enclosing rectangle of this sub-region is taken as the candidate anchor, which is
described as acan =

{
(x0, y0, w0, h0)

∣∣∣w0 > 0, h0 > 0
}
, where (x0, y0) are the center coordinates, w0 and h0

are the width and height of the candidate anchor. We introduce GHM-C loss Lloc [26] as the priori
anchor location loss.

2.2.2. Shape Prediction

As shown in Figure 3, the second step is to predict the shape of the priori anchors apriori. The IoUcan

is the intersection over union (IoU) of the candidate anchor and the matched GT’. We try to make
the IoU larger by adjusting the width and height of the candidate anchor. First the shape prediction
network Ns, which includes a 1 × 1 convolutional layer and an element-wise transform layer is used to
predict the width w′0 and height h′0 as follows:

w′0 = w0 · etw (2)

h′0 = h0 · eth (3)

where tw and th are the scale parameters obtained by the above 1 × 1 convolution layer. Adjust w′0 and
h′0 until the adjusted candidate anchor demands the following condition:

IoU(apriori, gt′ ) = max(IoUcan(acan, gt′ )) (4)

The last width w′0 and height h′0 is the shape of the priori anchor. Different from thousands of
fixed anchors for each feature map, only sparse prior anchors are generated by PRAN-Net. The priori
anchor shape loss Lshape is as follows:

Lshape = smoothL1(1−min(
w′g
w′0

,
w′0
w′g

)) + smoothL1(1−min(
h′g
h′0

,
h′0
h′g

)) (5)

2.3. Defect Classification Network

The structure of the classification network is shown in Figure 4. Defect proposals and their
corresponding feature maps are resized by a RoI Align layer [14] to the fixed size. Then, the features
are fed into a sequence of full-connection layers and are finally branched to classification and bounding
box regression. The classification branch outputs the prediction of defect category, and the regression
branch outputs the prediction of defect position after the secondary location.

We introduce the softmax loss as the classification loss Lcls and the smooth L1 loss as the bounding
box regression loss Lreg to supervise the classification network loss of fabric defects.

The total loss L is the sum of the priori anchor location loss Lloc, the priori anchor shape loss Lshape,
the classification loss Lcls and the bounding box regression loss Lreg, as follows:

L = Lloc + Lshape + Lcls + Lreg (6)
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Figure 4. The architecture of the classification network in the PRAN-Net.

3. Experiment and Results

The fabric defects detection experiments environment is Intel Core I7 v4 CPU, graphics card
RTX2080Ti GPU, 128GB RAM and Ubuntu 16.04 operating system. All experiments are implemented
by the Pytorch. There are two experimental fabric defect datasets: the plain fabric dataset and the
denim dataset.

3.1. Experimental Datasets

3.1.1. The Plain Fabric Dataset

The plain fabric dataset has 1054 images and overall 1164 defects labeled in PASCAL VOC [27]
format. The image size is 128 × 256 pixels. There are five categories of defects which are oil stains,
coarse warp, long coarse weft, short coarse weft and mispick, respectively, as shown in Figure 5. It can
be seen that most defects are tiny and the shape of the defects are diverse. Table 1 gives the number of
each defect category. All defects except oil stains are tiny. Long coarse weft, coarse warp and mispick
are the extreme aspect ratio defects, which made up 54.4% of the total defects.

Figure 5. Samples of the defects in the plain fabric images. (a) oil stain, (b) long coarse weft, (c) long
coarse warp, (d) long coarse weft, (e) short coarse weft, and (f) mispick.

Table 1. The number of each category defect of the plain fabric dataset.

Category Oil Stains Coarse Warp Long Coarse
Weft

Short Coarse
Weft Mispick Total

Number
of defects

Train 39 145 252 304 25 765
Validation 9 36 62 76 6 189

Test 16 32 64 87 11 210
Total 64 213 378 467 42 1164
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3.1.2. The Denim Dataset

The denim dataset has 6913 images and overall 9523 defects labeled in PASCAL VOC [27] format.
The image size is 2446 × 1000 pixels. There are 20 categories of defects. The number of each category
defect is shown in Table 2 and Figure 6a. Most of the defects are tiny, and there areas are less than 1%
of the entire image. The aspect ratios distribution of defects is shown in Figure 6b. The red bounding
box corresponds to the number of defects with moderate aspect ratios. The extreme aspect ratio defects
from 0 to 0.5 and 2 to 5 are accounted for 47.7% of total defects.

Table 2. Number of each category defects of the denim dataset.

Category File Stains Difficult Nep Broken Warp Light Warp Looped
Weft

Defect Class Id 1 2 3 4 5 6 7

Number of
defects

Train 247 265 246 133 191 104 317
Validation 61 66 61 33 47 26 79

Test 53 70 59 29 46 30 56
Total 361 401 361 195 284 160 452

Category Star Jump Coarse Pick Mispick Starch
Lump Warp Knot Broken

Spandex Knot

Defect Class Id 8 9 10 11 12 13 14

Number of
defects

Train 221 656 112 243 323 366 1379
Validation 55 164 27 60 80 91 344

Test 26 95 22 31 67 89 273
Total 302 915 161 336 473 546 1996

Category Name Flower
Jump Coarse Warp Loose Warp Mark Three Wire Hole

Total
Defect Class Id 15 16 17 18 19 20

Number of
defects

Train 96 143 267 324 698 196 6527
Validation 23 35 66 81 174 48 1621

Test 15 35 63 65 183 68 1375
Total 134 213 396 470 1055 312 9523

Figure 6. The distribution of defects. (a) number of defects classes (b) defects aspect ratios.

Figure 7 shows some defects of the denim dataset. Defects such as knot and coarse warp in images
are extremely small, the shapes of three wire and flower jump defects are extreme aspect ratios outside
the red box in Figure 6b.
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Figure 7. Defects of the denim fabric. (a) knot, (b) coarse warp, (c) three wire, and (d) flower jump.

3.2. Defect Detection Evaluation Metrics

IoU of the detected region with the matched GT is used to evaluate detection performance as
shown in Figure 8. The IoU threshold is set to 0.5 to distinguish whether the detected bounding box is
a defect.

Figure 8. Intersection over union (IoU) of the detected defect and the ground truth. (a) the detected
defect and the ground truth, and (b) the schematic of IoU.

The detection results of each category defect are divided into true positive (TP), false positive (FP),
true negative (TN) and false negative (FN) as shown in Figure 9. The upper of the outer rectangle is
true defects including TP and FN, the lower of the outer rectangle is non-defects including FP and TN.
The inner rectangle is the detected defects, which includes TP and FP detected by mistake.

Figure 9. The definition of true positive (TP), false positive (FP), false negative (FN) and true negative
(TN) of detected defects and true defects.

We use Accuracy (ACC), mean Average Precision (mAP), Average Recall (AR), Average IoU of the
detected defects, ground truths (IoUs) and Frame Per Second (FPS) as the evaluation criteria.
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Precision p is the ratio of the detected true defects to all detected defects. Recall r is the ratio of the
detected true defects to all true defects. ACC, p and r are defined, respectively, as follows:

ACC =
TP + TN

TP + FP + FN + TN
(7)

p =
TP

TP + FP
(8)

r =
TP

TP + FN
(9)

For each class defect, the p and r decrease with increasing of the threshold of IoU.
AR is the ratio of the detected true defects of all classes to the true defects of all classes, which is

calculated as follows:

AR =

Ncls∑
i=1

TPi

Ncls∑
i=1

(TPi + FNi)

(10)

where i = 1, 2, . . . , Ncls, Ncls is the number of the defect categories.
Average Precision (AP) is the average of the precision values corresponding to the different recall.

Normally, it takes r = [0, 0.1, 0.2, 0.3, . . . , 1] respectively to calculate the precisions. For each recall,
the corresponding maximum precision p(̃r) among its right adjacent interval is taken to calculate the
AP by Formula (11). mAP is the average of AP for all classes, which is calculated by Formula (12):

AP =
1

11

∑
r∈(0,0.1,...,1)

p(̃r) (11)

mAP =

Ncls∑
i=1

AP

Ncls
(12)

3.3. Experimental Settings

We divide the images of two datasets into the train set, the validation set and the test set according
to the defect’s ratio of 4:1:1. The training set is doubled with random flips. The batch size is 4 for the
denim dataset and 32 for the plain fabric dataset because of their difference image size. The optimizer
is stochastic gradient descent optimizer (SGD); the momentum and weight decay are, respectively,
set as 0.9 and 0.0001. The defect probability threshold ∆L is set as 0.5. The initial learning rate of the
network is 0.005 and trained 20 epochs in total. The learning rate is reduced to 0.0005 and 0.00005 at
epoch 8 and 11.

The training loss value curves and the accuracy curve of PRAN-Net for the denim dataset are
shown in Figure 10. It can be seen that as the number of epochs increases, the curves of the train loss
value tend to convergence. When the epoch is greater than 12, the total loss is steady at 0.04, and the
corresponding accuracy reaches the maximum and tends to be stable.

3.4. Detection Results

The proposed PRAN-Net based on Faster R-CNN in this paper was compared with RetinaNet,
Mask R-CNN and Faster R-CNN with Guided Anchoring (GA-Faster R-CNN) on two fabric datasets,
and all compared algorithms used ResNet-101-FPN [25] as backbone. The detection results were
evaluated by ACC, AR, mAP, IoUs and FPS.
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Figure 10. The training loss value curves and accuracy curve of PRAN-Net for the denim dataset.
(a) the total loss value curve, (b) the priori anchor loss value curve, (c) the classification network loss
value curve and (d) the accuracy curve of the test set.

3.4.1. Detection Results of the Denim Dataset

The detection results by RetinaNet, Mask R-CNN, GA-Faster R-CNN and PRAN-Net are shown
in Table 3. It can be seen that the inspection speed of RetinaNet is slightly faster than that of PRAN-Net,
but the detection accuracy is much lower. Compared with Mask R-CNN, the ACC and the mAP of
PRAN-Net have improved 2.5% and 3.9%, respectively, and the inspection speed is greatly improved.
Compared with GA-Faster R-CNN, PRAN-Net also improves detection and position accuracy, while its
detection speed is also faster than that of GA-Faster R-CNN.

Table 3. The detection results of the four methods with the denim dataset.

Method
The Denim Dataset

ACC (%) mAP (%) AR (%) IoUs (%) FPS (f/s)

RetinaNet 84.7 53.7 46.7 63.8 10.2
Mask R-CNN 89.4 58.4 51 69.8 0.3

GA-Faster
R-CNN 87.1 60.2 50.9 71.4 7.2

PRAN-Net 91.9 62.3 53.3 72.9 9.7

The detection results by PRAN-Net for the denim dataset are shown in Figure 11.
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Figure 11. The detection results of PRAN-Net for the denim dataset.

To better present the location accuracy of defects by PRAN-Net, IoU examples of the detected
defect and the GT boxes by RetinaNet, GA-Faster R-CNN and PRAN-Net are shown in Figure 12.
(Mask R-CNN was not considered because its detection speed was too slow for online inspection.)
The blue rectangles are the GT boxes of the defects, the yellow rectangles are the detected location
corresponding to the defects and the green intersection regions are the IoU of the GT boxes with the
detected defects of three methods, which are 55.1% for RetinaNet, 72.4% for GA-Faster R-CNN and
80.6% for PRAN-Net. Their IoU values are consistent with the tendency of IoUs as shown in Table 3,
which are 63.8% for RetinaNet, 71.4% for GA-Faster R-CNN and 72.9% for PRAN-Net, respectively.
All these indicate the better location precision of PRAN-Net for extreme shape defects.

Figure 12. The detected defects and their IoUs by three methods. (The blue boxes are the GT boxes,
the yellow boxes are the correct detected boxes.) (a) the GT box in the fabric defect image, (b) the IoU
of RetinaNet, (c) the IoU of GA-Faster R-CNN, and (d) the IoU of PRAN-Net.

3.4.2. Detection Results of the Plain Fabric Dataset

The test results of the plain fabric dataset with the four methods are also given in Table 4. It can be
seen that PRAN-Net also has the obvious improvement with the plain fabric dataset. Furthermore, the
detection results are better than that of the denim dataset because the defects of the plain fabric dataset
are easier to distinguish from backgrounds. It should be highlighted that the FPS was improved more
obviously than that of the denim dataset because the image size of the plain dataset is much smaller
than that of the denim dataset. After the comprehensive comparison of the four methods, the detection
performance on the plain fabric dataset of PRAN-Net is also the best.
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Table 4. The detection results of the four methods with the plain fabric dataset.

Method
The Plain Fabric Dataset

ACC (%) mAP (%) AR (%) IoUs (%) FPS (f/s)

RetinaNet 91.2 83.7 53.6 88.7 26.1
Mask R-CNN 96.4 90.1 66.6 93.1 0.8

GA-Faster
R-CNN 94.7 88.4 63.1 91.4 20.3

PRAN-Net 98.6 92.5 70.0 95.8 25.4

4. Conclusions

This paper proposed a PRAN-Net method that improves the detection accuracy of fabric defects.
Aiming at the problem that the initial anchor in the Faster R-CNN model is not suitable for tiny
and extreme shape fabric defect detection, we propose Priori Anchor to effectively generate sparse
anchors adaptively. On this basis, the FPN is used to obtain multi-scales feature maps to extract more
detailed information of the defects. Two different fabric datasets were used to verify the performance
of PRAN-Net by comparing it with RetinaNet, Mask R-CNN and GA-Faster R-CNN. Compared with
the One-stage algorithm, the detection accuracy is improved 7.2% and 7.4% on the denim dataset and
the plain fabric dataset separately, while the detection speed decreased less than 0.7f/s. Compared
with the Two-stage algorithm, the mAP increases at least 2.1% and 2.4% separately on the two datasets.
The PRAN-Net method increases detection and location accuracy for tiny and extreme fabric defects
greatly, and the detection speed is also improved because of using fewer prior anchors, which satisfies
the requirements of real-time detection. In the future, we will try PRAN-Net with other deep learning
networks and apply to multiple tiny objects detection of other application fields.
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