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Abstract: The natural frequencies and eigenmodes of the tensegrity simplex are determined
experimentally in impact hammer tests. To study an effect of prestressing, the tests are carried out
on a physical model 1.2 m high and 0.5 m diameter with build-in transducers for measuring actual
values of forces in cables at 13 prestress levels. The recorded data for each pre-stress level from three
three-axial accelerometers are combined to extract the first five natural frequencies and modes by
means of the method of experimental modal analysis. It was experimentally confirmed that the first
rotational frequency depends on the pre-stress level and its sensitivity to the self-stress state is high
enough to be successfully used in vibrational health monitoring. A proprietary formula was proposed
for the relationship between frequency and the pre-stress level to control the dynamic properties of
the simplex. An excellent comparison between the experimental results of the frequency and the
formula was obtained. A comparison of numerical results of the finite element method with truss
element and experiment is also shown.
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1. Introduction

Tensegrity structures are built from compressed struts and tensioned cables. External loads can
only be applied at the nodes, which connect elements using ball joints. The system stability and
load-bearing capacity is obtained after inducing the prestressing force in its elements. Therefore,
from the mechanical point of view, tensegrities can be regarded as a special class of spatial truss.
A known example of these types of structure is a tensegrity column composed of several moduli,
each of them being a tensegrity simplex (Figure 1). The tensegrity simplex as the fundamental
three-dimensional module of low complexity is often called the regular minimal tensegrity prism [1].
It is constructed with three struts and nine cables. Six cables form two equilateral triangles which
create horizontal bases of the module. The bases are interconnected between themselves by three other
cables and three struts.

The history of tensegrity structures starts from the year 1921 when a sculpture of Karl Ioganson
was presented at an exhibition in Moscow [2]. Better known in the west is the artist Kenneth Snelson,
creator of his X-Piece structure from 1948 [3,4]. Following the pattern of sculptures by Snelson,
the architect Richard Buckminster Fuller patented a class of cable-bar assemblages in 1961, which he
named tensegrity structures as an abbreviation of tensile integrity [5].

Although elements forming tensegrity structures can deform in the range of small strains,
the structure as a whole can experience large displacements. Therefore, their analysis needs to take
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into account geometrical non-linearity, where the equilibrium path is a function of the pre-stress level.
The response of the Simplex to uniaxial compression was studied numerically in [6] and, further,
experimentally in [7]. Both surveys have proven that the module may experience softening or stiffening
type of response, as well as that it is a dependent on geometry, prestress level and stiffness of the
members. Simplex module design examples, built from highly-elastic polyamide ropes and taking
into account geometric nonlinearity, were shown in [8,9] with an incremental-iterative script written
in Matlab programming language. Despite the non-linear approach, after inducing the prestress to
the structure at a designed magnitude, the computational task can often be linearized, as in many
simulation approaches. After the prestressing, small vibrations around the equilibrium points may
be analyzed i.e., modal analysis can be used with linearization of these vibrations. This kind of a
preliminary research of the simplex with innovative cables was presented in [10]. Determined natural
frequencies and modes can further be used to calibrate or validate numerical solutions. In tensegrity
structures, the function of the first natural frequency vs. the magnitude of prestress is utilized in
vibrational health monitoring or active stiffness control using servomechanisms.
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dynamic analysis. The equilibrium path of the axially loaded module, as well as six natural 
frequencies, were determined. The module was, however, not prestressed. In [12] the relation 
between the pre-stress and natural frequencies was studied numerically for two-dimensional 
tensegrity trusses. The results stated that the change of pre-stress level causes the natural frequencies 
to either rise or fall. The effect of the self-stress on the dynamic properties of the basic spatial 
tensegrity modules was analyzed in the papers [13–16]. A dynamic model of the simplex as a system 
of single-degree-of-freedom subjected to rotation about its vertical axis was discussed in [17]. An 
active controlled tensegrity was analyzed dynamically in [18], which was a part of a Tensarch project 
[19]. A solution to attenuate the first natural frequency in order to diminish the response of the 
analyzed structure was proposed. A five-module tensegrity was studied experimentally and 
numerically in [20] by means of vibrational behavior, taking into account the effect of active strut 
movement. The pre-stress effect on the response of the tensegrity structures was also numerically 
studied, recently in [21] and in [22], with an emphasis on a road bridge appliance. Numerical analyses 
of statically and dynamically loaded structures was also analyzed in [23]. The effect of the self-
stressing force on self-diagnosis, self-repair and active control of a tensegrity structures and modules 
were analyzed numerically in [24], where it was proven that it is possible to compensate potential 
damage of the structure by adjusting the prestress level.  

The vast majority of presented surveys were of the numerical type, and there were no 
experimental validations of obtained results. On the other hand, Motro’s experimental analysis did 
not consider different prestress levels, while the Tensarch project investigations were performed on 
the different tensegrity grid and were focused on the structural control. Therefore, this study aims to 

Figure 1. Reference configuration of the tensegrity simplex: (a) tensegrity column; (b) spatial view the
tensegrity simplex; (c) top view of the tensegrity simplex ϕ = 5π/6.

In 1986 Rene Motro conducted a study [11] on a tensegrity simplex, in terms of static and dynamic
analysis. The equilibrium path of the axially loaded module, as well as six natural frequencies, were
determined. The module was, however, not prestressed. In [12] the relation between the pre-stress
and natural frequencies was studied numerically for two-dimensional tensegrity trusses. The results
stated that the change of pre-stress level causes the natural frequencies to either rise or fall. The effect
of the self-stress on the dynamic properties of the basic spatial tensegrity modules was analyzed in the
papers [13–16]. A dynamic model of the simplex as a system of single-degree-of-freedom subjected to
rotation about its vertical axis was discussed in [17]. An active controlled tensegrity was analyzed
dynamically in [18], which was a part of a Tensarch project [19]. A solution to attenuate the first natural
frequency in order to diminish the response of the analyzed structure was proposed. A five-module
tensegrity was studied experimentally and numerically in [20] by means of vibrational behavior,
taking into account the effect of active strut movement. The pre-stress effect on the response of the
tensegrity structures was also numerically studied, recently in [21] and in [22], with an emphasis on a
road bridge appliance. Numerical analyses of statically and dynamically loaded structures was also
analyzed in [23]. The effect of the self-stressing force on self-diagnosis, self-repair and active control of
a tensegrity structures and modules were analyzed numerically in [24], where it was proven that it is
possible to compensate potential damage of the structure by adjusting the prestress level.

The vast majority of presented surveys were of the numerical type, and there were no experimental
validations of obtained results. On the other hand, Motro’s experimental analysis did not consider
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different prestress levels, while the Tensarch project investigations were performed on the different
tensegrity grid and were focused on the structural control. Therefore, this study aims to fill the
literature gap in terms of experimental identification of modal parameters, taking into account the
prestress level of the tensegrity simplex and the contemporary method of measurement.

The utilized method is the experimental modal analysis. The method is used in many areas,
e.g., for dissipation estimation in materials [25], and for fatigue assessment of tools [26]. However,
a majority of tests are considered with structural behavior i.e., determining the damping ratios, natural
frequencies and corresponding modes—see, e.g., [27]. In this study, recorded data from an impact
hammer strike were post-processed with a system identification method and further extracted using a
Matlab [28] toolbox [29].

The article is written in the following order: Section 2 presents the self-stress states of the analyzed
module and the description of the physical model, Section 3 includes the process of the experimental
modal analysis with its results and the Section 4 includes a discussion with conclusions.

2. The Prestressability of the Experimental Model and Vibration Measurements

Symmetrical prestressable configurations of the left-handed tensegrity simplex are considered.
The symmetrical configuration is commonly used in theoretical models of the simplex and it can be
described by three variables, e.g.,: the radius r or the side length L = r

√
3 of the triangles, the height h

denoting the distance between the horizontal triangles, and the twist angle ϕ between the projection of
the line 0–4 onto the horizontal plane and the X-axis (Figure 1). The stable equilibrium configuration
is for the angle ϕ = 5π/6 and it is taken as the reference configuration. In the Cartesian coordinate
system (0XYZ), with the origin at the center of the bottom triangle, we can identify coordinates of the
nodes Pi( Xi Yi Zi) i = 1, . . . , 6 as:

P1( r 0 0 ), P2(− r/2 r
√

3/2 0 ), P3(− r/2 −r
√

3/2 0 ), P4( r cosϕ r sinϕ h) ,
P5[ r cos(ϕ+ 2π/3) r sin(ϕ+ 2π/3) h] , P6[ r cos(ϕ+ 4π/3) r sin(ϕ+ 4π/3) h ],

(1)

from which additional geometrical parameters can be calculated, e.g., the lengths s and b of the
cross-cables and the bars, respectively:

s = r
√
(h/r)2 + 2 + cosϕ−

√

3 sinϕ, b = r
√
(h/r)2 + 2(1− cosϕ). (2)

The tensegrity simplex is characterized by the one self-stress state that ensures its stability by
activating the geometrical stiffness. The self-stress state introduced initially in the members before
applying loads has a direct impact on the structural response depending on its level. Together with
the cross-sectional areas of tensioned and compressed members, the initial self-stresses are the design
parameters that affect the structural performance and cost of a tensegrity structure. The self-stress level
p0, which describes the general self-stress state in the tensegrity simplex can be defined as a normal
elongation of the cross-cables, i.e., as the strain:

p0 = (s0 − sN)/sN, sN = r
√
(h/r)2 + 2−

√

3, (3)

where the cross-cable length sN is calculated based on the formula (2) for the angle ϕ = 5π/6 at which
the tensegrity equilibrium occurs. It follows from (3) that after pre-stressing at a level p0, the length of
the cross-cables is equal to s0 = sN(1 + p0). The other lengths, i.e., the length of the base triangles L0

and the length of the bar b0 can be computed from the analytical model—see [6,8] as:

L0 =
ELAL(1 + p0)LNsN

p0(ELALsN −
√

3EsAsLN/3) + ELALsN
, b0 = sN(1 + p0)

√√√√
1 +

6
√

3 E2
LA2

LL2
N[

p0(3ELALsN −
√

3EsAsLN) + 3ELALsN
]2 (4)
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where Es, EL are the Young’s moduli and As, AL are the cross-section areas of the cross and horizontal
cables, respectively. When using the finite element method, we can obtain these lengths by iterative
procedures, while having a physical model, by measurements.

Figure 1 shows, that it is possible to calculate the self-stress state of module, without external
loading and without any supports in terms of an arbitrary chosen force density t i.e., the ratio between
the member force and the member length as t16 = t24 = t35 = t in the cross-cables, t14 = t25 = t36 = −t
in the bars and t12 = t13 = t23 = t45 = t46 = t56 = t/

√
3 in the horizontal cables, because for the

tensegrity simplex in the equilibrium configurationϕ = 5π/6 without any external loads, the following
relationship can be written: {

x1

x2

}
= −x3

 1
1
√

3

 (5)

where the force density x3 < 0, i.e., it is assumed to be negative if the bars are under compression.
After the prestressing, the normal forces in the cross-cables Ns, the horizontal cables NL and the

bars Nb are:

Ns = x1s0 = EsAsp0, NL = x2L0 =
1
√

3
x1L0 =

L0
√

3

EsAs

sN

p0

1 + p0
, Nb = x3b0 = −x1b0 = −

EsAsp0

sN(1 + p0)
b0, (6)

where x1, x2 and x3 and denote the force densities acting in the cross-cables, horizontal cables and
bars, respectively.

Taking in the formulas (6) p0 = Ns/EsAs, the self-stress state can be also expressed in terms of the
force in the cross-cables as the parameter S = Ns. It is worth mentioning, that the unknown three force
densities need to be known, when the deformation of the module preserves the parallelism of the two
base triangles, e.g., when the module is under uniform and axial loading.

The coordinates, element numerations, and lengths of the simplex used in the survey are presented
in Table 1, as well as, the self-stress state according to the symmetrical theoretical model.

Table 1. Data on the tested simplex module (ϕ = 5π/6).

Self-Stress State

t14 (bars) t12 (horizontal cables) t16 (cross-cables)

−t t/
√

3 t

L14 = b [m] L12 = r
√

3 [m] L16 = s [m]

1.280 1 0.431 1 1.193 2

Node
Coordinates 3 [m]

Node and member numbers
X Y Z

P1 0.249 0 0 horizontal cables cross-cables

P2 −0.125 0.216 0 1 P1 − P2 7 P4 − P5 4 P1 − P6

P3 −0.125 −0.216 0 2 P2 − P3 8 P5 − P6 5 P2 − P4

P4 −0.216 0.125 1.186 3 P1 − P3 9 P4 − P6 6 P3 − P5

P5 0 −0.249 1.186 Bars

P6 0.216 0.125 1.186 10 P1 − P4 11 P2 − P5 12 P3 − P6

1 In situ measurement, 2 Calculated from (2) for h = r
√
(b/r)2

− 2−
√

3 = 1.186m, 3 Calculated from (1).

The experiments were performed on the full-scale physical module. The view of the model and
some technical details are presented in Figure 2. The bars made of a steel S355 were built from rods of
the circular hollow section 42.4 × 2 mm, in which M20 bars were welded into edge parts. The linear
density of the bars, i.e., the masses per length of both used sections are similar. The bearing capacity
of the bars under compression is sufficient high to withstand expected in experiments the pre-stress
levels. The cross and horizontal cables were created using a 3 mm nominal diameter steel line made of
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19 wires and thimbled on each side. The net area of the cross-sections of the line is given in Table 2,
where materials, cross sections and masses of the physical model are gathered. The equivalent moduli
of elasticity are presented in Table 2 for the cross and horizontal cables, since they are made apart from
steel lines, also of force transducers, roman screws and shackles. The moduli were established based
on experimental uniaxial tension tests.
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Figure 2. The model of the simplex: (a) the view; (b) details of the nodes; (c) the force transducer.

Table 2. Material parameters of the simplex.

Bars Horizontal Cables Cross-Cables

Young’s modulus [GPa] 210 56.0 1 81.1 1

Cross section [mm2] 253.8 5.25 5.25

Mass per length [kg/m] 1.990 0.0436/0.516 2 0.0436/0.516 2

Single joint mass [kg] 0.897 Total model mass [kg] 16.205
1 Values obtained in the experiment, 2 Non-physical, reduced value taken into finite element method (FEM)
consistent mass matrix calculations.

The minimal failure force, given by the manufacturer, is equal to 7.26 kN. The design value of
6.30 kN can be assumed as the bearing capacity after taking a partial material factor. Each cable had
attached a force sensor (Figure 2c), while three cross-cables had also additionally attached a roman
screw in order to implement and control the prestress level. Nodes were laser cut out of a 20 mm thick
stainless steel sheet and further countersigned for M8 bolts, which held the cables. A connection of the
bars and nodes was created by regulation of two steel nuts, while a connection of cables and nodes was
created using M8 screws (Figure 2b). Crafted specially for the model, the force sensors were attached
to all nine cables (Figure 2c). The mass of a single joint was 0.897 kg. They were designed to work with
electro-resistive strain gauges, where two active arms are placed on the opposite sides of the four-arm
bridge (so called Wheatstone half bridge configuration). The body of the sensor was precisely water
cut out of 6 mm thick stainless steel sheet and further processed to obtain a clear surface. The strain
gauges were mounted on the two inner sides of the body, with special attention to manufacturers’
requirements [30]. The finisher force sensors were also calibrated for the force using the strain gauge
bridge and a universal testing machine to obtain the force-strain function and for the temperature using
the strain gauge bridge and climate chamber to obtain the temperature-strain function. This enabled
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proper readouts on the force during the tests to be obtained, where also temperature variations were
taken into account.

The testing standpoint was composed of the simplex module with three attached, triaxial
piezoelectric accelerometers on top of its three nodes, a strain gauge bridge with the force sensors,
a dynamic analyzer and impulse hammer (Figure 3). The strain gauge bridge was used to control
the values of forces in nine cables—three cross-cables and six horizontal cables in the top and bottom
triangle. The dynamic recorder was used to record the values of applied impulses induced by the
modal hammer and accelerations of the three, tri-axial accelerometers attached to the upper nodes of
the simplex.
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Figure 3. The vibration measurement: (a) the standpoint with accelerometers in the top; (b) notation
and directions of the strikes applied to upper nodes.

The methodology of the test was based on the method of the experimental modal analysis, where
both types of signal—the force and accelerations are recorded in the time domain—from the modal
hammer impulse and from the accelerometers in the upper nodes. The method utilizes all signals
recorded in the test, i.e., all forces that are applied to the structure are measured. Ambient forces such
as wind or traffic can be excluded. This method is based on obtaining both the impulse signal and
the acceleration signal. At the excitation, piezoelectric transducers change the mechanical vibration
energy into an analogous electrical signal, which is afterwards amplified by the amplifier. Furthermore,
the analyzer digitizes the analogous signal into discrete series. The time resolution (number of samples
measured in time) is dependent on the sampling rate, while the resolution of the recorded magnitudes
is dependent on the bit depth.

A complete measuring system is usually composed of three elements: an excitation mechanism,
a power amplifier, an analyzer and at least one transducer.

The study was performed using a data acquisition and recording system TEAC brand,
model LX-110, using the dedicated software [31]. The acceleration transducers are of the typical, triaxial
type consisting of a seismic mass and piezoelectric crystals enclosed in one body. Their parameters
are listed in [32]. The hammer is built of a handle connected with a striking head. The idea is similar
to the accelerometers, yet providing data on the force values. A detachable mass, as well as, a set of
hammer tips with different stiffness enables to adjust the induced frequency of the structure. Generally,
the heavier the hammer and softer the tip, the lower the frequencies that are induced. Data on hammer
utilized in the test are available in [33].

Figure 3b presents the experimental global coordinate system, where it was possible to measure
accelerations of nine signals 4x, 4y, 4z, 5x, 5y, 5z, 6x, 6y, 6z in the one strike of the impulse hammer, as a



Appl. Sci. 2020, 10, 8733 7 of 16

source of excitation, together with this one force signal induced by this hammer at each pre-stress level.
The directions of the strikes are shown also in Figure 3b. One hundred and thirty five acceleration
signals and 15 force signals were recorded for each prestress level. The 13 different prestress levels were
applied on the whole as shown in Table 3 in terms of the measured forces in the cross and horizontal
(base) cables.

Table 3. Member forces for the each prestress level.

Level Cables [N] Bars 2

[N]

Level Cables [N] Bars 2

[N]No p0 [10−6] Cross 1 Base 1 Base 2 No p0 [10−6] Cross 1 Base 1 Base 2

1 618 263 ± 27 75 ± 13 55 −282 8 5082 2164 ± 28 646 ± 20 450 −2322

2 1294 551 ± 37 169 ± 17 115 −591 9 6135 2612 ± 35 766 ± 23 542 −2802

3 2104 896 ± 40 263 ± 16 187 −961 10 6877 2928 ± 42 849 ± 24 607 −3141

4 2741 1167 ± 38 345 ± 18 243 −1252 11 7264 3093 ± 43 892 ± 23 641 −3318

5 3368 1434 ± 35 421 ± 18 298 −1538 12 7788 3316 ± 45 957 ± 25 687 −3558

6 3981 1695 ± 31 500 ± 20 352 −1818 13 8418 3584 ± 40 1025 ± 25 742 −3845

7 4413 1879 ± 29 559 ± 19 391 −2016
1 Experimental values, 2 Calculated from (5).

A distribution of the member forces between elements of the same type, i.e., the lower horizontal
cables (1–3), the upper horizontal cables (7–9) and the cross-cables (4–6) for exemplary 4th and 13th
prestress levels are presented in Figure 4 and correspond with numeration in Table 1. The forces
are closely related with each other among each of the three groups during the prestressing process.
The theoretical distribution of the member forces seems to be preserved with typical experimental
fluctuations connected with crafting and measuring accuracy of the physical model.
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3584 ± 

40 

1025 ± 

25 
742 −3845 

7 4413 
1879 ± 

29 

559 ± 

19 
391 −2016 1 Experimental values, 2 Calculated from (5) 

A distribution of the member forces between elements of the same type, i.e., the lower horizontal 

cables (1–3), the upper horizontal cables (7–9) and the cross-cables (4–6) for exemplary 4th and 13th 

prestress levels are presented in Figure 4 and correspond with numeration in Table 1. The forces are 

closely related with each other among each of the three groups during the prestressing process. The 

theoretical distribution of the member forces seems to be preserved with typical experimental 

fluctuations connected with crafting and measuring accuracy of the physical model. 

 

(a) 

 

(b) 

Figure 4. The experimental distribution of member forces for the prestress levels: (a) the 4th level; (b) 

the 13th level. 

3. Results 

The presentation of the obtained results are divided into two subsection, from which the second 

part of the experimental study on our own physical model is of great interest. The modal parameters 

of the tensegrity simplex, which were determined utilizing the toolbox [29], are presented and 

discussed in this part together with recorded data as obtained in impact hammer tests.  

3.1. Numerical Analysis on Small Vibrations 

As mentioned before, a linearization of vibrations around the equilibrium state was assumed. 

For a chosen pre-stress level, these vibrations are determined in numerical analysis using equations 

of motion as for a linear multi-degree-of-freedom system of the structure, i.e., by the system of 

365 360 323

1172 1119 1211

362 327 334

1 2 3 4 5 6 7 8 9

F
o

rc
e 

N
i
[N

]

Number of element i [ - ]

4th prestress

level

1046 1061 1008

3528 3608 3616

1041 997 998

1 2 3 4 5 6 7 8 9

F
o

rc
e 

N
i
[N

]

Number of element i [ - ]

13th prestress 

level

Figure 4. The experimental distribution of member forces for the prestress levels: (a) the 4th level;
(b) the 13th level.

3. Results

The presentation of the obtained results are divided into two subsection, from which the second
part of the experimental study on our own physical model is of great interest. The modal parameters of
the tensegrity simplex, which were determined utilizing the toolbox [29], are presented and discussed
in this part together with recorded data as obtained in impact hammer tests.

3.1. Numerical Analysis on Small Vibrations

As mentioned before, a linearization of vibrations around the equilibrium state was assumed.
For a chosen pre-stress level, these vibrations are determined in numerical analysis using equations of
motion as for a linear multi-degree-of-freedom system of the structure, i.e., by the system of ordinary
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differential equations governing vectors of order n of the displacements u(t) due to applied dynamic
forces p(t) in the matrix equation:

M
..
u(t)+C

.
u(t)+KTu(t)=p(t) (7)

where n is the number of independent degrees-of-freedom (DOF), the square matrices of order
nM, C, KT are the mass, damping and tangent stiffness matrices and

..
u,

.
u are the resulting acceleration

and velocity vectors. The complete solution u(t) consists of two contributions: the initial part of the
response induced by the initial conditions and the particular solution which satisfied the forcing function
p(t). When p(t) = 0, a very frequently occurring problem in structural dynamics is the free vibration
equation to be solved, usually by means of the finite element method as a linearized eigenproblem:

KTϕk −ω
2
kMϕk = 0, (8)

The solution lies in the spectral decomposition of the matrix M−1KT. It gives the natural modes
and frequencies of the analyzed structure. If the analyzed equlibrium state possess (n) DOFs, then the
spectral decomposition of (8) provides (n) frequencies ωk(ω1 < ω2 . . . < ωn) and (n) corresponding
eigenvectors ϕk.

According to the finite element method (FEM), the system matrices KT and M are typically
build from the element matrices kT and m, which are determined in the local coordinate system.
The geometric stiffness element matrix kG(S) dependent on the pre-stress level, and the elastic stiffnes
element matrix kE, build the tangent element matrix kT by simple addition. The element matrices for
the two-node straight finite element for the spatial truss are:

kT = kE + kG kE = EA0
l0

[
I0 −I0

−I0 I0

]
kG = S

l0

[
I −I
−I I

]
m =

ρA0l0
6

[
2I I
I 2I

]
+

[
m1I I

I m2I

]
I =


1 0 0
0 1 0
0 0 1

 I0 =


1 0 0
0 0 0
0 0 0


(9)

where S is the element force according to the self-stress and mi are masses of the nodes.
Some results of a numerical analysis of small vibration conducted by means of our own finite

element program are shown in Section 4. The coordinates as well as element lengths and numbering
used in the FE analysis are presented in Table 1 (each member is a single finite 3D truss element).
The Young’s moduli, cross section and mass per length of the elements were taken as shown in Table 2.
Calculations for two types of mass matrices were undertaken: a lumped-mass idealization with the
diagonal terms and for the consistent-mass formulation basing on the effective mass of the cables
calculated using the weight of the experimental model. The prestressing forces in cross-cables were
equal to the measured forces in these elements for each prestress level taken from Table 3. Prestress
forces in struts and horizontal cables were distributed using member lengths and the self-stress vector
from Equation (5) (based on the known forces in cross-cables). The numerical analysis of the tensegrity
simplex was performed for two types of boundary conditions: as a system of the nine dynamic
DOFs—three for every upper base traingle node with the bottom triangle fixed the floor, and as a
system of 12 DOFs with the bottom supports preventing six DOFs. In general, the boundary conditions
may have a great effect on the results of the numerical calculations. However, for the first natural
mode, the difference is negligible since the mode is rotational around the vertical axis. The difference
may be more visible for modes of a flexible type.

3.2. Processing the Signals and Modal Parameters

From the three known dynamic vibration tests, i.e., forced, ambient and combined, the first was
used with an excitaion induced by the impact hammer.
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In general, the well-known experimental modal analysis consists of: (1) recording of the signals,
(2) identification of the system and (3) approximation of the modal parameters. The last step can be
performed by free vibration analysing of the identified system model from step (2), i.e., by modal
decomposition. The model is a mathematical solution, estimated on a basis of measured data and can
be of parametric or non-parametric type. The latter can be described in a tablularized form, as for
example, the frequency response functions (FRF).

Using the Laplace transform of (7) and neglecting the initial conditions provides the
frequency-domain method for analysis of response of linear systems to excitations varying arbitrarily
with time in the matrix equation:

Z(s)U(s) = P(s), (10)

with the dynamic stiffness Z(s) = M s2 + C s + KT and s = iω, i =
√
−1. Inverting above

equation yields:
U(s) = H(s)P(s), (11)

with the transfer function matrix H(s) = Z−1(s). The frequency-domain method is an alternative
approach to the time-domain method and provides an efficient means of a predicting response.
The frequency response analysis can be particularly useful if the linear response of a system subjected
to a continuous series of harmonic excitations, i.e., to the periodic forcing function with a frequency
ω is sought. Steady-state response is then given as a frequency sweep through a specified range of
frequencies. The response for each excitation frequency ω can be determined from (11). The ‘response
function’ H(ω) is the Fourier transformation of the response matrix.

Each element of the matrix H(ω) can be itself a frequency response function (FRF) and it is most
likely to be able to measure in practice. From FRFs it is possible to determine modal characteristics of
structure, which are amenable to direct measurement. However, the measured frequency response
functions ought to be subjected to a range of curve-fitting procedures in an attempt to find the
mathematical model, which provides the closest description of actually observed behavior. According
to the modal theory of mechanical systems, the FRF matrix can be decomposed as:

H(ω) =
N∑

r=1

(
φrL

T
r

iω− λr
+

φ∗rL
H
r

iω− λ∗r

)
, (12)

with such modal parameters as the poles λr = σr + iωr, vectors of the mode r, the mode shape φr

and modal participation factors Lr. One element λr contains both the natural frequencies fr and
damping ratios dr for the rth normal mode of vibration. They can be determined as fr = ωr/(2π),

dr = −σr/
√
σ2

r +ω2
r , where the number of modes may differ from the number of measured output

degrees of freedom and the number of input forces. The meanings of symbols used in (12) are: (.)∗—a
complex conjugate, (.)T—a transpose of the matrix, (.)H—a complex conjugate transpose of the matrix
(a Hermitian transpose).

To identify modal characteristics of the simplex three steps have been chosen: (1) the hammer
test, (2) the method pLSCE and (3) a stabilisation diagram with peak picking. All steps of the
experimental modal analysis (EMA) were performed using the Macec toolbox [29], using the
deterministic poly-reference least squares complex frequency domain method (pLSCF).

The natural frequencies identified are gathered in Table 4, while natural modes are presented in
Figure 5. The modal parameters are obtained by connecting the results of modal testing through all
setups. Two types of vibration were identified, a so called rotational and flexural mode. By rotational
vibrations we will denote rotations of the upper horizontal triangle around the vertical z axis, i.e.,
three upper nodes are moving along the circle inscribed in the equilateral triangle of these upper nodes
(Figure 5a). By flexural vibrations we will denote the rotations of the upper base triangles around the
horizontal y axis (Figure 5b).
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Table 4. First five natural frequencies for 13 prestress levels.

Frequency [Hz] of Mode No: Frequency [Hz] of Mode No:

no 1 r 2 f 3 f 4 f 5 r no 1 r 2 f 3 f 4 f 5 r

1 3.36 11.3 15.8 - - 8 7.57 11.6 16.1 57.7 62.2

2 4.32 12.1 15.5 - - 9 8.2 11.5 15.9 57.6 62.7

3 5.29 11.9 15.8 58.4 - 10 8.7 11.6 15.8 57.8 -

4 5.87 12.0 16.3 58.4 - 11 8.98 11.9 16.3 58.5 62.8

5 6.4 12.1 16.4 58.5 62.5 12 9.19 12.0 15.9 58.2 62.8

6 6.78 11.4 15.6 58.0 - 13 9.54 11.7 16.3 - 63.2

7 7.12 11.6 16.0 58.3 62.5
r Mode of rotational type and f flexural type.
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Figure 5. The identified type of the natural modes for all prestress levels: (a) the rotational mode;
(b) the flexural mode.

The signals were recorded with a relatively high, for the test purposes, sampling frequency of
1500 Hz. The acceleration signals did not need such high frequency, yet to record the detail of the
short-time transient inducing signal generated by the impact hammer such a frequency was entered.
The signals lasted nearly 16 s. The post-processing of the recorded signals involved clearing the
offset and decimation by 10, which caused, due to the Nyquyst frequency and aliasing phenomena,
the maximum value of frequency being equal to 75 Hz.

Figure 6 presents as an example the signals from the 4th node accelerometer after the FFT for
directions x (upper), y (central) and z (lower) after the strike at azimuth 120 degrees (left) and 330 degrees
(right). Comparing two different strike azimuths, it is seen that different vibration frequencies were
induced. The strike of the direction perpendicular to the circle of the upper triangle at 330 degrees
is inducing the dominant, well visible, single flexural mode of vibrations at approximately 16 Hz.
This very strong visible frequency is presenting the mode, or as it is shown in stability diagrams,
two very closely situated modes. The strike at 120 degrees induces the rotational and flexural modes of
vibrations and can be used to find all modes. For this strike all directions of vibrations are showing the
same frequencies, although with the different intensity. The frequencies are most clearly seen and they
are of the flexural mode at approximately 16 Hz and less than those for the two rotational modes at
approximately 5 and 62 Hz. Nevertheless, only the 4y acceleration signal (in the middle of Figure 6)
shows clearly that the modes near 16 Hz are actually two different ones. This is not clearly visible when
looking only on the signals 4x and 4z. Therefore, measuring three orthogonal directions is helping to
find all modes that reveal themselves with different intensity.

Figure 7 presents the acceleration signals in time domain (upper), in the frequency domain
(middle) and the power spectrum density of the acceleration in the frequency domain (lower) for the
4th (left) and 13th (right) prestress level. The comparison of the two presented signals shows, that the
first natural frequency has increased significantly after the increase of the pre-stress level. For the 4th
pre-stress level the concentration of natural frequencies gathers around the value of 6, 12 and 16 [Hz].
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At the 13th pre-stress level, the modes are clearer and sharper, and the dominant frequency is induced
around the value of 10 [Hz]. The diagram of the PSD acceleration presents an increase of the first mode,
which is visible with the increase of the prestress level, where a change from approximately 6 to 10 Hz
has occurred.
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After the preparation of signals, the post-processing procedure was performed in order to extract
natural modes and frequencies. The pLSCF method was used with the following parameters: frequency
1%, damping 5%, vector 1%, transfer norm 50%, the minimum modal phase collinearity 95% and
minimum two identified natural modes in one setup. The explanation of the identification parameters
and procedures can be found in e.g., [34].

Although choosing the frequency and modes from the stabilization diagram is somehow arbitrary,
as shown in an exemplary way in Figure 8, this issue is especially important for tensegrity structures,
where the resonance spectrum often includes very closely situated frequencies. This is the case for
frequencies around 16 Hz in Figure 8, which is a result of a high degree of a structure’s symmetry.
Therefore, third flexural mode (Table 4) had very closely related double eigenmodes. These double
natural modes are both presenting a flexural mode for different directions of vibrations. Hence,
interferring natural frequencies can be an obstacle in recognizing the correct resonance and is
susceptible to human error. The natural frequencies and modes are better or worse seen in the
stabilization diagrams, which are subjected to the direction of the measured and induced signal
(Figure 8). To find a certain type of mode, it is good to induce only this mode. Figure 8b presents
finding only two modes, both of the rotational type, after inducing the impulse for the tangential
direction. To find all modes of the structure, it may be good to induce generally more of them by
applying a randomly directed signal, such as presented in Figure 8a in the direction of 120 degrees for
node P4, wherein one can see at least five modes of the rotational and flexural type.
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4. Discussion

The first frequency depends on the self-stress state. This is due the fact that in the simplex one
infinitesimal mechanism can be identified. The phenomenon is known in the literature. In the absence
of prestressing, the first natural frequency should be zero, and after introducing the self-stress state,
it increases. The tendency of rising the natural frequency is clearly visible in the experimental test in the
first rotational mode. Successive frequencies are practically insensitive to changes of the prestress level.
The rotational modes do depend mainly on the geometrical stiffness matrix, which is a function of the
prestress level. Other modes are dependent only on the elastic stiffness matrix, which is dependent on
the material, cross section, geometry and boundary conditions.
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If the equilibrium equations of the representative node P6 of the simplex are considered under
the applied torque Mt = Ftr/3 associated to the rotation ϕ and under the uniform axial loading FZ,
the summation of all the forces acting in current configuration can be written as:

g1 = x1 − x3/2 + (x1 + 3x2 + x3) cos(ϕ+ π/3) −Mt sin(ϕ− 2π/3)/L2 = 0,
g2 = −x3

√
3/2 + (x1 + 3x2 + x3) sin(ϕ+ π/3) + Mt cos(ϕ− 2π/3)/L2 = 0,

g3 = −h(x1 + x3) + FZ/3 = 0,
(13)

where the vectors of the total vertical force FZ and of the moment Mt are acting along the Z-axis.
Solving the system of Equation (13) with respect to the torque Mt and for FZ = 0 leads to the

following constitutive law for the angle ϕ = θ+ 5π/6:

Mt = −x1
√

3L2 cos(ϕ−π/3) = x1
√

3L2 sinθ = k1(1− sN/s)
√

3L2 sinθ, (14)

where the linear elastic stiffness and the geometrically non-linear constitutive model of the cross-cable
x1 = Ns/s = k1 (1− sN/s) are assumed. If the cross-cables are elastic, while the horizontal triangles are
rigid, the length L = L0 = const, and the response of the rigid-elastic model of the simplex is obtained
in (14) in the form of the system of a single degree of freedom, which is a function of the self-stress level
p0. The same constitutive law as in (14) was derived in [35] starting from the model of a single degree
of freedom by means of the energy expression. The derivative of (14) Mt

′(θ) with respect the angle θ
gives the tangent torsional stiffness of the model and the initial modulus of the elastic response Kt as:

Mt
′(θ) = k1L2

√
3(1− sN/s) cosθ+ k1L4 sN

s3 sin2 θ

Kt = k1L2
√

3(1− sN/s) = k1L2
√

3 p0
1+p0

(15)

where the initial tangent torsional modulus Kt is zero if there is no prestress.
Using the modulus Kt, the first rotational frequency of the simplex at small amplitude can be

written as:

f0(Ns) =
1

2π

√
Kt

I0
=

1
2π

√
√

3Ns

mrsN[1 + Ns/(EsAs)]
, (16)

where the effective torsional stiffness Kt(151) is written depending on the prestress tension force in the
cross-cable Ns = EsAsp0, the mass moment of inertia about the simplex vertical axis for the three nodal
masses is I0 = mrL2 and mr denotes the reduced mass of one node. Figure 9 presents the comparison
between the experimental results and the formula (16) and the results from the FEM. Additionally,
the relationship between the square frequency and the force in the cross-cable is shown. The curve (16)
is fitted into the experimental results by means of the curve fitting procedure performed in Matlab [28].
The excellent fit is achieved for the reduced mass mr = 0.5mn, where the mass of the one node mn is
calculated by dividing the weight of the experimental model by six. In the curve fitting procedure,
the formula (16) was treated as a parametric equation with the mass mr as the parameter. The fitting
procedure was constructed by changing the mass mr to match the theoretical solution (16) to the
experimental data. The non-linear least-squares fitting procedure was used, in which the best fit was
found for the sum of squares to errors SSE = 1.144 and for the square of the multiple correlation the
R-square Rsq = 0.9745. The statistics SSE is indicating a better fit with a value closer to zero. For the
R-square statistics the better the fit, the closer the values to one. The sensitivity of the frequency to the
self-stress state is high enough to be successfully used to control the dynamic properties of the simplex.
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Figure 9. The effect of the prestress level on: (a) the first natural frequency; (b) the square of the first
natural frequency.

The results from the FEM are presented for a lumped-mass idealization of the finite element
mass matrix with the diagonal terms mr = 0.5mn and for the consistent-mass formulation with the
calculated effective mass of the cables based on the weight of the experimental model. Very good
agreement with formula (16) and with the experiment was found for the lumped-mass approach. In the
case of the consistent-mass approach, the agreement is worse, although the change of the frequency
has similar, non-linear characteristics during the prestress in the experiments and FEM calculations.
In the FEM calculations the first frequency increases in proportion to the square root of the prestress
force in the cross-cable. The difference between the experiments and numerical calculations for the
consistent mass matrix decreases with the increase of the prestressing from approximately 60% for the
first level through 30% for the fourth to 20% for the 13th level. For the level greater than 1.5 kN the
difference is less than 25%, which may be acceptable at the moment, considering the very complex
mass distributions in the physical model. It was observed in the experiments when the structure was
not prestressed, the gravity caused heavy elements such as nodes to create a little prestress, which is
not taken into account in the numerical analysis. Considering both the FEM calculation, quite good
agreement was found between results of the finite element method and experimental tests.

It seems that the external loads should act similar to the prestressing. They cause the additional
prestress. However, their effect should be greater with the lower prestress level due to the fact that
with the increase of the prestressing the member forces caused by the external load gradually decrease
relative to the prestress and their effect on the vibration frequency decreases.

Although non-linear analysis should be used to calculate the static load response of the tensegrity
structure, the dynamic response can often be linearized around the equilibrium state corresponding
to a designed prestress level and small vibrations can be analyzed. It was shown in the paper that
the natural frequencies and modes of the simplex can be obtained using the experimental modal
analysis approach. Also, usage of the finite element method in numerical simulations, allows to
control the stiffness by regulating the level of pre-stressing. However, practice shows that there are
some difficulties and an experimental validation can bring useful information, especially if the natural
frequencies of the structure are measured and filtered from the whole experimental vibration spectrum.

The effect of self-stress on the overall stiffness of the tensegrity simplex was shown experimentally.
The tendency of increasing the first natural frequency with an increase of the prestressing is clear
visible in the experiments. It was also shown that adjustment of self-stress levels by means of the
prestressing can also be used to control the dynamic properties of tensegrity simplex as the structures
with one infinitesimal mechanism.

The vulnerability of tensegrities to dynamic excitation can be an important design issue due to their
slenderness and lightness. The experimental validation of designed parameters, in particular modal
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ones, is essential for proper design in terms of load-bearing capacity and serviceability. Moreover,
it serves as a quality control indicator for structural health monitoring purposes.
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