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Abstract: The performance of speech enhancement algorithms can be further improved by considering
the application scenarios of speech products. In this paper, we propose an attention-based branchy
neural network framework by incorporating the prior environmental information for noise reduction.
In the whole denoising framework, first, an environment classification network is trained to distinguish
the noise type of each noisy speech frame. Guided by this classification network, the denoising
network gradually learns respective noise reduction abilities in different branches. Unlike most deep
neural network (DNN)-based methods, which learn speech reconstruction capabilities with a common
neural structure from all training noises, the proposed branchy model obtains greater performance
benefits from the specially trained branches of prior known noise interference types. Experimental
results show that the proposed branchy DNN model not only preserved better enhanced speech
quality and intelligibility in seen noisy environments, but also obtained good generalization in unseen
noisy environments.

Keywords: speech enhancement; attention mechanism; noise classification; branchy deep neural network

1. Introduction

Speech enhancement techniques have been widely used to cope with the noise interference
problem in the front end of many speech applications, such as mobile phones, hearing aids, and speech
recognition products. The early conventional methods paid more attention to the optimization of
suppression gain function [1–3], the estimation of the noise spectrum [4–6], and prior signal-to-noise
ratio (SNR) [7,8]. In recent years, deep neural network (DNN)-based speech enhancement methods
have shown significant performance advantages over the traditional approaches in complex noise
environments, even the extremely nonstationary noises. Whether utilizing masking-based [9–11] or
mapping-based [12–17] DNN methods, their general rule is to optimize the loss function between
the ideal and noisy targets to achieve as little error as possible in the global noisy speech dataset.
Consequently, richer datasets, and a better objective function and neural network models were
further explored to guarantee the robust generalization ability of DNN models to cope with the
diversified noise environments in real life. In the research of [14], experimental results demonstrated
that the richness of the clean speech samples and the noise samples were the two crucial aspects to
improve the generalization capacity of DNNs. Recently, researchers have paid more attention to the
optimization of DNN models for the speech enhancement task. Considering the temporal relationship
of speech signals, long short-term memory (LSTM) networks [18] and temporal convolutional
networks (TCN) [19] have been proven to have better speech reconstruction capacities for speech
enhancement. In addition, the optimization of the objective function [20,21] has also been explored
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for the performance improvement of DNN-based speech denoising. Generative adversarial networks
(GAN) [22] have been another new solution to train the DNN model to learn noise suppression abilities.
These methods aim to train a common DNN denoising model for all kinds of noise interference in
different application scenarios.

However, most speech products have their specific application scenarios. When the application
scenario is determined, the types of noise interference are known. In different noise environments,
the optimal parameters of speech enhancement algorithms are different. As investigated in [23],
this prior environmental information was helpful to further improve the speech enhancement methods
to achieve better noise suppression effect in specific noise environments. Therefore, some researchers
started to design the speech enhancement algorithms by incorporating the prior noise information.
In [24–26], the noise classification module was integrated into the Wiener filter and some statistical
model-based speech estimators. Guided by the noise classification module for optimal parameter
selection, the performance of traditional methods was further improved in prior known noisy
environments. A similar idea was applied to the DNN-based denoising algorithms [27–29]. In the
recent studies of [28,29], under the guidance of the noise classification unit, several independent
DNN models were trained to give full play to their respective noise reduction capabilities in different
noise environments. Although this “divide and conquer” strategy effectively improves the noise
reduction performance, it also increases the storage burden and reduces the complementarity between
different noises.

In this work, we proposed a novel branchy neural network (BNN) framework to improve the
storage burden and noise complementarity problem of separate training. There are two key modules
working together in our proposed framework, a classification network and a denoising network. First,
the noise classification network is trained to analyze the presence probability of each noise component
for every input noisy frame. Then, the estimated noise presence probability (NPP) is an indicator of the
middle hidden layer in the denoising network, to determine which branchy path is opened for back
propagation or forward propagation. In addition to the above “special branches” for noise reduction,
the denoising network also learns a “common branch” in the middle layer which further improves the
generalization performance of branchy model in unseen noise environments.

The paper is organized as follows: Section 2 describes the model design and the theoretical
analysis of the proposed speech enhancement algorithm; in Section 3, a set of experiments for the
denoising performance evaluation are conducted; finally, Section 4 concludes the paper.

2. Branchy Neural Network with Attention Mechanism

The proposed architecture of the branchy neural network is shown in Figure 1. The proposed
method consists of two modules, a classification neural network and a denoising neural network.
The denoising neural network, which looks like a “sandwich”, has multiple branches in the middle
layer to suppress different noise interference in specific application scenarios. The classification neural
network acts as a multidirectional attention switch in the whole framework and produces the estimated
NPP of each noise components to determine the contribution of each branch to noise reduction.
These two key modules are described in the following subsections.
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Figure 1. Illustration of the proposed branchy neural network structure that has two key modules,
a classification neural network and a denoising neural network.

2.1. Classification Neural Network for Attention Allocation

The classification neural network is designed as a three-layer fully connected network, which has
m output neurons in the output layer to predict the NPP of m noise interference types. Its hidden layer
has 2048 neurons with rectifier linear activation units (ReLU) to ensure sufficient model capacity for
noise classification. Considering the multiple noises in different application scenarios, multi-classified
softmax cross-entropy function is used as the loss function for DNN training:

Class_Loss = −
1
m

m∑
i=1

Ti log(
ezi

m∑
j=1

ez j

) (1)

where Ti represents the i-th ideal noise label for learning, m denotes the number of class categories,
z denotes the output vector of the fully connected layer, and zj represents the j-th value of vector z.
The SoftMax function in Equation (1) ensures that the sum of attention allocation is one.

To further strengthen the noise classification accuracy of the classification network, a noise-aware
feature is extracted for each input frame. Since the NPP is related to the posteriori signal-to-noise ratio
(SNR) levels, a weighted average approach based on the hard threshold in log power spectrum (LPS)
domain is proposed to update the noise spectrum feature of each frame, as shown in Equation (2):

i f Y(k,t)
N̂(k,t−1)

< β

N̂(k, t) = αN̂(k, t− 1) + (1− α)X(k, t)
else

N̂(k, t) = N̂(k, t− 1)
end

(2)

where X(k, t) is the noisy speech LPS calculated from the input signals of each time frame, N̂(k, t) is the
estimated noise LPS, k and t represent the frequency and frame index, respectively, α is the smoothing
factor (which is fixed as 0.9 here), and β is the posteriori threshold; the empirical value of β = 2.5
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gives a good compromise between underestimation and overestimation of the noise spectrum [30].
In addition, the concatenated input features are normalized to a mean value of zero and a variance of
one, beneficial for gradient descent.

After model training, the classification network produces the NPP of each noise type in its output
layer. As shown in Figure 1, pn1 , . . . , pnm represent the presence probability of m noises, nm is the
index of different noise types, and the sum of these probability values is one. This means that the
classification network analyzes and generates the proportion of noise components for each noisy input
frame, and therefore controls the attention emphasis of the denoising network on different branches.
These estimated NPP values are regarded as the prior environmental information for the training and
testing of the denoising neural network.

2.2. Denoising Neural Network with Attention-Based Branchy Structure

To make the neural network more sensitive to the changes of the noise environment,
the concatenated noise-aware features are also adopted as the input of our proposed denoising
neural network. In addition, as shown in Figure 1, the denoising network has m + 1 branches, in which
the first m branches are special branches, and the last branch is the common branch. Each special
branch is used to suppress a specific noise, while the common branch can handle all noise interferences.
As the mean squared error (MSE) criterion in the log domain is more consistent with the human
auditory system [31], the proposed branchy DNN model is trained with the following loss function:

Regress_Loss =
1

N ·K

N∑
t=1

K∑
k=1

(Ŷ(k, t) −Y(k, t))2
(3)

where Ŷ(k, t) and Y(k, t) are the enhanced speech LPS and clean speech LPS, respectively, with K
denoting the frame size of clean LPS spectrum, and N representing the number of frames in each
mini-batch. They are also normalized by the mean and variance of input features.

The proposed denoising neural network has three hidden layers and m + 1 branches are divided in
the middle hidden layer to achieve environment-aware noise reduction effect. The first and last hidden
layers have 2048 neurons, and each branch in the middle hidden layer has 1024 neurons. During model
training, the estimated NPP is multiplied on the neurons of each branchy layer to control the direction
of back propagation, and therefore trains specified denoising paths of the middle layer. If the middle
layer is indexed as the l-th layer, its output can be expressed as:

Zl,i = pni ∗ (Wl,iAl−1 + bl,i)

Al,i = g(Zl,i), i = 1, 2, . . . , m
(4)

where Zl,i and Al,i represent the linear and non-linear output of the i-th branch layer, respectively, g(·) is
the ReLU activation operation, and ∗ denotes cross multiplication. When back propagation is carried
out, the parameter update of each branch is affected by the estimated NPP, which is derived as follows
(see detailed derivation in Appendix A):

dWl+1,i = σJWl+2 ∗ g′(Zl+1)g[pni ∗ (Wl,iAl−1 + bl,i)], i = 1, 2, . . . , m
dbl+1,i = σJWl+2 ∗ g′(Zl+1)

(5)

dWl,i = σJWl+2 ∗ g′(Zl+1)Wl+1,ig′(Zl,i)pni ∗Al−1, i = 1, 2, . . . , m
dbl,i = σJWl+2 ∗ g′(Zl+1)Wl+1,ig′(Zl,i)pni

(6)

where σJ represents the gradient of regression loss function. As shown in Equations (5) and (6), if the
NPP value pni is close to zero, the gradients of Wl+1,i, Wl„i, and bl,i are close to zero, which means
that the gradient update of weights on both sides of the i-th branch layer are blocked. As the model
training proceeds, each branch gradually learns the specific denoising ability for a certain kind of
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noise. It should be noted that only the first m branches of the l-th and (l + 1)-th layers process the
noise separately; the (l − 1)-th and (l + 2)-th layers still learn some general characteristics for noise
reduction. Furthermore, to better retain the complementary advantages of multiple noises, the last
branch ((m + 1)-th branch) in the middle layer is designed as a common path for gradient descent
without the influence of NPP. The gradients of the l-th and (l + 1)-th layers related to the (m + 1)-th
branch are derived in the following Equations (7) and (8):

dWl+1,m+1 = σJWl+2 ∗ g′(Zl+1)g(Wl,m+1Al−1 + bl,m+1)

dbl+1,m+1 = σJWl+2 ∗ g′(Zl+1)
(7)

dWl,m+1 = σJWl+2 ∗ g′(Zl+1)Wl+1,m+1g′(Zl,m+1)Al−1
dbl,m+1 = σJWl+2 ∗ g′(Zl+1)Wl+1,m+1g′(Zl,m+1)

(8)

3. Experiments and Results

3.1. Experimental Settings

Our proposed algorithm was trained and evaluated on the TIMIT speech database [32] corrupted
by the noises from Noisex-92 noise database [33]. Six noises were selected to generate the noisy speech
database. Each selected noise file was split into three non-overlapping sections used for training
(60%), validation (20%), and test (20%). From the TIMIT training set, 4620 utterances were mixed
with four noises (babble, factory1, destroyer engine, and destroyer operation noises) to generate the
12.5 h noisy speech training database. A total of 280 utterances from the TIMIT test set were mixed
with the validation section of the same four noise types to generate the noisy speech validation set.
The mixed SNR levels followed the uniform distribution in the range of −5 to 15. For the denoising
performance evaluation of the DNN model, 320 unseen utterances from the TIMIT test set were mixed
with four seen noises and two unseen noises (pink, factory2) to generate the noisy speech test set.
The SNR levels of each test noisy speech were fixed at −5, 0, 5, 10, and 15 dB to obtain insights into
performance at different degradation levels. The perceptual evaluation of speech quality (PESQ) [34]
and the short-time objective intelligibility (STOI) [35] were adopted as two metrics to evaluate the
enhanced speech quality and intelligibility.

All the aforementioned clean speech and noise signals were resampled to 16 kHz before mixture
generation. For the input of the proposed model, 514-dimensional noise-aware features were extracted
by performing the short-time Fourier transform (STFT) on noisy signals using a 512-point Hamming
window with 50% overlap. During model training, first, the classification network was trained, for five
epochs, in each mini-batch with 1024 frames, by following the Adam optimization method [36] with a
learning rate of 0.0001. Then, the denoising network was trained for 30 epochs under the guidance of
the well-trained classification network. It was also optimized, by the Adam method with the learning
rate of 0.0002, in each mini-batch with 1024 frames. To reduce the influence of overfitting, batch
normalization [37] and a dropout strategy [38] (0.2 dropout rate) were applied in the hidden layers of
the classification and denoising networks.

3.2. Performance Evaluation of Branchy Neural Network

3.2.1. Classification Accuracy Evaluation

In our proposed DNN framework, the classification network plays an important role in the
process of back propagation and forward propagation. Assuming that the proposed approach works
in an application scenario with four known noise interferences (babble, factory1, destroyer engine,
and destroyer operation noises), the classification network needs to have sufficient accuracy to lead the
denoising network to learn specific branches in the training stage and distinguish the noise types in the
test stage. We performed experiments to evaluate its classification accuracy in the generated training
and validation datasets, as shown in Table 1. The “Noisy LPS” denotes that the classification network



Appl. Sci. 2020, 10, 1167 6 of 14

only used the noisy log power spectrum (LPS) feature, and “Noisy LPS + Noise LPS” represents that
the estimated noise log power spectrum features were concatenated with the noisy LPS for noise
classification. Furthermore, the evaluation of classification accuracy in the validation dataset reflects
the generalization performance of the model. The experimental results in Table 1 show that the
presented classifier with the estimated noise LPS features contributed to better performance in noise
classification and model generalization. The classification accuracy in the training and validation
datasets is more than 99%, which means that the proposed classification module has sufficient ability
to guide the training and testing of the denoising module.

Table 1. Classification accuracy results in train and validation datasets.

Classification Accuracy (%)
Input Features

Noisy LPS Noisy LPS + Noise LPS

Train dataset 97.41 99.92
Validation dataset 94.55 99.64

3.2.2. Denoising Performance Evaluation

The noise classification guided denoising model with four special branch paths only (denoted as
CGBNN-4) and the denoising model with four special branches and one common branch (denoted
as CGBNN-5) were tested for performance evaluation in the seen and unseen noise cases of the test
dataset. Each special branch is designed to suppress a specific type of noise interference, and the
common branch is designed for the suppression of all four noises. That is, unlike CGBNN-4, which only
considers the dedicated system for noise reduction, CGBNN-5 adopts both the dedicated system and
the general system for noise reduction.

To further evaluate the model superiority of our proposed branchy neural network, we compared
the performance results of PESQ and STOI between two branchy methods and two DNN methods
without environmental noise information. The classical fully connected DNN model [13] with three
hidden layers and the state-of-the-art method [18] using LSTM for progressive learning are denoted as
“DNN baseline” and “LSTM-PL”, respectively, as shown in Figure 2. The unprocessed noisy speech
(denoted as “Noisy”) is also presented in Figure 2 to show how much performance has been improved.
In addition, Figure 2 presents the denoising performance results of four DNN-based methods in
four seen and two unseen noise environments. Figure 2a,b shows the averaged PESQ results in the
seen and unseen noise environments. These results demonstrate that the CGBNN-4 and CGBNN-5
achieved better quality of reconstructed speech than the classical DNN baseline and LSTM-PL method.
The strategy of combining expert systems (special branch) with an omnipotent system (common branch)
enables the CGBNN-5 to have the best denoising performance and generalization ability. Compared
with the LSTM-PL and DNN-baseline method, the proposed CGBNN-5 achieved an averaged PESQ
improvement of 7.24% and 4.26% in seen noise cases and 3.94% and 5.32% in unseen noises, respectively.
For the speech intelligibility evaluation, Figure 2c,d shows the averaged STOI results in the seen
and unseen noise environments. The proposed CGBNN-5 achieved an averaged STOI improvement
of 2.26% and 2.68% over the DNN-baseline in seen and unseen noise cases, respectively. Although
the proposed CGBNN-5 does not perform better than the LSTM-PL method, the CGBNN-5 has
lower computational complexity than the LSTM-PL. The feed-forward operation saves more model
parameters than the recursive operation of LSTM networks. Furthermore, the proposed CGBNN-5 did
not achieve improvement for the STOI measurement in a high SNR condition (15 dB), but it still made
contributions on the improvement of PESQ in the 15 dB SNR case.
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Figure 2. Averaged perceptual evaluation of speech quality (PESQ) and short-time objective
intelligibility (STOI) results obtained for noisy and deep neural network (DNN) enhanced speech in
seen and unseen noisy environments. (a) PESQ in seen noises; (b) PESQ in unseen noises; (c) STOI in
seen noises; (d) STOI in unseen noises.

3.3. Performance Comparison with Other Environment-Aware Methods

The proposed method was compared with the DNN-based approaches without prior noise
information for performance evaluation. However, the performance difference between the proposed
method and other environment-related speech enhancement algorithms is unknown. In this section,
we compare the denoising performance of the proposed speech enhancement approach (CGBNN-5)
with three classic environment-aware algorithms in the specific application scenarios. The noise
classification-based minimum mean square error speech estimator (MMSE) [25] and the optimally
modified log-spectral amplitude (OMLSA) speech estimator [26] were evaluated to compare speech
quality and intelligibility. Both of them were tested in the same application scenario with four known
noise interferences. These two methods are denoted as NC-MMSE and NC-OMLSA in Figure 3.
Additionally, the separate DNN denoising method with noise classification [29] (denoted as NC-DNN)
was tested for performance comparison purposes. Figure 3 shows the averaged PESQ and STOI
results of the above environment-aware methods in our test dataset. An intuitive comparison of the
reconstructed speech spectrogram between the proposed CGBNN-5 and three comparing algorithms
in four specific noise environments are shown in Figure 4. The comparison results of DNN model sizes
are listed in Table 2. The model sizes were normalized by the NC-DNN model to make the comparison
look more obvious.
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Table 2. Comparison of the normalized model size.

Comparing Methods NC-DNN CGBNN-5

Model size 1 0.65

The averaged PESQ results, in Figure 3, demonstrate that the proposed CGBNN-5 outperforms
the other environment-aware methods in SNR ranges from −5 dB to 15 dB. Compared with NC-MMSE
and NC-OMLSA, the average PESQ of CGBNN-5 increased by 16.22% and 12.02%, respectively, in four
specific noise environments. The PESQ value of CGBNN-5, in this paper, achieved an averaged
improvement of 3.8% over the state-of-the-art method, NC-DNN. According to the STOI results
in Figure 3, the performance improvement of CGBNN-5 and NC-DNN is significantly better than
that of NC-MMSE and NC-OMLSA. The CGBNN-5 achieved an averaged STOI improvement of
12.3% and 14.75% over NC-MMSE and NC-OMLSA, respectively, in the specific application scenario.
Compared with NC-DNN, CGBNN-5 did not show great advantages, but it also achieved a 1.74%
increase in STOI. Although the averaged STOI score of CGBNN-5 in 15 dB SNR is not the best,
its scores in the range from –5 dB to 10 dB are still significantly better than the other three methods,
that is, the proposed branchy model with prior noise information can obtain better speech quality and
intelligibility than the other three methods in specific application scenarios. Furthermore, according
to the spectrogram details of enhanced speech in Figure 4, it is clear that the DNN-based denoising
methods (NC-DNN and CGBNN-5) achieve less speech distortion and retain less residual noise as
compared with statistical-based approaches (NC-MMSE and NC-OMLSA). We also calculated the
signal-to-distortion ratio (SDR) [39] to measure the speech distortion introduced by the denoising
algorithms. Results show that the proposed CGBNN-5 obtains the enhanced SDR values of 6.74 dB in 0
dB SNR cases for four specific noise interferences. The enhanced SDR values of NC-DNN, NC-OMLSA,
and NC-MMSE are lower under the same conditions, which are 6.05 dB, 6.30 dB, and 6.13 dB,
respectively. For the evaluation of residual noise levels, the enhanced SNR of CGBNN is 4.85 dB, that is,
higher than NC-DNN (4.12 dB), NC-OMLSA (3.29 dB), and NC-MMSE (2.63 dB). CGBNN-5 yields
better speech quality and intelligibility than the NC-DNN model, while reducing the memory storage
burden by 35%, as shown in Table 2.

4. Conclusions

In this paper, we investigated the effect of prior environment information for the performance
improvement of DNN-based speech enhancement algorithms. An environment attention guided
branchy neural network was proposed to cope with the noise interference problem in some known
application scenarios. Compared with the DNN models without prior environment information,
the idea of combining special paths with a common path in a branchy layer significantly improves
denoising performance and model generalization ability. Moreover, the comparison experiments with
the classic environment-aware methods show that the proposed branchy DNN model not only achieves
better reconstructed speech quality and intelligibility, but also improves the storage burden and
noise complementarity problem of separate DNN training. Therefore, the proposed method is more
suitable for many speech products to deal with the noise interference problem in specific application
scenarios. Although our branchy DNN model performs better than other environment-related methods,
the complexity of the DNN model still increases with an increase of noise in application scenarios.
The denoising performance of the proposed method in unseen noises is worse than that in seen
noises. There are some ideas for future studies to further improve the denoising performance of the
algorithm and overcome the increase of model size in complex noisy environments. Some traditional
signal processing approaches could be adopted to reduce the burden of end-to-end DNN models. For
example, the input signals could be decomposed into sub-bands to reduce the number of features
that need to be reconstructed. The phase reconstruction problem needs to be considered in low SNR
conditions to improve the enhanced quality of speech. The temporal relationship of speech signals is
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helpful to improve the generalization ability of the DNN-based speech enhancement method. In our
future research, we plan to explore these approaches in-depth to further improve our algorithm to
achieve more robust noise reduction.

Author Contributions: L.Z. and M.W. contributed equally in conceiving the overall proposal, and critically
reviewed and implemented the final revisions; L.Z. supervised all aspects of this DNN architecture, design,
and realization of the experiments, collection, and analysis of the data, and writing of the manuscript; Q.Z. and
M.L. critically reviewed and implemented the final revisions. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the Basic Research Program grant funded by the Shenzhen
Government (JCYJ20170412151226061, JCYJ20180507182241622).

Acknowledgments: The authors would like to thank the anonymous reviewer for their helpful advice to improve
the quality of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

In this Appendix, we present the details on the derivation of gradient propagation in the proposed
denoising neural network, and its structure is shown in Figure A1. In the training stage, the MSE
objective function is used as the optimization target, which is given by the sum of the mean square loss
of each frequency bins in every mini batch:

JMSE =
1

N ·K

N∑
t=1

K∑
k=1

(Ŷ(k, t) −Y(k, t))2
(A1)

where JMSE is the optimization target, and K and N denote the feature size of each output frame and
the number of frames in each mini-batch, respectively. Y(k, t) is the ideal target for model learning and
Ŷ(k, t) represents the estimated LPS feature from the forward propagation of the proposed denoising
model. Equations (A2) to (A6) present the detailed forward propagation process:

Zl−1 = Wl−1X + bl−1
Al−1 = g(Zl−1)

(A2)

Zl,i = pni ∗ (Wl,iAl−1 + bl,i)

Al,i = g(Zl,i), i = 1, 2, . . . , m
(A3)

Zl,m+1 = Wl,m+1Al−1 + bl,m+1
Al,m+1 = g(Zl,m+1)

(A4)

Zl+1 =
m+1∑
i=1

(Wl+1,iAl,i + bl+1,i)

Al+1 = g(Zl+1)
(A5)

Ŷ = Wl+2Al+1 + bl+2 (A6)

where a middle hidden layer of the branchy model is indexed as l, and subscript i denotes its branch
index. X and Ŷ represent the concatenated noise-aware input features and enhanced LPS features,
respectively. pni is the estimated noise attention weight from the classification neural network. In the
test stage, the extracted noise-aware features, X, are fed to the branchy model to conduct the above
forward propagation with applying attention weights, which will produce the enhanced LPS features
Ŷ for speech reconstruction.
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After each forward propagation in one mini-batch, the gradients of MSE loss are calculated with
chain rule and propagates from top to bottom layer by layer, as shown in Equations (A7) to (A12):

dWl+2 =
∂JMSE
∂Ŷ

∂Ŷ
∂Wl+2

= 2
N·K

N∑
t=1

K∑
k=1

(Ŷ(k, t) −Y(k, t))Al+1

dbl+2 =
∂JMSE
∂Ŷ

∂Ŷ
∂bl+2

= 2
N·K

N∑
t=1

K∑
k=1

(Ŷ(k, t) −Y(k, t))

(A7)

According to Equation (A7), the gradients of the (l + 2)-th layer (output layer) are not affected by
the attention weights, but the hidden layers below it will be affected by the factor pni as follows:

dWl+1,i =
∂JMSE
∂Ŷ

∂Ŷ
∂Al+1

∂Al+1
∂Zl+1

∂Zl+1
∂Wl+1,i

= 2
N·K

N∑
t=1

K∑
k=1

(Ŷ(k, t) −Y(k, t))Wl+2 ∗ g′(Zl+1)Al,i

= σJWl+2 ∗ g′(Zl+1)g[pni ∗ (Wl,iAl−1 + bl,i)], i = 1, 2, . . . , m

dbl+1,i =
∂JMSE
∂Ŷ

∂Ŷ
∂Al+1

∂Al+1
∂Zl+1

∂Zl+1
∂bl+1,i

= 2
N·K

N∑
t=1

K∑
k=1

(Ŷ(k, t) −Y(k, t))Wl+2 ∗ g′(Zl+1)

= σJWl+2 ∗ g′(Zl+1)

(A8)

dWl+1,m+1 =
∂JMSE
∂Ŷ

∂Ŷ
∂Al+1

∂Al+1
∂Zl+1

∂Zl+1
∂Wl+1,m+1

= σJWl+2 ∗ g′(Zl+1)Al,m+1
= σJWl+2 ∗ g′(Zl+1)g(Wl,m+1Al−1 + bl,m+1)

dbl+1,m+1 =
∂JMSE
∂Ŷ

∂Ŷ
∂Al+1

∂Al+1
∂Zl+1

∂Zl+1
∂bl+1,m+1

= σJWl+2 ∗ g′(Zl+1)

(A9)
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where the gradient value of ∂JMSE
∂Ŷ

is simplified as σJ in the derivation process, and ∗ denotes the
multiplication cross. Obviously, the gradients of Wl+1,i in the first m branches are controlled by the
attention factor pni . When pni is close to zero, the gradient of Wl+1,i is close to zero. This gradient
blocking effect of pni is further back-propagated to the lower layer as derived in Equation (A10):

dWl,i =
∂JMSE
∂Ŷ

∂Ŷ
∂Al+1

∂Al+1
∂Zl+1

∂Zl+1
∂Al,i

∂Al,i
Zl,i

∂Zl,i
Wl,i

= σJWl+2 ∗ g′(Zl+1)Wl+1,ig′(Zl,i)pni ∗Al−1, i = 1, 2, . . . , m

dbl,i =
∂JMSE
∂Ŷ

∂Ŷ
∂Al+1

∂Al+1
∂Zl+1

∂Zl+1
∂Al,i

∂Al,i
Zl,i

∂Zl,i
bl,i

= σJWl+2 ∗ g′(Zl+1)Wl+1,ig′(Zl,i)pni

(A10)

dWl,m+1 =
∂JMSE
∂Ŷ

∂Ŷ
∂Al+1

∂Al+1
∂Zl+1

∂Zl+1
∂Al,m+1

∂Al,m+1
Zl,m+1

∂Zl,m+1
Wl,m+1

= σJWl+2 ∗ g′(Zl+1)Wl+1,m+1g′(Zl,m+1)Al−1

dbl,m+1 =
∂JMSE
∂Ŷ

∂Ŷ
∂Al+1

∂Al+1
∂Zl+1

∂Zl+1
∂Al,m+1

∂Al,m+1
Zl,m+1

∂Zl,m+1
bl,m+1

= σJWl+2 ∗ g′(Zl+1)Wl+1,m+1g′(Zl,m+1)

(A11)

From Equation (A10), it is found that the similar blocking effect of attention factor on the first m
branches also affects the gradient update of Wl,i and bl,i. That is, in the branchy layer of the proposed
DNN model, the attention factor controls whether back propagation is turned on or not. However,
according to Equations (A9) and (A11), the (m + 1)-th branchy layer without attention factor still
updates the gradients in each back propagation and learns some general denoising characteristics.
Furthermore, the (l − 1)-th hidden layer also learns the general denoising abilities in each gradient
update, as shown in Equation (A12).

dWl−1 =
∂JMSE
∂Ŷ

∂Ŷ
∂Al+1

∂Al+1
∂Zl+1

∂Zl+1
∂Al,i

∂Al,i
Zl,i

∂Zl,i
Al−1

∂Al−1
∂Zl−1

∂Zl−1
∂Wl−1

= σJWl+2 ∗ g′(Zl+1)[
m∑

i=1
Wl+1,ig′(Zl,i)pni ∗Wl,i + Wl+1,m+1g′(Zl,m+1)Wl,m+1]g′(Zl−1)X

dbl−1 =
∂JMSE
∂Ŷ

∂Ŷ
∂Al+1

∂Al+1
∂Zl+1

∂Zl+1
∂Al,i

∂Al,i
Zl,i

∂Zl,i
Al−1

∂Al−1
∂Zl−1

∂Zl−1
∂bl−1

= σJWl+2 ∗ g′(Zl+1)[
m∑

i=1
Wl+1,ig′(Zl,i)pni ∗Wl,i + Wl+1,m+1g′(Zl,m+1)Wl,m+1]g′(Zl−1)

(A12)

Although the gradient expression of Wl-1 and bl-1 still has the attention factor, the sum operation
of pni in all m special branches is one for each back-propagation, which means that it will not affect the
gradient update of the (l − 1)-th layer.
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