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Abstract: Amplitude-comparison monopulse radar in tracking radar uses the tracking scheme of a
monopulse radar to estimate the angle components of a target. The performance of the amplitude
comparison monopulse radar under measurement uncertainty is analysed. Measurement noises
are modelled as Gaussian random variables. Taylor series expansion is adopted to get analytic
expression of the mean square error (MSE). Estimation accuracy, in terms of the MSEs for estimate
the direction-of-arrival (DOA) estimation algorithm, is usually obtained from the Monte Carlo
simulation, which can be computationally intensive especially for large number of repetitions in
the Monte Carlo simulation. To get reliable MSE in the Monte Carlo simulation, the number of
repetitions should be very large, which implies that there is a trade-off between reliability of the MSE
and computational burden in the Monte Carlo simulation. This paper shows the performance of
amplitude comparison monopulse radar by linear approximation of nonlinear equations to estimate
the DOA. The performance of amplitude comparison monopulse radar is quantitatively analysed
via the MSEs, and the derived expression is validated by comparing the analytic MSEs with the
simulation based MSEs. In addition, it is shown in the numerical results that analytically derived MSE
is much less computationally intensive in comparison with the Monte Carlo simulation-based MSE,
which implies that the proposed scheme in this paper results in drastic reduction in computational
complexity for evaluation of the MSE.

Keywords: tracking radar; amplitude comparison monopulse; mean square error (MSE); Taylor
expansion; approximation

1. Introduction

Radar can be largely divided into search and tracking radar depending on function. Search radar
is used to locate targets within a relatively wide space, and the target information acquired is the
distance, azimuth and elevation of the target. In contrast, tracking radar can continuously radiate
a very sharp pencil-beam towards an object providing precise spatial position information, such as
target distance, azimuth and elevation.

Monopulse radar is a representative tracking radar. Most modern radar seekers use the monopulse
technique. Monopulse is algorithm of estimating the angular location of a target by receiving a signal
from a target by multiple antennas and comparing amplitude and phase.

There are several ways to measure angle information, and the most commonly used method
is the amplitude comparison monopulse method, which compares the amplitude of the received
signal. The classical monopulse technique [1–6] is no longer useful, because the monopulse beams are
distorted due to several causes, which may lead to angle errors.

The previous papers [7–9] addressed the performance improvement of monopulse radars by
reducing the angular error of targets obtained through the monopulse algorithm. In [7], the authors
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consider the problem of detecting and estimating the angle information of a radar target that is
obtained by a number of antennas. The amplitude of the signal received by a number of antennas is
assumed to depend on the angle information of the target, but the time-of-arrival (TOA) of the signal
is assumed to be the same at all of the antennas. The generalised likelihood ratio test is used to express
the detection and parameter-estimation method for the radar receiver. In Gaussian noise environment,
accuracy formulas for the angle estimates, valid for high signal-to-noise ratios, are used to compare
the performance of an optimum four beam monopulse system.

In [8], it is shown how to permit successful communication and signal direction-of-arrival (DOA)
tracking in the presence of a large number of sidelobe interferers and a small number of main-beam
interferers. The author suggested to use an adaptive angle estimator, which would make its DOA
estimate based on the received signal pulse and on the previously observed covariance statistics of the
noises present at the four beam outputs.

In [9], the theory of adaptive arrays to the angular measurement problem has been addressed.
The maximum likelihood theory of angular measurement guides to adaptive sum and difference
monopulse beams. An algorithm for estimating DOA, based on the outputs of adaptively distorted
sum and difference monopulse beams, is shown to perform well in the presence of sidelobe and/or
main beam interference. Simulation of an array in external noise has shown that the estimator provides
good angular accuracy in both sidelobe interference and main beam interference environments.

In [10], the authors derived explicit expressions of a particular angle as a function of the phase
imbalance in the monopulse radar receiver channels. The amplitude-based angle (ABA) processor is
analysed and it is shown both analytically and by computer simulations that its performance in the
presence of glint is superior to that of the conventional or exact processor.

The effect of amplitude-phase non-consistency on the monopulse system has been studied in [11].
Also, it deals with the problem of resolution of multiple targets and presents a novel close-form
for resolving two target angles [11]. The sum-difference patterns of a digital beamforming-based
asymmetric monopulse have been used for angle estimation [12]. The slope of the monopulse curve is
used for studying the effect of the amplitude-phase mismatch on the estimation performance.

In [13], the performance of the monopulse receivers in the secondary surveillance radar (SSR) with
regard to the internal sources of error is considered. Their general performances in a Gaussian noise
environment are discussed. Under the specific assumptions for the antenna patterns, the first-order
approximation of the estimation is derived. The results are given in an analytical form and in some
comprehensive diagrams. The output errors in the monopulse receiver were analysed in terms of the
mean square error (MSE).

In [14], a minimum variance-adaptive monopulse estimator was developed, which adaptively
chooses the optimum difference weight, which is applied at the subarray level. The worst distortion of
the beam patterns and the ratio of the difference to sum beams occurs with the main beam jamming.
A monopulse characteristic is defined as the ratio of difference beam pattern to sum beam pattern in
the vicinity of the look direction. The Taylor expansion of the adaptive monopulse characteristics has
been derived [15,16]. This minimum variance adaptive monopulse scheme (MVAM) is compared with
the approach proposed in [15,16] for severe main beam jamming and clutter scenarios.

In this paper, Gaussian noise is used to model measurement uncertainty. The effect of Gaussian
noise on the accuracy of the azimuth estimate and the elevation estimate is rigorously derived.
Subsequently, an explicit expression of the MSE is also derived. In comparison with the previous
studies on the performance analysis of the amplitude comparison monopulse algorithm [13,15–20],
we present a more explicit representation of the MSEs in this paper.

Many previous studies focused on how the performance of the conventional amplitude
comparison monopulse algorithm can be improved by proposing new algorithms or by modifying
conventional amplitude comparison monopulse algorithm.

Our contribution in this manuscript does not lie in how much improvement can be achieved by
proposing a new algorithm. Our contribution in this paper lies in a reduction in computational cost
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in getting the MSE of an existing amplitude comparison monopulse algorithm by adopting analytic
approach, rather than the Monte Carlo simulation-based MSE under measurement uncertainty due to
an additive Gaussian noise. That is, the scheme described how analytic MSE can be obtained much
less computational complexity than the Monte Carlo simulation-based MSE.

2. Angular Tracking of Amplitude Comparison Monopulse

The amplitude comparison monopulse radar overlays the two antenna beams to detect the angular
error and estimate the angle of the target. Four antenna beams are required to detect each angular
error in the azimuth and the elevation. The beam pattern of the basic monopulse radar consists of two
patterns, which include one azimuth pattern and one elevation pattern. The radar transmitter emits
a signal in a total pattern, and the receiver receives the signal in a sum pattern (Σ) and a difference
pattern (∆). The error signal can be expressed as

e =
∆
∑

cos θ (1)

where ∆, ∑ and θ denote the magnitude of the signal in the sum pattern, the magnitude of the signal
in the difference pattern and the phase difference between the sum pattern and the difference pattern,
respectively.

Figure 1a illustrates the case where the target is located on the track centre axis, and the magnitude
of the pulses received from the four beams are the same. Figure 1b–d shows the cases where the target
is not on the track centre axis, which results in different received signals [21].

Figure 1. Illustration of monopulse concept.

The beam pattern of the antenna is assumed to be a Gaussian pattern [21] :

G (θ) = G0 exp
[
−2 ln 2(θ/θ3dB)

2
]

, (2)

where θ3dB denotes a 3-dB beam width. The four beams of the antenna are placed equally on each
quadrant, and the target positions at the antenna beam A are shown in (3).

The beam pattern can be expressed as

G (θ) = G0 exp
[
−2 ln 2

(
θ
/

θ3dB
)2
]

= G0 exp
[
−2 ln 2

{(
(θS/
√

2)−θazi
θ3dB

)2
+
(
(θS/
√

2)−θele
θ3dB

)2}] (3)

where θS is the squint angle of the antenna, G0 is the voltage gain of the antenna beam at the track axis
and (θazi, θele) is the value of the angle component of the target position relative to the track centre axis.

θA
2 =

(
θS√

2
− θazi

)2
+
(

θS√
2
− θele

)2

= θS
2 −
√

2θS (θele + θazi) + θazi
2 + θele

2
(4)

For small θazi and θele, θA can be approximated as

θA
2 ≈ θS

2 −
√

2θS (θazi + θele) (5)
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The voltage obtained from the target in the antenna beam A defined in (5) can be written as (6).

G (θA) ≈ G0 exp
[
−2 ln 2

(
1

θ3dB

)2 [
θS

2 −
√

2θS (θazi + θele)
]]

= G0 exp
[
−2 ln 2

(
θS

θ3dB

)2
]

exp
[
+2
√

2 ln 2
(

1
θ3dB

)2
θS (θazi + θele)

]
= G (θS) exp

[
+2
√

2 ln 2
(

θS
θ3dB

) (
θazi+θele

θ3dB

)] (6)

As the coefficient of monopulse error is km = 2
√

2 ln 2θS
/

θ3dB for km (θazi − θele)
/

θ3dB � 1, G (θS)

is approximately equal to G0, which results in

G (θA) = G (θazi, θele)

= G (θS)
[
1 + km

θ3dB
(θazi + θele)

]
= G0

[
1 + km

θ3dB
(θazi + θele)

]
.

(7)

The gain of the four antenna beams is obtained by (7), and the difference pattern (∆) εazi and εele
of the azimuth and elevation shown in Figure 2 can be written as

εazi = A [{G (θA) + G (θD)} − {G (θB) + G (θC)}]
= 4AG0km

θazi
θ3dB

εele = A [{G (θA) + G (θB)} − {G (θC) + G (θD)}]
= 4AG0km

θele
θ3dB

(8)

Figure 2. Track axis and angular error of monopulse radar beam.

In addition, the sum pattern of the four beams (Σ) can be expressed as

∑ = A [G(θA) + G(θB) + G(θC) + G(θD)]

= 4AG0.
(9)
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The azimuth error (εazi) and the angle error (εele) on the track center axis are

θ3dBεazi

km ∑
= θ̂azi,

θ3dBεele
km ∑

= θ̂ele (10)

3. Angular Tracking of Amplitude Comparison Monopulse by Approximation

The sum pattern (Σ) and the difference pattern (∆) of the antenna beam are represented. The noise
of the incoming signal is assumed to be Gaussian-distributed. The noise in the antenna beam A that is
denoted by nA. nB, nC and nD are similarly defined.

ε′azi = A

[
{G (θA) + nA + G (θD) + nD}
− {G (θB) + nB + G (θC) + nC}

]
= 4AG0km

θ′
θ3dB

(11)

ε′ele = A

[
{G (θA) + nA + G (θD) + nD}
− {G (θB) + nB + G (θC) + nC}

]
= 4AG0km

φ′

θ3dB

(12)

∑′ = A

[
G (θA) + nA + G (θB) + nB
+G (θC) + nC + G (θD) + nD

]
= 4AG0 + (nA + nB + nC + nD)

(13)

The azimuth estimates (θ̂′) and the elevation estimates (φ̂′) are given by

θ3dBε′azi

km ∑′
= θ̂′,

θ3dBε′ele

km ∑′
= φ̂′. (14)

Also, the sum pattern (Σo) and the difference pattern (∆o) of the antenna beam, which is defined as
G(θ) obtained from (3), can be represented that the azimuth estimates (θ̂′o) and the elevation estimates
(φ̂′o) in (15)

θ3dB(ε
′)o

azi
km(∑′)o = θ̂′o,

θ3dB(ε
′)o

ele
km(∑′)o = φ̂′o. (15)

where (ε′)o
azi is different from ε′azi in that G(θ) in (3) and G(θ) in (6) are associated with used (ε′)o

azi
and ε′azi, respectively. Note that G(θ) in (7) is used for defining ε′azi in (11). (ε′)o

azi is similarly defined.
The azimuth angle estimate, θ̂′, and the elevation angle estimate, φ̂′, can be obtained by

substituting (11)–(13):

θ̂′ =
θ3dBε′azi

km ∑′
=

(
θ3dB
km

)(4AG0
kmθ
θ3dB

+ nA + nD − (nB + nC)

4AG0 + nA + nB + nC + nD

)
(16)

φ̂′ =
θ3dBε′ele

km ∑′
=

(
θ3dB
km

)4AG0
kmφ
θ3dB

+ nA + nB − (nC + nD)

4AG0 + nA + nB + nC + nD

 (17)
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The approximate estimates of azimuth and elevation based on the first order Taylor series
expansion are given by (18).

θ̂′(approxi=1)

= θ +
(

nA

(
(θ3dB/km)−θ

4AG0

)
+ nB

(
−((θ3dB/km)+θ)

4AG0

)
+ nC

(
−((θ3dB/km)+θ)

4AG0

)
+ nD

(
(θ3dB/km)−θ

4AG0

) )
φ̂′(approxi=1)

= φ +
(

nA

(
(θ3dB/km)−φ

4AG0

)
+ nD

(
−((θ3dB/km)+φ)

4AG0

)
+ nC

(
−((θ3dB/km)+φ)

4AG0

)
+ nB

(
(θ3dB/km)−φ

4AG0

) ) (18)

Also, the approximate estimates of azimuth and elevation based on the second order Taylor series
expansion are given by

θ̂′(approxi=2)

= θ +
(

nA

(
(θ3dB/km)−θ

4AG0

)
+ nB

(
−(θ3dB/km)+θ

4AG0

)
+ nC

(
−(θ3dB/km)+θ

4AG0

)
+ nD

(
(θ3dB/km)−θ

4AG0

) )

+


+ nA

2

2

(
−2(θ3dB/km)−θ

(4AG0)
2

)
+ nB

2

2

(
2(θ3dB/km)+θ

(4AG0)
2

)
+ nC

2

2

(
2(θ3dB/km)+θ

(4AG0)
2

)
+ nD

2

2

(
−2(θ3dB/km)−θ

(4AG0)
2

)
+nAnB

(
2θ

(4AG0)
2

)
+ nAnC

(
2θ

(4AG0)
2

)
+ nAnD

(
−2(θ3dB/km)−θ

(4AG0)
2

)
+nBnC

(
2(θ3dB/km)+θ

(4AG0)
2

)
+ nBnD

(
2θ

(4AG0)
2

)
+ nCnD

(
2θ

(4AG0)
2

)


(19)

φ̂′(approxi=2)

= φ +
(

nA

(
(θ3dB/km)−φ

4AG0

)
+ nD

(
−(θ3dB/km)+φ

4AG0

)
+ nC

(
−(θ3dB/km)+φ

4AG0

)
+ nB

(
(θ3dB/km)−φ

4AG0

) )

+


+ nA

2

2

(
−2(θ3dB/km)−φ

(4AG0)
2

)
+ nD

2

2

(
2(θ3dB/km)+φ

(4AG0)
2

)
+ nC

2

2

(
2(θ3dB/km)+φ

(4AG0)
2

)
+ nB

2

2

(
−2(θ3dB/km)−φ

(4AG0)
2

)
+nAnD

(
2φ

(4AG0)
2

)
+ nAnC

(
2φ

(4AG0)
2

)
+ nAnB

(
−2(θ3dB/km)−φ

(4AG0)
2

)
+nDnC

(
2(θ3dB/km)+φ

(4AG0)
2

)
+ nBnD

(
2φ

(4AG0)
2

)
+ nCnB

(
2φ

(4AG0)
2

)

 .

(20)

4. Analytic Expression of the MSEs of the Angular Tracking of Amplitude Comparison Monopulse

In this section, we derive explicit expressions of the MSE in (18). Let θ and φ denote the true
azimuth and the true elevation of θ̄T, respectively

θ̄T =

[
θ

φ

]
. (21)

In (15), θ′o and φ′o denote azimuth and elevation of estimated angle, θ̄′o, respectively:

θ̄′o =

[
θ̂′o

φ̂′o

]
. (22)

Similarly, θ′ and φ′ denote the azimuth and the elevation of the estimated angle, θ̄′, respectively:

θ̄′ =

[
θ̂′

φ̂′

]
. (23)

Euclidean distance between θ̄T and θ̄′ is given by

d
(
θ̄′, θ̄T

)
=
∥∥θ̄′ − θ̄T

∥∥
2. (24)
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Substituting (21) and (23) in (24) yields

∥∥θ̄′ − θ̄T
∥∥

2 =

∥∥∥∥∥∥
(

θ3dB
km

) nA

(
1−(kmθazi/θ3dB)

4AG0

)
+ nB

(
−1−(kmθazi/θ3dB)

4AG0

)
+nC

(
−1−(kmθazi/θ3dB)

4AG0

)
+ nD

(
1−(kmθazi/θ3dB)

4AG0

) ∥∥∥∥∥∥
2

. (25)

From (25), the MSEs of the angular tracking of amplitude comparison monopulse is given by

E
[∥∥θ̄′ − θ̄T

∥∥2
2

]
= E


∥∥∥∥∥∥
(

θ3dB
km

) nA

(
1−(kmθazi/θ3dB)

4AG0

)
+ nB

(
−1−(kmθazi/θ3dB)

4AG0

)
+nC

(
−1−(kmθazi/θ3dB)

4AG0

)
+ nD

(
1−(kmθazi/θ3dB)

4AG0

) ∥∥∥∥∥∥
2

2

 . (26)

The empirical MSE is given by

MSE = 1
N

N
∑

i=1

((
θ̂′(i) − θ̄T

)2
)
= Simulation E

[(
θ̄′ − θ̄T

)2
]

(27)

where the lower-script (i) denotes the estimate associated with the i-th repetition out of N repetitions.

MSE Expression

From (18), analytic MSEs for the first-order Taylor expansion can be written as

E
[(

θ̂′(approxi=1) − θ
)2
]
= E


 nA

(
(θ3dB/km)−θ

4AG0

)
+ nB

(
−((θ3dB/km)+θ)

4AG0

)
+nC

(
−((θ3dB/km)+θ)

4AG0

)
+ nD

(
(θ3dB/km)−θ

4AG0

) 2


E
[(

φ̂′(approxi=1) − φ
)2
]
= E


 nA

(
(θ3dB/km)−φ

4AG0

)
+ nD

(
−((θ3dB/km)+φ)

4AG0

)
+nC

(
−((θ3dB/km)+φ)

4AG0

)
+ nB

(
(θ3dB/km)−φ

4AG0

) 2
 .

(28)

The explicit expressions in (28) are derived in the Appendix A.
From (19) and (20), analytic MSEs for the second-order Taylor expansion can be written as

E
[(

θ̂′(approxi=2) − θ
)2
]

= E





(
nA

(
(θ3dB/km)−θ

4AG0

)
+ nB

(
−(θ3dB/km)+θ

4AG0

)
+ nC

(
−(θ3dB/km)+θ

4AG0

)
+ nD

(
(θ3dB/km)−θ

4AG0

) )

+



+ nA
2

2

(
−2(θ3dB/km)−θ

(4AG0)
2

)
+ nB

2

2

(
2(θ3dB/km)+θ

(4AG0)
2

)
+ nC

2

2

(
2(θ3dB/km)+θ

(4AG0)
2

)
+ nD

2

2

(
−2(θ3dB/km)−θ

(4AG0)
2

)
+ nAnB

(
2θ

(4AG0)
2

)
+ nAnC

(
2θ

(4AG0)
2

)
+nAnD

(
−2(θ3dB/km)−θ

(4AG0)
2

)
+ nBnC

(
2(θ3dB/km)+θ

(4AG0)
2

)
+nBnD

(
2θ

(4AG0)
2

)
+ nCnD

(
2θ

(4AG0)
2

)





2

(29)

E
[(

φ̂′(approxi=2) − φ
)2
]

= E





(
nA

(
(θ3dB/km)−φ

4AG0

)
+ nB

(
−(θ3dB/km)+φ

4AG0

)
+ nC

(
−(θ3dB/km)+φ

4AG0

)
+ nD

(
(θ3dB/km)−φ

4AG0

) )

+



+ nA
2

2

(
−2(θ3dB/km)−φ

(4AG0)
2

)
+ nB

2

2

(
2(θ3dB/km)+φ

(4AG0)
2

)
+ nC

2

2

(
2(θ3dB/km)+φ

(4AG0)
2

)
+ nD

2

2

(
−2(θ3dB/km)−φ

(4AG0)
2

)
+nAnB

(
2φ

(4AG0)
2

)
+ nAnC

(
2φ

(4AG0)
2

)
+ nAnD

(
−2(θ3dB/km)−φ

(4AG0)
2

)
+nBnC

(
2(θ3dB/km)+φ

(4AG0)
2

)
+nBnD

(
2φ

(4AG0)
2

)
+ nCnD

(
2φ

(4AG0)
2

)





2

.
(30)
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The explicit expressions in (29) and (30) are derived in the Appendix A. The expressions in the
Appendix A are the results for nonzero-mean measurement noise with E[nA] = E[nB] = E[nC] = E[nD]

= µ. The results for zero mean measurement noise, E[nA] = E[nB] = E[nC] = E[nD] = 0, are presented in
the Appendix B.

5. Performance Analysis of Amplitude Comparison Monopulse

This section shows the performance of monopulse radar in a noise environment. Table 1 tabulates
various parameters of the simulation. The MSEs with respect to the standard derivation of an additive
noise are illustrated in Figures 3 and 4 for amplitude comparison monopulse radar.

Table 1. Parameters for simulation.

Description Value Units

Monte Carlo simulation 100,000 times
The mean of the noise received at Antenna A, B, C, D 0 voltage/meter

The standard deviation of the noise received at Antenna A, B, C, D 10−0.6, 10−0.5, · · · , 100 degrees
Antenna 3 dB beamwidth 3 degrees

Track axis gain 1 voltage
Antenna squint angle 1 degrees

Gain of received signal 1 voltage

The estimates used for getting ‘Simulation E
[(

θ̄′ − θ̄T
)2
]
’ in Figures 3 and 4 are obtained from

(15), and those for getting ‘Simulation E
[(

θ̄′ − θ̄T
)2
]
’ in Figures 3 and 4 are obtained from (16) and (17).

The estimates used for getting ‘Simulation E
[(

θ̄′(approxi=1) − θ̄T

)2
]

’ in Figures 3 and 4 are obtained

from (18), and those for getting ‘Simulation E
[(

θ̄′(approxi=2) − θ̄T

)2
]

’ in Figures 3 and 4 are obtained

from (19) and (20). Empirical MSEs of ‘Simulation E
[(

θ̄′o − θ̄T
)2
]
’, ‘Simulation E

[(
θ̄′ − θ̄T

)2
]
’,

‘Simulation E
[(

θ̄′(approxi=1) − θ̄T

)2
]

’ and ‘Simulation E
[(

θ̄′(approxi=2) − θ̄T

)2
]

’ in Figures 3 and 4

are calculated from (27). The results in Figures 3 and 4 with ‘Analytic E
[(

θ̄′(approxi=1) − θ̄T

)2
]

’

are obtained from (28), and those in Figures 3 and 4 with ‘Analytci E
[(

θ̄′(approxi=2) − θ̄T

)2
]

’

are obtained from (29) and (30). There is a little difference between ‘Simulation E
[(

θ̄′o − θ̄T
)2
]
’

and ‘Simulation E
[(

θ̄′ − θ̄T
)2
]
’, because θ′ and φ′ are approximated estimates defined from the

approximate antenna pattern. Note that θ′o and φ′o are true estimates defined from (3).

Also, ‘Simulation E
[(

θ̄′ − θ̄T
)2
]
’ is not equal to ‘Simulation E

[(
θ̄′(approxi=1) − θ̄T

)2
]

’,

as the first-order approximation is used to get ‘Simulation E
[(

θ̄′(approxi=1) − θ̄T

)2
]

’

from ‘Simulation E
[(

θ̄′ − θ̄T
)2
]
’. Similarly, ‘Simulation E

[(
θ̄′ − θ̄T

)2
]
’ is not equal to

‘Simulation E
[(

θ̄′(approxi=2) − θ̄T

)2
]

’, as the second-order approximation is used to

get ‘Simulation E
[(

θ̄′(approxi=2) − θ̄T

)2
]

’ from ‘Simulation E
[(

θ̄′ − θ̄T
)2
]
’. Noted that

‘Simulation E
[(

θ̄′(approxi=1) − θ̄T

)2
]

’ and ‘Analytic E
[(

θ̄′(approxi=1) − θ̄T

)2
]

’ show excellent

agreements, which validates (5.8) with ‘approxi = 1’. Also, ‘Simulation E
[(

θ̄′(approxi=2) − θ̄T

)2
]

’ and

‘Analytic E
[(

θ̄′(approxi=2) − θ̄T

)2
]

’ show excellent agreements, which validates (19) and (20) with



Appl. Sci. 2020, 10, 1246 9 of 15

’approxi = 2’. Therefore, the analytically derived expression ‘Analytic E
[(

θ̄′(approxi=1) − θ̄T

)2
]

’ can

be used to see how ‘Simulation E
[(

θ̄′(approxi=1) − θ̄T

)2
]

’ is dependent on the standard deviation of

an additive noise.

Figure 3. Mean square errors (MSEs) of target azimuth estimate for ACM radar.

Figure 4. MSEs of target elevation estimate for ACM radar.
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The results in Figures 3 and 4 show that the MSEs of the angle estimate increase with the increase
of SNR in the four antennas. Also, it is clear that the results with the superscript ‘approxi = 2’ are much
closer than the results with the superscript ‘approxi = 1’ to the estimates without approximations.

Note that the proposed scheme is not a new DOA estimation algorithm with better MSE
performance than previous existing DOA estimation algorithms. The proposed scheme is on how MSE
of previously existing amplitude comparison monopulse DOA algorithm can be obtained analytically
with much less computational complexity than the Monte Carlo simulation-based MSE. Therefore,
we cannot quantitatively state how much improvement in estimation accuracy in terms of MSE can be
achieved by adopting the proposed scheme in this paper.

Instead, to quantify the improvement in the computational cost, computational complexity
in execution time is illustrated both for analytically derived MSE and for the Monte Carlo
simulation-based MSE. Note that the computational complexity is independent of the standard
deviation. Therefore, the results for an arbitrary standard deviation of 0.1 degree is adopted
for illustration.

As, in getting the Monte Carlo simulation-based MSE, the computational complexity is nearly
proportional to the number of repetitions, the results for number of repetitions of 10, 100, 1000,
10,000 and 100,000 are shown. It is clearly shown in Figure 5 that the computational complexity
for analytically derived MSE is much less than that for the Monte Carlo simulation-based MSE
with number of repetitions = 100,000. Note that the execution time for analytically derived MSE is
independent of the number of repetitions, which is why the execution time of the analytically derived
MSE is flat with respect to the number of repetitions.

Figure 5. Execution time of MSEs of target estimate for ACM radar.

6. Conclusions

In this paper, monopulse radar was used to detect the angular error through a single pulse of
the received signal. The tracking performance of the amplitude-comparison monopulse radar was
analysed assuming that the signals received from the four antennas have different amplitudes from
the same phase. Also, this paper deals with an analytic expression of the MSEs of the target angle
estimate obtained from the approximation. The derivation is based on the assumption that additive
noises of the measured angle components are Gaussian-distributed.

The usefulness of the derived expression is that the MSEs of the monopulse algorithm angle
estimate using the different gain of received signal at array antenna can be available from the
derived expression without actually performing the computationally intensive Monte Carlo simulation,
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which is illustrated in the numerical results. By using the derived expression, we can get a quantitative
measure of how accurate the estimates are without actually performing the computationally intensive
Monte Carlo simulation.

To quantify the computational reduction in getting the MSE analytically in comparison with the
Monte Carlo simulation-based MSE, execution time with respect to the number of repetitions in the
Monte Carlo simulation is illustrated in Figure 5, where the reduction in computational complexity
associated with the analytically derived MSE in comparison with the Monte Carlo simulation-based
MSE is clearly shown.
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Appendix A. The Explicit Expression of the MSEs Based on the Taylor Series

In this appendix, the received noise of four antenna—nA, nB, nC and nD—are defined as a normal
distribution random variable. Generally, random variables nA, nB, nC and nD are distributed normally
with mean µ and variance σ2 [22].

nA ∼ N
(
µ, σ2)

nB ∼ N
(
µ, σ2)

nC ∼ N
(
µ, σ2)

nD ∼ N
(
µ, σ2) .

(A1)

Based on (A1), various statistics in (A2) and (A3) can be obtained:

E [nknl ] =

{
E[nk

2] k = l
E[nk]E[nl ] otherwise

(A2)

E [nA] = µ

E
[
nA

2] = µ2 + σA
2

E
[
nA

3] = µ3 + 3µσA
2

E
[
nA

4] = µ4 + 6µ2σA
2 + 3σA

4

(A3)

For brevity, αA, αB, αC, αD, βA, βB, βC, βD, βAB, βAC, βAD, βBC, βBD and βCD are defined from
the expressions in (28):

αA = αD =
(θ3dB/km)−θ̄T

4AG0
,

αB = αC =
−((θ3dB/km)+θ̄T)

4AG0
,

βA = βD =
−2((θ3dB/km)−θ̄T)

(4AG0)
2 ,

βB = βC =
2((θ3dB/km)+θ̄T)

(4AG0)
2 ,

βAB = βAC = βBD = βCD = 2θ̄T
(4AG0)

2 ,

βAD = βA, βBC = βB.

(A4)
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Using (A1)–(A4), the explicit expressions of MSEs are expressed as (A5)–(A8)

E
[(

θ̂′(approxi=1) − θ
)2
]

= E
[
nA

2] αA
2 + E

[
nB

2] αB
2 + E

[
nC

2] αC
2 + E

[
nD

2] αD
2 + 2E [nAnB] αAαB + 2E [nAnC] αAαC

+2E [nAnD] αAαD + 2E [nBnC] αBαC + 2E [nBnD] αBαD + 2E [nCnD] αCαD

+(E [nA] αA + E [nB] αB + E [nC] αC + E [nD] αD)
2

=
(
µ2 + σA

2) αA
2 +

(
µ2 + σB

2) αB
2 +

(
µ2 + σC

2) αC
2 +

(
µ2 + σD

2) αD
2 + 2µ2αAαB + 2µ2αAαC

+2µ2αAαD + 2µ2αBαC + 2µ2αBαD + 2µ2αCαD + (µαA + µαB + µαC + µαD)
2.

(A5)

E
[(

φ̂′(approxi=1) − φ
)2
]

= E
[
nA

2] αA
2 + E

[
nD

2] αB
2 + E

[
nC

2] αC
2 + E

[
nB

2] αD
2 + 2E [nAnD] αAαB + 2E [nAnC] αAαC

+2E [nAnB] αAαD + 2E [nDnC] αBαC + 2E [nBnD] αBαD + 2E [nCnB] αCαD

+(E [nA] αA + E [nD] αB + E [nC] αC + E [nB] αD)
2

=
(
µ2 + σA

2) αA
2 +

(
µ2 + σD

2) αB
2 +

(
µ2 + σC

2) αC
2 +

(
µ2 + σB

2) αD
2 + 2µ2αAαB + 2µ2αAαC

+2µ2αAαD + 2µ2αBαC + 2µ2αBαD + 2µ2αCαD + (µαA + µαB + µαC + µαD)
2.

(A6)

E
[(

θ̂′(approxi=2) − θ
)2
]

=
(
µ2 + σA

2) αA
2 +

(
µ2 + σB

2) αB
2 +

(
µ2 + σC

2) αC
2 +

(
µ2 + σD

2) αD
2

+
(µ4+6µ2σA

2+3σA
4)

4 βA
2 +

(µ4+6µ2σB
2+3σB

4)
4 βB

2 +
(µ4+6µ2σC

2+3σC
4)

4 βC
2 +

(µ4+6µ2σD
2+3σD

4)
4 βD

2

+
(
µ2 + σA

2) (µ2 + σB
2) βAB

2 +
(
µ2 + σA

2) (µ2 + σC
2) βAC

2 +
(
µ2 + σA

2) (µ2 + σD
2) βAD

2

+
(
µ2 + σB

2) (µ2 + σC
2) βBC

2 +
(
µ2 + σB

2) (µ2 + σD
2) βBD

2 +
(
µ2 + σC

2) (µ2 + σD
2) βCD

2

+2µ2αAαB + 2µ2αAαC + 2µ2αAαD + 2µ2αBαC + 2µ2αBαD + 2µ2αCαD
+ 1

2
(
µ2 + σA

2) (µ2 + σB
2) βAβB + 1

2
(
µ2 + σA

2) (µ2 + σC
2) βAβC + 1

2
(
µ2 + σA

2) (µ2 + σD
2) βAβD

+ 1
2
(
µ2 + σB

2) (µ2 + σC
2) βBβC + 1

2
(
µ2 + σB

2) (µ2 + σC
2) βBβC + 1

2
(
µ2 + σC

2) (µ2 + σD
2) βCβD

+2
(
µ2 + σA

2) µ2βABβAC + 2
(
µ2 + σA

2) µ2βABβAD + 2
(
µ2 + σB

2) µ2βABβBC
+2
(
µ2 + σB

2) µ2βABβBD + 2µ4βABβCD + 2
(
µ2 + σA

2) µ2βACβAD
+2
(
µ2 + σC

2) µ2βACβBC + 2µ4βACβBD + 2
(
µ2 + σC

2) µ2βACβCD
+2µ4βADβBC + 2

(
µ2 + σC

2) µ2βADβBD + 2
(
µ2 + σD

2) µ2βADβCD
+2
(
µ2 + σB

2) µ2βBCβBD + 2
(
µ2 + σC

2) µ2βBCβCD + 2
(
µ2 + σD

2) µ2βBDβCD

+2 (µαA + µαB + µαC + µαD)
(

(µ2+σA
2)

2 βA +
(µ2+σB

2)
2 βB +

(µ2+σC
2)

2 βC +
(µ2+σD

2)
2 βD

)
+2 (µαA + µαB + µαC + µαD)

(
µ2βAB + µ2βAC + µ2βAD + µ2βBC + µ2βBD + µ2βCD

)
+2


(
(µ2+σA

2)
2 βA +

(µ2+σB
2)

2 βB +
(µ2+σC

2)
2 βC +

(µ2+σD
2)

2 βD

)
(
µ2βAB + µ2βAC + µ2βAD + µ2βBC + µ2βBD + µ2βCD

)
 .

(A7)
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E
[(

φ̂′(approxi=2) − φ
)2
]

=
(
µ2 + σA

2) αA
2 +

(
µ2 + σD

2) αB
2 +

(
µ2 + σC

2) αC
2 +

(
µ2 + σB

2) αD
2

+
(µ4+6µ2σA

2+3σA
4)

4 βA
2 +

(µ4+6µ2σD
2+3σD

4)
4 βB

2 +
(µ4+6µ2σC

2+3σC
4)

4 βC
2 +

(µ4+6µ2σB
2+3σB

4)
4 βD

2

+
(
µ2 + σA

2) (µ2 + σD
2) βAB

2 +
(
µ2 + σA

2) (µ2 + σC
2) βAC

2 +
(
µ2 + σA

2) (µ2 + σB
2) βAD

2

+
(
µ2 + σD

2) (µ2 + σC
2) βBC

2 +
(
µ2 + σB

2) (µ2 + σD
2) βBD

2 +
(
µ2 + σC

2) (µ2 + σB
2) βCD

2

+2µ2αAαB + 2µ2αAαC + 2µ2αAαD + 2µ2αBαC + 2µ2αBαD + 2µ2αCαD
+ 1

2
(
µ2 + σA

2) (µ2 + σD
2) βAβB + 1

2
(
µ2 + σA

2) (µ2 + σC
2) βAβC

+ 1
2
(
µ2 + σA

2) (µ2 + σB
2) βAβD + 1

2
(
µ2 + σD

2) (µ2 + σC
2) βBβC

+ 1
2
(
µ2 + σD

2) (µ2 + σC
2) βBβC + 1

2
(
µ2 + σC

2) (µ2 + σB
2) βCβD

+2
(
µ2 + σA

2) µ2βABβAC + 2
(
µ2 + σA

2) µ2βABβAD + 2
(
µ2 + σD

2) µ2βABβBC
+2
(
µ2 + σD

2) µ2βABβBD + 2µ4βABβCD + 2
(
µ2 + σA

2) µ2βACβAD
+2
(
µ2 + σC

2) µ2βACβBC + 2µ4βACβBD + 2
(
µ2 + σC

2) µ2βACβCD
+2µ4βADβBC + 2

(
µ2 + σC

2) µ2βADβBD + 2
(
µ2 + σB

2) µ2βADβCD
+2
(
µ2 + σD

2) µ2βBCβBD + 2
(
µ2 + σC

2) µ2βBCβCD + 2
(
µ2 + σB

2) µ2βBDβCD

+2 (µαA + µαB + µαC + µαD)
(

(µ2+σA
2)

2 βA +
(µ2+σD

2)
2 βB +

(µ2+σC
2)

2 βC +
(µ2+σB

2)
2 βD

)
+2 (µαA + µαB + µαC + µαD)

(
µ2βAB + µ2βAC + µ2βAD + µ2βBC + µ2βBD + µ2βCD

)
+2


(
(µ2+σA

2)
2 βA +

(µ2+σD
2)

2 βB +
(µ2+σC

2)
2 βC +

(µ2+σB
2)

2 βD

)
(
µ2βAB + µ2βAC + µ2βAD + µ2βBC + µ2βBD + µ2βCD

)
 .

(A8)

Appendix B. The Explicit Expression of the MSEs Based on the Taylor Series for Zero-Mean Noises

In this appendix, the received noise of four antenna—nA, nB, nC and nD—are defined as a normal
distribution random variable. Generally, random variables nA, nB, nC and nD are distributed normally
with mean 0 and variance σ2 [22].

nA ∼ N
(
0, σ2)

nB ∼ N
(
0, σ2)

nC ∼ N
(
0, σ2)

nD ∼ N
(
0, σ2) .

(A9)

Based on (A9), various statistics in (A10) and (A11) can be obtained:

E [nknl ] =

{
E[nk

2] k = l
E[nk]E[nl ] = 0 otherwise

(A10)

E [nA] = 0
E
[
nA

2] = σA
2

E
[
nA

3] = 0
E
[
nA

4] = 3σA
4.

(A11)

For brevity, αA, αB, αC, αD, βA, βB, βC, βD, βAB, βAC, βAD, βBC, βBD and βCD are defined from
the expressions in (28):

αA = αD =
(θ3dB/km)−θ̄T

4AG0
,

αB = αC =
−((θ3dB/km)+θ̄T)

4AG0
,

βA = βD =
−2((θ3dB/km)−θ̄T)

(4AG0)
2 ,

βB = βC =
2((θ3dB/km)+θ̄T)

(4AG0)
2 ,

βAB = βAC = βBD = βCD = 2θ̄T
(4AG0)

2 ,

βAD = βA, βBC = βB.

(A12)
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Using (A9)–(A12), the explicit expressions of MSEs are expressed as (A13)–(A16).

E
[(

θ̂′(approxi=1) − θ
)2
]

= E
[
nA

2] αA
2 + E

[
nB

2] αB
2 + E

[
nC

2] αC
2 + E

[
nD

2] αD
2

=
(
σA

2) αA
2 +

(
σB

2) αB
2 +

(
σC

2) αC
2 +

(
σD

2) αD
2.

(A13)

E
[(

φ̂′(approxi=1) − φ
)2
]

= E
[
nA

2] αA
2 + E

[
nD

2] αB
2 + E

[
nC

2] αC
2 + E

[
nB

2] αD
2

=
(
σA

2) αA
2 +

(
σD

2) αB
2 +

(
σC

2) αC
2 +

(
σB

2) αD
2.

(A14)

E
[(

θ̂′(approxi=2) − θ
)2
]

=
(
σA

2) αA
2 +

(
σB

2) αB
2 +

(
σC

2) αC
2 +

(
σD

2) αD
2 +

(3σA
4)

4 βA
2 +

(3σB
4)

4 βB
2 +

(3σC
4)

4 βC
2 +

(3σD
4)

4 βD
2

+
(
σA

2) (σB
2) βAB

2 +
(
σA

2) (σC
2) βAC

2 +
(
σA

2) (σD
2) βAD

2

+
(
σB

2) (σC
2) βBC

2 +
(
σB

2) (σD
2) βBD

2 +
(
σC

2) (σD
2) βCD

2

+ 1
2
(
σA

2) (σB
2) βAβB + 1

2
(
σA

2) (σC
2) βAβC + 1

2
(
σA

2) (σD
2) βAβD + 1

2
(
σB

2) (σC
2) βBβC

+ 1
2
(
σB

2) (σC
2) βBβC + 1

2
(
σC

2) (σD
2) βCβD.

(A15)

E
[(

φ̂′(approxi=2) − φ
)2
]

=
(
σA

2) αA
2 +

(
σD

2) αB
2 +

(
σC

2) αC
2 +

(
σB

2) αD
2 +

(3σA
4)

4 βA
2 +

(3σD
4)

4 βB
2 +

(3σC
4)

4 βC
2 +

(3σB
4)

4 βD
2

+
(
σA

2) (σD
2) βAB

2 +
(
σA

2) (σC
2) βAC

2 +
(
σA

2) (σB
2) βAD

2

+
(
σD

2) (σC
2) βBC

2 +
(
σB

2) (σD
2) βBD

2 +
(
σC

2) (σB
2) βCD

2

+ 1
2
(
σA

2) (σD
2) βAβB + 1

2
(
σA

2) (σC
2) βAβC + 1

2
(
σA

2) (σB
2) βAβD + 1

2
(
σD

2) (σC
2) βBβC

+ 1
2
(
σD

2) (σC
2) βBβC + 1

2
(
σC

2) (σB
2) βCβD.

(A16)
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