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Abstract: Due to the emergence of online society, a representative user authentication method
that is password authentication has been a key topic. However, in this authentication method,
various attack techniques have emerged to steal passwords input from the keyboard, hence, the
keyboard data does not ensure security. To detect and prevent such an attack, a keyboard data
protection technique using random keyboard data generation has been presented. This technique
protects keyboard data by generating dummy keyboard data while the attacker obtains the keyboard
data. In this study, we demonstrate the feasibility of keyboard data exposure under the keyboard
data protection technique. To prove the proposed attack technique, we gathered all the dummy
keyboard data generated by the defense tool, and the real keyboard data input by the user, and
evaluated the cybersecurity threat of keyboard data based on the machine learning-based offensive
technique. We verified that an adversary obtains the keyboard data with 96.2% accuracy even if
the attack technique that makes it impossible to attack keyboard data exposure is used. Namely,
the proposed method in this study obviously differentiates the keyboard data input by the user from
dummy keyboard data. Therefore, the contributions of this paper are that we derived and verified
a new security threat and a new vulnerability of password authentication. Furthermore, a new
cybersecurity threat derived from this study will have advantages over the security assessment of
password authentication and all types of authentication technology and application services input
from the keyboard.
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1. Introduction

Due to the emergence of online society, a representative user authentication method that is the
password authentication method has been presented [1]. This method registers a password by the
user, and then authenticates the user by comparing the registered password with the input password.
Therefore, the information that must be protected in this authentication method is the input password.
This password is generally input from the keyboard, therefore a technique is required to protect the
data input through the keyboard.

Various attack techniques have appeared in the past, and the key-logger is a representative attack
tool [2]. The tool records all keyboard data input by the user, and is easily available from the Internet.
Moreover, new attack techniques have been introduced by attackers, such as WinProc replacement,
keyboard message hooking, filter driver insertion, interrupt object replacement, interrupt descriptor
table (IDT) replacement, direct polling, and C/D (control/data) bit vulnerability exploitation techniques.
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The WinProc replacement attack technique steals keyboard data by replacing a window procedure,
whereas the keyboard message hooking attack technique steals keyboard data by hooking a keyboard
event message. These two techniques are attack techniques in user mode. If the defender applies the
technique to protect the keyboard data in the same user mode, the attacker and the defender compete
in the same mode, which causes the attacker to fail the keyboard data exposure attack.

An attacker overcomes the defense technique by attacking in kernel mode with higher privilege
than user mode [3]. The filter driver insertion attack technique steals keyboard data by inserting a filter
driver in the PS/2 keyboard device driver stack. The interrupt object replacement attack technique
replaces an object handling an interrupt associated with a PS/2 keyboard, and steals keyboard data.
The IDT replacement attack technique steals keyboard data by replacing the table handling interrupt
associated with the PS/2 keyboard. These three techniques attack in kernel mode. Therefore, when the
defender also applies methods to prevent the exposure of the keyboard data in the same kernel mode,
the attacker and the defender have a race condition, which causes the attacker to fail the keyboard data
exposure attack.

An attacker overcomes the defense technique by carrying out a hardware access-based attack.
The direct polling attack technique exploits keyboard data by periodically accessing the input and
output memory associated with the PS/2 keyboard [4]. This attack preempts keyboard data by
monitoring keyboard input before the data input from the keyboard arrives at the kernel mode
interrupt handling routine, thereby defeating the defense technique in kernel mode [5].

To counteract such hardware access-based attacks, a keyboard data protection technique that
utilizes random keyboard data generation has been developed to prevent attackers from stealing the
exact input keyboard data by the user [6]. The key concept of this technique prevents exposure of
the real keyboard data input by the user, but rather it detects the attack techniques of keyboard data.
Specifically, the defender invokes a keyboard input event forcibly by generating random keyboard
data that protects the actual keyboard data input by the user by filtering the generated keyboard data.
The defender knows the random keyboard data it generates, and can differentiate the actual data
from the random data. At the same time, the attacker uses a direct polling attack technique to collect
both the dummy data and the keyboard data input by the user. However, the attacker can hardly
differentiate the two.

To prevent the failure of the direct polling attack, an attack technique, known as the C/D bit
vulnerability exploitation technique, using a feature that appears when generating random keyboard
data has emerged [7]. This technique takes advantage of the vulnerability of the C/D bit in the keyboard
controller status register to steal keyboard data, and neutralizes the keyboard protection technique that
utilizes random keyboard data generation. Nevertheless, this attack technique causes a lot of overload
on the system due to the condition of periodically setting the C/D bit, and preemptively collecting all
the input keyboard data. Consequently, from the attacker’s point of view, there is a need for an attack
technique that classifies random keyboard data, and steals keyboard data input from the user, without
generating an overload on the system.

In this study, we propose a method for classifying random keyboard data and keyboard data input
by a user to analyze the vulnerability of keyboard data. We demonstrate the feasibility of classifying
keyboard data using machine-learning models based on attack techniques, such as filter driver insertion,
interrupt object replacement, and direct polling, to collect keyboard data. For vulnerability analysis,
the available data features are the elapsed time of keyboard data acquisition, collected keyboard data
and flags (parity error, receive time-out, transmit time-out, inhibit switch, C/D, system flag, input
buffer full (IBF), and output buffer full (OBF)). Among these features, utilizing the C/D bit provides a
complete classification of the actual keyboard data input by the user. However, as described above,
overload on the system occurs, due to various conditions, and there is a risk that an attack is detected
by judging according to abnormal behavior and access. Therefore, we demonstrate the feasibility of
classifying the keyboard data input by the user based on machine-learning models, focused on the
entire keyboard data collected.
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The contributions of this paper are as follows:

• We proposed an attack method to classify random keyboard data based on machine learning
using existing attack techniques that do not succeed in the keyboard data exposure attack, and
by using machine learning, verify that the attacker can steal the keyboard data even if the attack
technique that makes it impossible to attack keyboard data exposure is used.

• In this study, we focused on how the defender generates random keyboard data, and determined
that the defender calls the keyboard data generation function periodically, such as a timer.
Moreover, we analyzed the data availability of flags collected from the keyboard controller.
Therefore, a dataset is constructed by collecting the elapsed time of keyboard data acquisition,
collected keyboard data, and flags as data. As a result, this proves the capacity to effectively
classify random keyboard data by using the dataset proposed in this study.

• In this paper, we derived and verified the security threat and vulnerability of the password
authentication method. The proposed method is very effective with an accuracy of 96.2%.
Specifically, it is possible to steal the user’s password. Furthermore, this attack method means that
there is a security threat and vulnerability in the password authentication method. Conclusively,
a new cybersecurity threat derived from this study will have advantages over the security
assessment of the password authentication method.

The rest of the paper is organized as follows. Section 2 describes the keyboard data transmission
process and conventional keyboard data attack and defense techniques. Section 3 introduces the
configured attack system keyboard data dataset. The experimental results of the keyboard data attack
using the proposed method is shown in Section 4. We discuss the adversary model and usefulness,
applicability, and performance of the proposed technique in Section 5. Finally, we conclude the paper
in Section 5.

2. Prior Knowledge

This section describes the attack and defense techniques for the keyboard data that is the most
important information in the password authentication method. The keyboard data attack techniques
include the direct polling attack technique and the C/D bit vulnerability exploitation technique, while
the defense technique includes a random keyboard data-generation technique.

2.1. Keyboard Data Transmission Process

A keyboard device is one of the input devices to interact with the user, supporting an interaction
that instructs a command based on user input from the keyboard. The features of the keyboard are
managed and processed by the operating system. This process provides features, such as key input,
and shortcut keys supported by the operating system. Therefore, user data is input through the
keyboard device, and delivered to the application software passed through the keyboard device stack.
We depict the keyboard data transmission process in Figure 1.

The PS/2 keyboard structure consists of a key matrix and a keyboard processor inside the
keyboard hardware, and a keyboard controller inside the host, a host processor, a Programmable
Interrupt Controller (PIC) or Advanced Programmable Interrupt Controller (APIC) inside the host
processor, and device drivers within the PS/2 keyboard device stack inside the operating system, and
application programs.

When a user inputs a key using the PS/2 keyboard, the keyboard processor inside the keyboard
device extracts the scancode for the key input by the user through the key matrix, and transmits it to
the keyboard controller in the host. The keyboard controller receives the scancode, and sends it to
PIC/APIC, to request an interrupt service. PIC/APIC is a controller for routing interrupts. Interrupt
signals input from the keyboard are transferred via I/O APIC, Local PIC, etc., and cause an interrupt
to the central processing unit (CPU). The CPU prepares separate tables and handlers for input and
output processing, which are called the IDT and interrupt service routine (ISR), respectively.
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A keyboard interrupt invokes the keyboard interrupt service routine by an entry assigned in
association with the keyboard interrupt in the interrupt descriptor table described above, and then the
operating system delivers the input keyboard data to the application software passed through the PS/2
keyboard device stack.
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2.2. Keyboard Data Attack Technique Using Direct Polling

This attack technique is lower-level attack technique, which is at hardware level, than the operating
system-level attacks. To input and output, Microsoft has prepared a separate atomic command (opcode,
instruction) that an attacker can use to periodically check that keyboard data has been input, so that as
soon as the user inputs a key, the attacker can steal keyboard data. This attack technique can have
serious consequences (damage without detection), because the methods for detecting and protecting
against this attack are not obvious, and the operating system also reads and processes keyboard
data with the same atomic command. We experimented with the Microsoft Windows operating
system. However, the proposed attack technique can attack all platforms using PS/2 keyboard and
Intel processor.

For the success of this attack, an attacker must always monitor the state of the keyboard controller
by reading the keyboard controller status register. Table 1 shows the information extracted from the
keyboard controller status register.

Table 1. Configuration of the keyboard controller status register.

Field Field Name

Bit 0 Output Buffer Full (OBF)
Bit 1 Input Buffer Full (IBF)
Bit 2 System flag
Bit 3 Control/Data (C/D)
Bit 4 Inhibit switch
Bit 5 Transmit time-out
Bit 6 Receive time-out
Bit 7 Parity error
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For communication between the keyboard and the host, the host prepares a keyboard controller
(8259A) inside the host, then sends and receives control information and data via separate ports. The
control port is the 0x64 port, and the data port is the 0x60 port. Each port has its own output and
input buffers for writing and reading control information. When reading the control and data ports,
the status register and scancode are read, respectively. Conversely, the host sends a command to the
keyboard controller or a control code to the keyboard by writing a command or control code to a control
port or data port. Bits 0 and 1 of the keyboard status register represent OBF and IBF, respectively; OBF
denotes that the data is filled in the output buffer, while IBF denotes that the data is filled in the input
buffer. An attacker can determine if the keyboard data has been input from the keyboard by reading
the control port to check whether the OBF is set. Therefore, the attacker checks if the OBF is set, and
then steals the keyboard scancode by reading the data port.

2.3. Keyboard Data Defense Technique Using Random Scancode Generation

To cope with the direct polling attack, a representative defense technique is one that generates
random scancodes to confuse the attacker. This technique takes advantage of the fact that the 0xD2
command in the command codes for controlling the keyboard controller provides the ability to generate
a random scancode.

The defense technique generates a random scancode at any time, and then informs the keyboard
controller that “I will generate a scancode”, by writing a 0xD2 command to the control port. After
that, if the random scancode is written to the data port, the keyboard controller raises an interrupt
based on the received scancode. The interrupt passes the scancode to the security software by invoking
the interrupt service routine, and the software checks whether the received scancode is the generated
scancode itself. If the scancode is the random scancode generated by the security software, this means
that there is no input from the keyboard. Therefore, this technique causes confusion for the attacker by
repeating this random scancode generation process. If the scancode is not generated by the defender,
the scancode means a scancode input from the keyboard.

Thus, this technique is a reasonably secure and effective defense technique. Even if an attacker
obtains a scancode by replacing an interrupt object or using a direct polling attack technique, it is
difficult for an attacker to differentiate whether it is a random scancode generated by security software
or a scancode input from the keyboard, because it is impossible to classify whether the scancode is input
from the keyboard or not. Figure 2 shows this defense technique using random scancode generation.
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2.4. Keyboard Data Attack Technique Using Control/Data (C/D) Bit Vulnerability Exploitation

The defense technique described above also has vulnerability. The keyboard controller assigns
a field to indicate from which port the command received from the host originates to the keyboard
status register bit 3 (C/D bit) in the register. If data is received from the control port, the C/D bit is
set to 1; otherwise, if data is received from the data port, the C/D bit is cleared to zero. This result
is characterized by the C/D bit of the status register forming a falling edge. Therefore, an attacker
determines that the scancode is a random scancode generated by the defender when OBF is set to 1,
i.e., a scancode is input, after the C/D bit is set to 0 by monitoring the C/D bit. Otherwise, if the OBF is
set after the C/D bit is set to 1, the scancode is determined to be the scancode input by the user, that is,
the scancode is input from the keyboard, not from the defender.

By repeating this attack process, an attacker can classify all scancodes generated by the defense tool
and input by the keyboard. However, to succeed in this attack, this technique requires periodic setting
to check the C/D bit, and requires the condition that all input keyboard data should be preempted and
collected. This causes an overload on the system and abnormal behavior and access. Therefore, there
is a risk of being detected.

For this reason, in this study, we derived the security threat and the vulnerability of keyboard
data by using machine learning with existing attack techniques that do not cause abnormal behavior
and access, and derived the cybersecurity threat of the keyboard data. To achieve this, we proposed
an attack system, and keyboard data is collected from the configured system, and then constructed
datasets for using machine-learning models. In addition, we defined features to obtain only random
data between collected random data and actual keyboard data, and demonstrated the practicality of
classifying keyboard data based on various machine-learning models.



Appl. Sci. 2020, 10, 1286 7 of 16

3. Proposed Attack System and Dataset Configuration

We describe the configuration of the proposed attack system in this section. The attack system
collects all the keyboard scancodes that are input while the keyboard data defense tool is running.
Moreover, we described the dataset configuration for the experiment based on the collected keyboard
data using the proposed attack system.

3.1. Attack System Configuration

Figure 3 shows the keyboard data attack system proposed in this paper. The attack system collects
all scancodes input from the keyboard, i.e., A1, A2 . . . An, while the security software generates
periodically random scancodes, i.e., B1, B2 . . . Bn, to deceive an attacker. Consequently, the attack
tool collects all scancodes, i.e., A1, B1, B2, B3, B4, B5, A2, B6, B7, A3, . . . , An, and Bn, input by the
user and the defense tool at time of collection. Thus, the attack tool collects all the scancodes, and also
collects the time when scancodes are collected. These data include the difference of the time between
the current scancode and the previous scancode in nano second (ns) units. Table 2 shows examples of
the collected scancodes.
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Table 2. Examples of collected scancodes.

Index Elapsed Time Scancode C/D Bit

65 0.062285 0x19 0
66 0.064004 0x15 0
67 0.056019 0x20 1
68 0.146008 0x23 1
69 0.186363 0x1e 0
70 0.062359 0x09 0
. . . . . . . . . . . .

3503 0.062378 0x25 0
3504 0.051819 0x20 1
3505 0.154846 0x27 0
3506 0.058563 0x31 0
3507 0.062439 0x2c 0
3508 0.006104 0x1f 1
3509 0.181061 0x0b 0

The goal was to classify actual scancodes, i.e., A1, A2, . . . , An, input from the keyboard from all
the scancodes, i.e., A1, B1, B2, B3, B4, B5, A2, B6, B7, A3, . . . , An, and Bn, collected by the attack system.
To achieve this classification, we use machine learning models for using the scikit-learn library, such
as k-Nearest Neighbors (KNN) [8], logistic regression [9], linear Support Vector Classifier (SVC) [10],
decision tree [11], random forest, gradient boosting regression tree [12], support vector machine
(SVM) [13], and multiple perceptrons (MLP) [14]. KNN labels classes with many neighbors based on
the number of neighbors and then classifies data according to decision boundaries. Linear models
deals with classification using linear functions. We used the logistic regression and linear support
vector machine (LinearSVC) models in this study for the linear models. Decision Tree divides the data
according to a yes or no question and repeats the questions until a decision is reached. Combined
several machine earning models to improved performances effectively are called ensemble models,
such as random forest and gradient boosting regression tree. The kernel technique includes a kernel
SVM model that classifies decision boundaries according to the each data for training. This model
then measures and classifies distances from the data points located at the boundaries. Finally, the
neural network utilizes MLP. Moreover, three datasets were created, and the practicality of the actual
keyboard data exposure was verified.

3.2. Dataset Configuration

To classify the real keyboard data input by the keyboard, data was collected three times to construct
datasets. Table 3 shows the configured dataset.

Table 3. Whole collected data and dataset configuration.

Dataset
Total

Collected
Scancodes

Number of
Benign

Scancodes

Percentage
of Benign
Scancodes

Number of
Malignant
Scancodes

Percentage of
Malignant
Scancodes

Used Feature

1 3522 392 11.13% 3129 88.86% Index, scancodes

2 10,022 1422 14.19% 8599 85.80% Elapsed time,
scancodes

3 15,046 2281 15.16% 12,764 84.83% Elapsed time,
scancodes, flag

We configured three datasets. Datasets 2 and 3 collected more than 10,000 scancodes, while Dataset
1 collected a relatively small number of 3522 scancodes. A benign scancode in the dataset refers to the
actual scancode input from the keyboard, while a malignant scancode refers to the random scancode
generated by the security software. The number of benign scancodes in each dataset were (392, 1422
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and 2281), while the number of malignant scancodes were (3129, 8599 and 12,764), respectively. The
percentages are (11.13%, 14.19% and 15.16%) for benign scancodes, respectively, and (88.86%, 85.80%
and 84.83%) for malignant scancodes, respectively.

For the experiment, we configured the features in three ways. We defined the collected scancodes
and indexes as the first feature, while the collected elapsed time and scancodes are defined as the
second feature. Finally, the third feature is the collected scancodes, the elapsed time, and the flag (C/D).
Therefore, the dataset was used for three experiments using the three datasets in three ways.

4. Experimental Results

4.1. Experiment Results Based on Feature 1 (Index and Scancode)

We classified into any number of the training set, validation set, and test set to avoid overfitting
and underfitting for the experiment, and Table 4 shows experiment results of the training set, validation
set, test set, and the cross-validation using Dataset 1.

Table 4. Experiment results of training set, validation set, test set, and cross-validation using Dataset 1.

Model Parameters Training Set
Score

Validation Set
Score

Test Set
Score

Cross-Validation
Score

KNN n_neighbors = 4 0.90 0.88 0.88 0.894

Logistic Regression C = 0.00001,
L1 regularization 0.90 0.88 0.88 0.895

Linear SVC - 0.90 0.88 0.21 0.773

Decision tree max_depth = 1 0.90 0.88 0.88 0.895

Random Forest n_estimators = 2 0.93 0.86 0.85 0.866

Gradient Boosting learning_rate = 0.1,
max_depth = 3 0.90 0.88 0.88 0.886

SVM (Support
Vector Machine) C = 1 0.92 0.88 0.88 0.894

MLP (multi-layer
perceptron)

max_iter = 0.00001,
alpha = 0.00001 0.90 0.88 0.88 0.746

Specifically, the training set had the best score for random forest at 0.93, while the rest of the
models had a score at 0.90. The validation set had the worst score of random forest at 0.86, while the
rest of the models had a score at 0.88. The test set had the worst score for linear SVC at 0.21, while the
rest of the models had a score at 0.88. Cross-validation had the worst score for MLP at 0.746, while the
rest of the models had a score at 0.86, except for linear SVC.

Figure 4 shows performance evaluation results of the real keyboard data input from the keyboard
device according to Datasets 1 to 3. Cross-validation splits the data repeatedly, and trains multiple
models. Accuracy denotes the number of correctly predicted numbers (true positive and true negative),
and precision denotes the number of true positive among the number of true positive and false positive.
Recall means the number of true positive among the number of true positive and false negative, and
F1-score means the harmonic average of precision and recall. Area Under the Curve (AUC) is a
summary of the Receiver Operating Characteristics (ROC) curve, and the AUC score falls between the
worst 0 value and the best 1 value.
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To be more specific about the results for each dataset, gradient boosting had high performance
in Dataset 1, while random forest had high performance in Datasets 2 and 3. Nevertheless, most of
the models could not measure precision, recall, and F1-score. KNN, logistic regression, decision tree,
SVM, and MLP models could not measure in Dataset 1. In Dataset 2, KNN, logistic regression, linear
SVC, decision tree, gradient boosting, SVM, and MLP models could not measure, and KNN, logistic
regression, linear SVC, decision tree, gradient boosting, and SVM models cannot measure in Dataset 3.
In other words, a dataset consisting of index and scancode as a feature cannot classify scancode input
from the keyboard and generated random scancode, which means that an attacker is very unlikely to
succeed in a password stealing attack.

4.2. Experiment Results Based on Feature 2 (Elapsed Time and Scancode)

We classified into any number of the training set, validation set, and test set, Table 5 shows
experiment results of the training set, validation set, test set, and the cross-validation using Dataset 1.

Table 5. Experiment results of training set, validation set, test set, and cross-validation using Dataset 1
with elapsed time.

Model Parameters Training Set
Score

Validation Set
Score

Test Set
Score

Cross-Validation
Score

KNN n_neighbors = 3 0.97 0.96 0.96 0.962

Logistic
Regression

C = 10000,
L2 regularization 0.97 0.96 0.95 0.967

Linear SVC - 0.90 0.89 0.90 0.895

Decision tree max_depth = 3 0.97 0.96 0.95 0.968

Random Forest n_estimators = 14 1.00 0.96 0.95 0.969

Gradient
Boosting

learning_rate = 0.1,
max_depth = 2 0.98 0.96 0.95 0.966

SVM C = 100 0.97 0.95 0.95 0.964

MLP max_iter = 1000,
alpha = 0.00001 0.96 0.95 0.95 0.963

Experiment results of training set, validation set, test set, and cross-validation using Dataset 1.
As a result, the training set had the best score for random forest at 1.0, the rest of the models

had similar score at 0.97 and above 0.90. The validation set had the worst score for linear SVC at 0.89,
the rest of the models had a score at 0.96. The test set had the worst score for linear SVC at 0.90, while
the rest of the models had a score at 0.95. Cross-validation had the worst score for linear SVC at 0.895,
while the rest of the models had a score at 0.96.

When comparing the dataset with the index and scancode described in Section 4.1 to the dataset
with the elapsed time described in this section, the random forest increased from 0.93 to 1.0, the rest
of the models increased from 0.90 to 0.91 in the training set score. In the validation set score, linear
SVC increased from 0.86 to 0.89, the rest of the models increased from 0.88 to 0.96. In the test set score,



Appl. Sci. 2020, 10, 1286 11 of 16

linear SVC increased from 0.21 to 0.90, and the rest of the models increased from 0.88 to 0.95. In the
cross-validation score, the score 0.746 at MLP increased to the score 0.895 at linear SVC, and the rest of
the models increased from 0.86 to 0.96. Therefore, the all scores of performance evaluation for datasets
with the elapsed time are higher than those of datasets without the elapsed time. This indicates high
performance when including the elapsed time. In other words, by utilizing a dataset with the elapsed
time, the real keyboard data input by the user can be classified more effectively. Figure 5 shows the
detailed performance evaluation results, such as cross-validation, accuracy, precision, recall, F1-score,
and AUC according to Datasets 1 to 3 with the elapsed time.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 17 
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Specifically, Datasets 1 and 2 had low performance in linear SVC and random forest, while Dataset
3 had low performance in linear SVC, decision tree, and random forest. Moreover, the rest models
had similar level of performance. Above all, all models evaluated the performance in all models
for a dataset that includes the elapsed time when all datasets with elapsed time are compared to
datasets without elapsed time. Consequently, feature 2 is appropriately selected to classify benign
from malignant.

4.3. Experiment Results Based on Feature 3 (Elapsed Time, Scancode, and Flag)

Finally, we compared the proposed method with the attack technique using C/D bit that steals
the keyboard data, although this attack technique causes the overload on the system, and abnormal
behavior and access. We constructed a dataset containing the flag included in the attack technique
using C/D bit, and analyzed the experimental results. We classified into any number of the training set,
validation set, and test set, Table 6 shows experiment results of each set and the cross-validation using
Dataset 1.

Table 6. Experiment results of training set, validation set, and test set scores using Dataset 1 with
elapsed time and flag.

Model Parameters Training Set
Score

Validation Set
Score Test Set Score Cross-Validation

Score

KNN n_neighbors = 1 1.0 1.0 1.0 1.0

Logistic Regression C = 0.01, L1 regularization 1.0 1.0 1.0 0.895

Linear SVC - 1.0 1.0 1.0 1.0

Decision tree max_depth = 1 1.0 1.0 1.0 1.0

Random Forest n_estimators = 1 1.0 1.0 1.0 0.998

Gradient Boosting learning_rate = 0.01,
max_depth = 1 1.0 1.0 1.0 1.0

SVM C = 1 1.0 1.0 1.0 1.0

MLP max_iter = 100,
alpha = 0.00001 1.0 1.0 1.0 1.0

As a result, except for special cases, all scores of all machine-learning models were close to 1.0. This
means that using flag (C/D bit), it classifies the actual keyboard data effectively and completely. Figure 6
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shows the detailed performance evaluation results, such as cross-validation, accuracy, precision, recall,
F1-score, and AUC according to Datasets 1 to 3 with the elapsed time and flag.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 17 
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Specifically, except for the logistic regression of Datasets 1 and 2 and the cross-validation score of
the random forest, all models showed performance measures of accuracy, precision, recall, F1-score,
and AUC has perfect score of 1.0. Specifically, if the flag is used, the data input from the actual keyboard
can be classified, which means that the password of the user can be stolen easily.

4.4. Comparison of Performance Evaluation Results by Features

In this study, we evaluated the performance of datasets with index and scancode, datasets with
elapsed time and scancode, and datasets with elapsed time, scancode, and flag. We demonstrated
that the performances of the dataset with elapsed time and scancode and the dataset with elapsed
time, scancode, and flag are higher than that of the dataset with index and scancode. Furthermore,
the dataset with the flag causes system overload and abnormal behavior and access, but the proposed
method effectively classifies the real keyboard data, without causing this drawback. Consequently,
the results of the performance evaluation differ based on features, thereby analyzing the feature benefit
by comparing the performance evaluation accordingly. Figure 7 shows the comparison of performance
evaluation results of each set and the cross-validation.
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In the figure, the left side is the result of the dataset with index and scancode, the middle is the
result of the dataset with elapsed time and scancode, and the right side is the result of the dataset with
elapsed time, scancode, and flag. The results show that the performance tends to be higher toward the
right, and the dataset with elapsed time and scancode is significantly higher than the dataset with index
and scancode. Moreover, performance evaluation value was closer to 1, which means that collecting
data and constructing features according to the proposed method lead to performance improvement.

Analyzing the results of changes in each set and cross-validation showed significant changes. All
machine-learning models using the datasets without elapsed time showed significant changes. MLP,
linear SVC, and random forest showed marked differences. Conversely, all machine learning models
using the datasets with elapsed time had relatively small changes, however, Linear SVC and Random
Forest show significant changes.

As shown in Figure 7, performance evaluation results were significantly different depending on
the features, and we verified that the dataset with the elapsed time had high performance. Figure 8
shows the comparison results for more practical performance evaluation, such as accuracy, precision,
recall, F1-score, and AUC.
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Figure 8. Comparison of performance evaluation according to practical performance evaluation by features.

In the figure, on the left is the result of the dataset with index and scancode, in the middle is
the result of the dataset with elapsed time and scancode, and on the right is the result of the dataset
with elapsed time, scancode, and flag. The performance tends to be higher toward the right, and the
performance of the datasets with elapsed time and scancode is significantly better than the datasets
with index and scancode. Moreover, the performance of the dataset is higher from 1 to 3, and the
accuracy of the dataset with elapsed time and scancode is close to 1. An accuracy of close to 1 means
that most passwords can be obtained by effectively differentiating between random scancodes and
real scancodes.

In terms of practical performance evaluation changes, most models using the datasets without
elapsed time changed considerably. Among them, gradient boosting, linear SVC, and random forest
showed notable differences. Conversely, all models using the datasets with elapsed time had relatively
slight changes, i.e., linear SVC, decision tree, and random forest show significant differences.

Finally, to analyze the change rate of the increase and decrease according to features, the
performance differences of all datasets were analyzed shown in Table 7.
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Table 7. Change rate of increase and decrease according to feature (Dataset 1).

Model D AC +− P +− R +− F +− AU +−

KNN
w/o 0.877

109.1
0 - 0 - 0 - 0.311

295.1
w 0.957 0.926 0.701 0.798 0.918

Logistic
Regression

w/o 0.879
108.6

0 - 0 - 0 - 0.418
225.5

w 0.955 0.972 0.645 0.775 0.943

Linear SVC
w/o 0.215

420.4
0.128

781.2
0.944

21.8
0.226

150.8
0.581

162.3
w 0.904 1 0.206 0.341 0.943

Decision Tree
w/o 0.879

108.1
0 - 0 - 0 - 0.568

166.3
w 0.951 0.971 0.617 0.754 0.945

Random
Forest

w/o 0.852
111.5

0.205
405.8

0.075
984

0.11
710.9

0.543
174.7

w 0.95 0.832 0.738 0.782 0.949

Gradient
Boosting

w/o 0.88
108.2

0.667
135.2

0.019
3642.1

0.036
2175

0.68
143.3

w 0.953 0.902 0.692 0.783 0.975

SVM
w/o 0.877

108.4
0 - 0 - 0 - 0.477

197.4
w 0.951 0.971 0.617 0.754 0.942

MLP
w/o 0.876

108.3
0 - 0 - 0 - 0.418

226.0
w 0.949 0.97 0.598 0.74 0.945

D: Data set. w/o: without Timestamp. w: with Timestamp. AC: accuracy. P: Precision. R: Recall. F: F1-score. AU:
AUC. +−: Increase and decrease rates.

Specifically, the best model in terms of accuracy in Dataset 1 was linear SVC which increased
by 420.4%, while the worst model was decision tree which increased by 108.1%. The best model in
precision was linear SVC increased by 781.2%, while the worst model was gradient boosting which
increased by 135.2%. The best model in recall in was gradient boosting which increased by 3642.1%.
On the other hand, recall showed that linear SVC model suffered poor evaluations of Datasets with
elapsed time, which decreased to 21.8%. The best model in F1-score was gradient boosting which
increased by 2175%, while the worst model was Linear SVC increased by 150.8%. The best model
in AUC was KNN increased by 295.1%, while the worst model was gradient boosting increased by
143.3%. Except for the linear SVC model in recall, all performance results were increased in Dataset 1,
and the highest increase rate was 3642.1%.

In conclusion, using the dataset with elapsed time, we can effectively classify random keyboard
data with up to 96.2% accuracy. This means that an attacker steals the real keyboard data input by
the user in the real world. Consequently, the proposed attack technique discussed in this paper has
derived a security threat and a new vulnerability that effectively steal user authentication information
in password authentication.

5. Discussion

5.1. Adversary Model

We assumed that an attacker penetrates the victim’s terminal and installs malicious programs.
These are reasonable assumptions given that malicious codes continue to emerge and increase the
number of zombie PCs. In this attack situation, the attacker’s level is classified into two categories:
professional attacker and ignorant attacker. The professional attacker exploits C/D bit vulnerability as
described in Section 2.4 to steal keyboard data. A professional attacker has a high level of knowledge
of the device driver. Moreover, when the attacker uses this attack technique, it obviously steals the
real keyboard data. This means that an adversary neutralizes password authentication. This attack,
however, induces an overload on the system with up to 99% CPU utilization, and can be detected as a
malicious code by judging according to abnormal behavior and access.
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An attacker using the attack technique discussed in this paper is assumed to be an ignorant
attacker. An ignorant attacker is assumed to have simple programming skills at the application level
or the ability to use publicly available attack tools such as keyloggers. Therefore, as described in
Section 2.4, this attacker cannot use C/D bit vulnerability to steal keyboard data, hence an adversary
does not neutralize password authentication. However, if this attack technique discussed in this paper
is used, the ignorant attacker can steal the keyboard data. If the attacker can install keylogger tools
that can be obtained easily online and obtain all keyboard data, the attacker obviously steals the user
password. Here, we assume that the attacker can collect the keyboard scancode and elapsed time
collected from installed keyloggers. In general, keyloggers have a low risk of being detected, because
these tools do not overload to the system and do not cause abnormal behavior and access. Therefore,
the ignorant attacker using the discussed attack technique will steal the real keyboard data, hence the
adversary neutralizes password authentication.

5.2. Usefulness, Applicability, and Performance of the Proposed Technique

The usefulness of the proposed method is that, as described in Section 3.1, we constructed the
attack system and verified the practicality of keyboard data exposure using machine-learning models.
We collected 28,590 scancodes from three datasets and increased the attack success rate of keyboard
attack by defining elapsed time and scancode as features. In particular, keyboard data collected from
keyloggers installed by an ignorant attacker described in Section 5.1 cannot be used to steal passwords
input from the user on the system that deployed the keyboard data defense technique described in
Section 2.3. Nevertheless, if the same attacker uses the proposed attack technique, the attacker has a
high attack success rate. Therefore, the proposed technique has usefulness.

If the attacker constructs the attack system shown in Figure 3, the attack succeeds. If the
ignorant attacker, as described in Section 5.1, can install keyloggers and use machine-learning models,
the proposed technique can be applicable. Therefore, the proposed technique means is applicable.
Moreover, with regard to malware and vulnerability detection, the proposed attack method is applicable,
because the method bypasses detection in the way of detecting malicious code or vulnerabilities
presented by [15,16]. Specifically, this approach uses system-provided functions that are free from
having vulnerabilities, so that an attack tool is not vulnerable or detected as malware.

Keyboard data collected from keyloggers installed by the ignorant attacker alone shows the attack
success rate as low as 21.5% and up to 88.0%, even with machine-learning models used. On the contrary,
defining elapsed time as a feature proposed in this paper, the attack success rate is as low as 90.4% and up
to 96.2%. Moreover, the performances proposed in this paper by the performance evaluation measures
were significantly better. Therefore, we verified that the proposed technique has high performance.

6. Conclusions

This study demonstrated the security of the keyboard data using machine learning in password
authentication while the keyboard data defense tool is running. Conventional attack techniques have
limitations in distinguishing between random keyboard data and real keyboard data. To overcome
this problem, we collected the keyboard data to construct datasets with features and classified real
keyboard data effectively. In experimental results using constructed datasets, the datasets collected
by the proposed method classified the actual keyboard data significantly better than conventional
attack techniques. Namely, the proposed attack technique steals keyboard data with high accuracy.
Specifically, performance measures in terms of practical evaluation, such as accuracy, precision, recall,
F1-score, and AUC were better than in the conventional attack techniques, and have exceedingly low
false positive and false negative rates. In addition, the best accuracy was 96.2%, which means that the
user input data is obviously classified. The proposed method in this paper derived a new security
threat and a new vulnerability of the password authentication method. Conclusively, this study will
have advantages in the security assessment of password authentication and all types of authentication
technology and application services input from the keyboard.
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