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Featured Application: The corrected adaptive balancing approach considering air gap unbalance
can mainly be used for the precision motorized spindle of high-end machine tools.

Abstract: Motorized spindles widely used for high-speed precision machine tools are very sensitive
to the mass unbalance of rotors; thus, their balancing problem is always a research hotspot.
Although many significant studies were done regarding the theory and application of various
rotor balancing technologies for motorized spindles, the particularity of motorized spindles is not
carefully considered in the existing balancing approaches. When the rotor unbalance of a motorized
spindle occurs in operation, it is subject to both the mass unbalance-induced inertia force and air
gap unbalance-induced electromagnetic force, which is an important feature that distinguishes
the motorized spindle from a mechanical spindle. This paper describes an investigation into the
corrected adaptive balancing approach of a motorized spindle by newly introducing a coefficient
representing the removing effect of the air gap unbalance of the motor on the balancing capacity into
the balancing formula. The determination of the newly defined coefficient refers to the calculation
of electromagnetic force caused by the dynamic air gap eccentricity of motor; thus, much attention
is paid to the analytical derivation of the unbalanced magnetic pull (UMP). Finally, a motorized
spindle with an electromagnetic ring balancer was developed; then, the balancing tests and vibration
signal analysis were done to validate the effectiveness of the newly proposed balancing approach
in residual vibration reduction. It can be seen from the test results under different cases that the
proposed balancing approach is effective.

Keywords: motorized spindle; air gap unbalance; unbalanced magnetic pull (UMP); adaptive
balancing; balancing test

1. Introduction

High-speed precision machining [1] is an important direction of modern cutting technology.
Spindle [2] is the key functional part of a cutting machine, and the rotating unit which is made up of
tool, holder, and shaft has a direct effect on the workpiece quality. For the spindle of a machine tool,
vibration is an important factor that affects its rotary accuracy. Vibration of a machine tool spindle
in machining generally presents as self-excited vibration and forced vibration. Chatter [3–6] is a
typical form of self-excited vibration, and its modeling, prediction, and control were widely studied.
Rotor unbalance-induced vibration is a typical form of forced vibration, and much attention was
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also paid to unbalance correction [7]. Moreover, uneven thermal drift can also cause vibration of
machine tool spindles; thus, the thermal analysis and error compensation of spindles are also important
topics [8,9]. In this paper, the control problem of rotor unbalance for a machine tool motorized spindle
is discussed.

Motorized spindle [10] is a direct drive spindle, which integrates spindle and motor into one
element, eliminating the intermediate transmission link; thus, motorized spindles are widely used for
high-speed precision cutting machines. However, the high-speed feature also renders motorized spindle
more sensitive to rotor unbalance caused by design, machining, assembly, and cutting. Due to tool
wear [11], breakage, change, and so on, mass distribution unbalance of a shaft–holder–tool combined
rotor often happens in engineering practice, which firstly causes the spindle to vibrate violently [12]
and then has a severe impact on the workpiece surface quality and spindle service life. It can be seen
that there were two main research aspects regarding spindle balancing technology; one involved the
balancing method and the other involved a balancing device. The balancing methods mainly include
the modal balancing method [13], the influence coefficient method (ICM) [14], and magnetic levitation
method [15]. The modal balancing method relies on the accurate dynamics calculation of a rotor, while
ICM can avoid complicated calculations and it is easy to carry out on a computer; finally, magnetic
bearing cannot directly compensate for the unbalanced mass. The balancing devices mainly include
the balancing machine, field balancing instrument, and online balancing system. The on-balancing
machine balance [16] and on-site balance by a portable instrument [17] are both off-line balancing
modes, which need to interrupt the machining process. On-line balancing does not require stopping
or human intervention, which allows automatically achieving the precision balancing of spindles.
Online balancing systems can be divided into passive [18] and active balancing systems. Passive
balancing is realized by automatic matching of dynamics characteristics of balancer and spindle, which
has no controller but requires dynamics design. Active balancing is based on the on-line signal analysis
and a balancing algorithm, and the balancer is driven by a controller. The active balancing technology
has wider applicability for various rotors compared to passive balancing. Therefore, research on the
combined use of ICM and active balancer is currently a hot topic for the on-line balancing of machine
tool spindles.

As early as 1964, Vegte [19] proposed a mechanical automatic balancer that moved within a
Cartesian coordinate system. Since then, a variety of polar-coordinate solid counterweight balancers
were studied, including the radial steel ball movement-type structure [20] and electromagnetic
ring-type structure [21]. In addition, some scholars also studied active balancing technology using
a liquid counterweight [22]. For the active balancing method, Gosiewski [23,24] initially described
the theory and implementation, thereby influencing many subsequent balancing methods. Moon [25]
developed an ICM-based on-line active electromagnetic ring balancing system for high-speed spindles.
Dyer [26] studied an ICM-based single-plane adaptive electromagnetic ring balancing system. Kim [27]
investigated the stability of an ICM-based active electromagnetic ring balancing system. Dyer [28]
implemented an ICM-based robust multiple-plane active electromagnetic ring balancing. Fan [21,29–32]
revealed the design principle of an electromagnetic ring balancer and the influence of control parameters
on the adaptive balancing method, developed an adaptive balancing controller, and experimentally
studied the dynamics and thermal performance of a motorized spindle with a single electromagnetic
ring balancer. These above researches are the representative achievements of on-line active balancing
technology of machine tool spindles. However, they did not consider the unique characteristic of rotor
unbalance for a motorized spindle. When a motorized spindle is subject to rotor unbalance, the motor
of spindle causes uneven air gap distribution between the stator and rotor, thereby producing an extra
undesired magnetic pull. The magnetic pull and magnetic vibration for three-phase asynchronous
motors were widely studied [33,34], but the air gap eccentricity was never been considered in the
active balancing scheme of motorized spindles using a three-phase asynchronous motor, which leads
to an inescapable balancing capacity reduction for an online active balancing system.
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This paper focuses on a corrected adaptive balancing approach for motorized spindles by
eliminating the effect of air gap eccentricity. Firstly, the rotor unbalance of motorized spindle is
introduced, and then the air gap unbalance is proposed and the electromagnetic force caused by air
gap unbalance is derived. Then, an ICM-based adaptive balancing method for motorized spindles is
defined, where the effect of air gap unbalance-induced electromagnetic force on the active balancing
is considered. Finally, the balancing tests and vibration analysis of a specific motorized spindle are
carried out to prove the effectiveness of the proposed approach.

2. Unbalance and Force of Motorized Spindle

2.1. Mechanical Unbalance and Force

When mechanical unbalance is discussed, the stator of motor for a motorized spindle is not
considered, and the combined rotor composed of a shaft, holder, and tool is the main research object.
As shown in Figure 1, for the combined rotor of a shaft, holder, and tool, the mass unbalance in cutting
process mainly appears in this tool due to the inevitable tool wear, breakage, and change, and the
cutting tool can be reduced to a circular plane because of its small axial size.
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Figure 1. Schematic diagram of a combined rotor and its mass unbalance for a motorized spindle:
(a) combined rotor of shaft, holder, and tool; (b) mass unbalance of tool.

In Figure 1, assuming that the tool in the A–A plane generates a mass eccentric vector me,
the mechanical unbalance vector U can be shown as

U = me = Me
′

, (1)

where m is the eccentric mass, and e is the position vector of m in polar coordinates, M is the total mass
of a combined rotor, e′ is the equivalent eccentricity vector of the combined rotor.

When the motorized spindle rotor is operating at the angular speed of ω, U causes an undesired
inertia force F, which can be expressed as

F = ω2U. (2)

The force vector F can be decomposed and converted into two components of Fx and Fy along the
horizontal and vertical directions in the Cartesian coordinate system.{

Fx = meω2 cosωt
Fy = meω2 sinωt

. (3)

According to Equation (3), the unbalance-induced force components are characterized by a
frequency equal to the rotating angular frequency ω, which causes the mechanical vibration of the
spindle system.
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2.2. Electromagnetic Unbalance and Force

2.2.1. Characteristic of Spindle Motor with Dynamic Air Gap Eccentricity

As a kind of motor, the air gap eccentricity of motorized spindle is inevitable. When the dynamic
air gap eccentricity of a spindle motor occurs, the rotor of motor orbits around the geometric axis of
the stator.

As shown in Figure 2, it is known that the rotor orbits around the geometric center “O” of stator
under the dynamic air gap eccentricity; δ(θ, t) is the air gap length between the motor rotor and
stator in a polar coordinate system, which can be represented as follows according to the geometric
relationship:

δ(θ, t) = δ0 − δd · cos(θ−ωrt), (4)

where δ0 is the nominal air gap length, δd is the dynamic air gap eccentricity length, θ is the mechanical
angle, and ωr is the angular speed at minimum air gap position, expressed as

ωr = ω1(1− s)/p, (5)

where p is the magnetic pole pair number of motor, s is the motor slip rate, and ω1 is the angular
frequency of motor power supply.
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Figure 2. Schematic diagram of dynamic air gap unbalance for the motor of a motorized spindle.

When a motorized spindle is subject to the dynamic air gap eccentricity, the unbalanced magnetic
pull (UMP) of the motor is generated, causing an undesired electromagnetic vibration of the spindle
rotor. If the UMP contains 1× rotating frequency component, then 1× rotating frequency component of
the UMP should be removed from the balancing reference of the online active balancing scheme in
frequency domain to improve the balancing effect. Therefore, the key problem is the calculation of the
UMP. For different types of motors, the UMP calculations are different. This paper mainly applies a
three-phase asynchronous spindle motor driven by a frequency converter to calculate the UMP.

2.2.2. Calculation Scheme of Electromagnetic Force of Spindle Motor

According to the literature [34,35], the electromagnetic force of a three-phase asynchronous spindle
motor can be calculated using the Maxwell stress tensor (MST) method; the flow chart of the calculation
process of MST is shown in Figure 3.

Firstly, the radial magnetic flux density in the air gap is obtained by multiplying the main magnetic
potential and high-order harmonic magnetic potential in the air gap between the stator and rotor
along the radial direction with the air gap permeability. Then, the radial electromagnetic force per unit
surface area of the spindle rotor is calculated using the MST method. Finally, the analytical expression
of the total radial electromagnetic force is obtained by integrating the radial electromagnetic force on
the unit surface area of rotor.
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2.2.3. Electromagnetic Force of Spindle Motor without Eccentricity

Firstly, for an asynchronous motorized spindle with three-phase symmetrical windings,
the resultant radial magnetic potential can be expressed as

f (θ, t) = fp(θ, t) +
∑

v
fv(θ, t) +

∑
µ

fµ(θ, t), (6)

where
fp(θ, t) = Fp cos(pθ−ω1t−ϕ0), (7)

fv(θ, t) = Fv cos(vθ−ω1t−ϕv), (8)

fµ(θ, t) = Fµ cos(µθ−ωµt−ϕµ), (9)

where fp(θ, t), fv(θ, t), and fµ(θ, t) are the main magnetic potential, the harmonic magnetic potential
of the stator, and the harmonic magnetic potential of the rotor, respectively, while v and µ are the
harmonic orders of the stator and rotor, respectively.

Secondly, the radial magnetic permeance can be approximated as

λ(θ, t) = Λ0 +
∑
k1

λk1 +
∑
k2

λk2 , (10)

where Λ0 is the invariant part of permeance, λk1 is the harmonic permeance caused by the stator slots,
λk2 is the harmonic permeance caused by the rotor slots, and both λk1 and λk2 are numerically very
small and can be ignored.

Thirdly, according to Equations (6) and (10), the instantaneous radial magnetic density can be
derived as

b(θ, t) = f (θ, t)λ(θ, t) = B1 cos(pθ−ω1t−ϕ0) +
∑

v
Bv cos(vθ−ω1t−ϕv) +

∑
µ

Bµ cos(µθ−ωµt−ϕµ), (11)

where B1 is the main magnetic density amplitude, while Bv and Bµ are the harmonic magnetic density
amplitudes of stator and rotor, respectively.

Finally, the radial electromagnetic force generated by the air gap magnetic field and acting on the
unit surface area of rotor is proportional to the square of the radial magnetic flux density in the air gap;
the radial electromagnetic force on the unit surface area of spindle rotor can be approximated as

Pr(θ, t) =
b2(θ, t)

2µ0
, (12)

where µ0 is the vacuum permeability, and µ0 = 4π× 10−7 H/m.
As the electromagnetic force with lower order and larger amplitude plays a major role in the

vibration level of the spindle rotor, the higher-order and smaller-amplitude components of the radial



Appl. Sci. 2020, 10, 2197 6 of 17

electromagnetic force are omitted, and the constant components are omitted; thus, it can be obtained
that the radial electromagnetic force per unit surface area of spindle rotor is

pr(θ, t) =
1

2µ0

B1
2

2
cos(2pθ− 2ω1t− 2ϕθr) +

∑
vZ

∑
µZ

BvZ BµZ cos[(µ± v)θ− (ωµ ±ω1)t− (ϕµ ±ϕv)]

. (13)

The integral operation of Equation (13) is obtained as
Femx = LR

∫ 2π
0 pr(θ, t) cosθdθ

Femy = LR
∫ 2π

0 pr(θ, t) sinθdθ

Fem =
√

Fx
2 + Fy

2

, (14)

where Femx and Femy are two components of the electromagnetic force along the horizontal and vertical
directions in the Cartesian coordinate system, respectively, Fem is their resultant force, and L and R are
the length and radius of the spindle rotor, respectively. For the case with no eccentricity, according to
Equations (13) and (14), the spindle is not subject to UMP, i.e., Fem = 0.

2.2.4. UMP of Spindle Motor with Dynamic Air Gap Eccentricity

In the case of dynamic air gap eccentricity, the air gap permeability can be expressed as

Λs(θ) = Λ0(1 + ε′ cos(θ−ωrt)), (15)

where ε′ is the relative air gap eccentricity ratio, defined as ε′ = δd/δ0.
By substituting Equation (15) into Equation (11), it is obtained that

b(θ, t) = f (θ, t)λ(θ, t) = B1 cos(pθ−ω1t−ϕ0) +
∑
v

Bv cos(vθ−ω1t−ϕv) +
∑
µ

Bµ cos(µθ−ωµt−ϕµ)+

ε′
2 B1 cos

[
(p± 1)θ− (ω1 ±ωr)t−ϕ0] +

ε′
2
∑
v

Bv cos[(v± 1)θ− (ω1 ±ωr)t−ϕv] +
ε′
2
∑
µ

Bµ cos[(µ± 1)θ− (ωµ ±ωr)t−ϕµ]
, (16)

where the first three terms are the air gap magnetic fields without eccentricity, and the last three terms
are the additional magnetic fields produced by dynamic air gap eccentricity.

By substituting Equation (16) into Equation (12), we get

pr(θ, t) = 1
2µ0
{

B1
2

2 cos(2pθ− 2ω1t− 2ϕ0) +
B1

2ε′

2 cos[(p± (p± 1))θ− (ω1 ± (ω1 ±ωr))t− (ϕ0 ±ϕ0)]+∑
v

∑
µ

BvBµ cos[(µ± v)θ− (ωµ ±ω1)t− (ϕµ ±ϕv)] +
∑
v

Bv
2 ε′

2 cos[(v± (v± 1))θ− (ω1 ± (ω1 ±ωr))t− (ϕv ±ϕv)]+∑
v

∑
µ

BvBµε′ cos[((µ± 1) ± v)θ− ((ωµ ±ωr) ±ω1)t− (ϕµ ±ϕv)]+∑
µ

Bµ2 ε′
2 cos[(µ± (µ± 1))θ− (ωµ ± (ωµ ±ωr))t− (ϕµ ±ϕµ)]}

. (17)

According to Equation (17), under dynamic air gap eccentricity, the rotor is subjected to the
following low-order electromagnetic forces:

(i) First-order and 2p ± 1-order low-frequency radial electromagnetic force produced by the
interaction of the p± 1-order harmonic with the main magnetic field, the frequencies of which are ωr

and 2ω1 ±ωr, respectively.
(ii) µ± v± 1-order high-frequency radial electromagnetic force produced by the interaction of the

µ± 1-order harmonic with the tooth harmonic magnetic field of the stator and the interaction of the
v± 1-order harmonic with the tooth harmonic magnetic field of the rotor, the frequencies of which are
ωµ ±ωr ±ω1.

(iii) First-order low-frequency radial electromagnetic force produced by the interaction of the
v± 1-order harmonic and the tooth harmonic magnetic field of the stator, the frequency of which is ωr.

(iv) First-order low-frequency radial electromagnetic force produced by the interaction of the
µ± 1-order harmonic and the tooth harmonic magnetic field of the rotor, the frequency of which is ωr.
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2.2.5. Main Component of UMP Affecting the Balancing Capacity

The ZYS-170MD12Y16 motorized spindle used in this paper is a four-pole three-phase
asynchronous frequency conversion motor; thus, its rotation speed is calculated by

n =
60 f1

p
= 30 f1, (18)

where f1 is the frequency of the motor power supply.
Then, the rotating frequency of spindle is obtained by

fr =
n
60

= 0.5 f1. (19)

According to Equations (13) and (17), the order and frequency of the electromagnetic forces
were calculated, as listed in Table 1; since the high-order forces cause a low-level vibration, the
electromagnetic forces over the fourth order were ignored.

Table 1. Electromagnetic forces of ZYS-170MD12Y16 motorized spindle under no eccentricity and
dynamic air gap eccentricity.

Electromagnetic Force (EF) No Eccentricity Dynamic Eccentricity

Order Frequency Order Frequency

EF caused by main magnetic field 4 2 f1 4 2 f1

EF caused by interaction of the tooth harmonic
magnetic fields of the stator and rotor

0 12 f1 0 12 f1

4
14 f1 4

14 f1

26 f1 26 f1

EF caused by interaction of the main and
p± 1-order harmonic magnetic field None

1 0.5 f1

3 1.5 f1

EF caused by interaction of the stator tooth
harmonic and µ± 1-order harmonic magnetic field None

1
11.5 f1

12.5 f1

3
13.5 f1

25.5 f1

EF caused by interaction of the rotor tooth
harmonic and µ± 1-order harmonic magnetic field None 1 0.5 f1

EF caused by interaction of the rotor tooth
harmonic and v± 1-order harmonic magnetic field None

1
11.5 f1

12.5 f1

3
13.5 f1

25.5 f1

EF caused by interaction of the stator tooth
harmonic and v± 1-order harmonic magnetic field None 1 0.5 f1

It can be seen from Table 1 that the first-order 1× rotation frequency electromagnetic forces (EFs)
were caused by dynamic air gap eccentricity, which consists of three parts including the EF caused
by interaction of the main and p± 1-order harmonic field, the EF caused by interaction of the rotor
tooth harmonic and µ± 1-order harmonic field, and the EF caused by interaction of the stator tooth
harmonic and v± 1-order harmonic field. Furthermore, the components of the first-order 1× rotation
frequency electromagnetic forces are listed in Table 2, which represent the main components of the
UMP affecting the frequency-domain balancing capacity; MFD is shorthand for magnetic flux density.
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Table 2. The 1× rotation frequency components of electromagnetic forces under dynamic air gap
eccentricity. MFD—magnetic flux density.

Order of EF First Order of
MFD

Second Order
of MFD

Order Number
of EF Frequency

p± (p± 1) 2
1 1 0.5 f1

3 1 0.5 f1

v± (v± 1) v v− 1 1 0.5 f1

v + 1 1 0.5 f1

µ± (µ± 1) µ µ− 1 1 0.5 f1

µ+ 1 1 0.5 f1

2.2.6. Quantitative Relationship between Unbalanced Mechanical and Electromagnetic Forces

According to Table 2, for the same order formula of electromagnetic forces, two first-order 1×
rotation frequency components are obtained; thus, Equation (17) can be simplified as Equation (20).

pn(θ, t) =

ε′(B1
2 +

∑
v

Bv
2 +

∑
µ

Bµ2)

2µ0
cos(θ−ωrt). (20)

Substituting Equation (20) into Equation (14), we get

Femx =
LR(B1

2+
∑
µ

Bµ2+
∑
v

Bv
2)πε′

2µ0
cosωrt

Femy =
LR(B1

2+
∑
µ

Bµ2+
∑
v

Bv
2)πε′

2µ0
sinωrt

Fem =
√

Fx
2 + Fy

2 =
LR(B1

2+
∑
µ

Bµ2+
∑
v

Bv
2)πε′

2µ0

. (21)

For the squirrel-cage motor, its rotor has a compensation effect for the uneven magnetic field; thus,
the UMP shown in Equation (21) is corrected by adding an empirical coefficient χ [35,36] as follows:

Fem =

χLR(B1
2 +

∑
µ

Bµ2 +
∑
v

Bv
2)πε′

2µ0
. (22)

Therefore, in the case of dynamic air gap eccentricity, the rotor is pulled by an unbalanced
electromagnetic force with the frequency of 1× rotating frequency, the direction of UMP from the
rotation center of the rotor to the minimum air gap position is changing, and the amplitude of force is
proportional to the dynamic air gap eccentricity.

According to Equations (2) and (22), we can define a coefficient k.

k =
Fem

F + Fem
, (23)

where k represents the quantitative relationship between the unbalanced mechanical and
electromagnetic forces, which is used for the correction of the adaptive balancing method.
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3. Adaptive Balancing Approach of Motorized Spindle

3.1. Conventional Adaptive Balancing Method

According to the literature [26,30], a single-plane adaptive balancing algorithm of a motorized
spindle rotor based on the online influence coefficient estimation was built, with the iterative equation
shown in Equation (24).

ςk+1 = ςk − α
υk
∧
ck

, (24)

where ςi is the product of balancing mass and its radius generated by the active balancer at the i-th
trial, υi is the 1× rotation frequency vibration component of the rotor system at the i-th trial, α is the
gain factor of rotor system, usually 0 < α < 1 (a small gain factor can improve the balancing stability,

but reduce the convergence rate, and vice versa), and
∧
ci is the online estimated influence coefficient of

rotor system at the i-th trial.
∧
ck = (1− λ)ck−1 + λck, (25)

where λ is the forgetting factor, usually 0 ≤ λ ≤ 1 (a small forgetting factor can improve the
anti-interference ability of balancing process, and a large forgetting factor can make the balancing
process converge quickly), and ci is the actual influence coefficient.

ci =
υi − υi−1

ςi − ςi−1
. (26)

3.2. Corrected Adaptive Balancing Method

When the electromagnetic unbalance effect of a spindle motor is considered, the balancing iterative
formula is corrected as

ςk+1 = ςk − α
υk
∧

ck
′

, (27)

where
∧

ck
′ is defined as

∧

ck
′ = τ

∧
ck = (1− k)

∧
ck, (28)

where τ is defined as the ratio of the rotor mass unbalance-induced inertia force F to the total 1×
rotation frequency force F + Fem, τ= 1 − k, and 0 < τ < 1, 0 < k < 1.

It can be seen that in essence the introduction of τ or k makes the estimated value of influence
coefficient more approximate to the real situation. For the above adaptive balancing equation, when the
amplitude of vibration is greater than the preset threshold value, the balancing program is automatically
started, otherwise the balancing process stops immediately.

4. Experiments

4.1. Motorized Spindle and Its Test Bed

The ZYS-170MD12Y16 motorized spindle with a single electromagnetic ring balancer was designed
and developed, as shown in Figure 4. Figure 4a shows the design results of the motorized spindle with
a balancer, rotor, and stator sheet of the spindle motor, while Figure 4b shows the developed prototype
of the motorized spindle and adaptive electromagnetic ring balancing system. The main parameters of
the balancer–spindle system are listed in Table 3.
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Table 3. Main design parameters of ZYS-170MD12Y16 motorized spindle.

Parameter Value Parameter Value

Outer diameter of stator (mm) 130 Outer diameter of rotor (mm) 79.4
Inner diameter of stator (mm) 80 Inner diameter of rotor (mm) 50

Length of stator core (mm) 110 Length of rotor core (mm) 112
Number of stator slots 24 Number of rotor slots 28

Pair number of magnetic poles 2 Length of air gap (mm) 0.3
Phase number of motor 3 Natural frequency of spindle rotor (Hz) 586.7 [37]

Total mass of balancer–spindle rotor (kg) 12.649 Maximum balancing capacity of
balancer (g·cm) 38.55

As shown in Figure 4, the motorized spindle system was composed of a motorized spindle,
speed controller, cooling machine, and lubricator, while a metal disc with threaded holes was mounted
onto the front end of the spindle rotor to generate unbalance. The active balancing system was
composed of a balancer, controller and control program, tachometer, and acceleration and displacement
sensors, whereby the balancer offsets the unbalance vector of the spindle rotor via the vector synthesis
of two polar coordinate-type counterweights driven by the electromagnetic force of ring coils [21,29].
Moreover, a portable vibration collector was used for the real-time collection of signals from those
sensors, i.e., the vibration signals were divided into the balancing controller and the external vibration
acquisition instrument.

Two piezoelectric sensors mounted on the front and rear bearing housings were used to collect
the vertical acceleration-type vibration signals, two orthogonal eddy current sensors radially mounted
on a support located around the perimeter of the unbalanced disc were used to collect the radial
displacement-type vibration signals, and an optical fiber tachometer was used to collect the real-time
rotation speed of motorized spindle and detect the unbalance phase. The digital signal processor (DSP)
TMS320C6713PYP-based active balancing controller and the Microsoft visual studio (MVS)-based
balancing control program were developed by the authors [31]. The active balancing control system
mainly realizes the functions of vibration signal analysis, adaptive balancing control algorithm
execution, and balancer drive. The main parameters of both kinds of vibration sensors used are shown
in Table 4.

Table 4. Main parameters of two kinds of vibration sensors.

Kind Type Linear Range Sensitivity

Acceleration sensor Dytran3255A6 ±25 g 200 mV/g
Displacement sensor JX20 0.5–1.5 mm 4 V/mm

4.2. Calculation of Balancing Correction Coefficient

Using the above design parameters, Equation (22), and the electromagnetics calculation [35],
the 1× rotation frequency component of the UMP for the ZYS-170MD12Y16 motorized spindle was
obtained to be

Fem = 5.6709× 104χδd. (29)

According to Equation (2), the 1× rotation frequency inertia force is

F = meω2 = 12.649e′ω2. (30)

Therefore, according to Equation (23), the ratio of the 1× rotation frequency UMP and the total 1×
rotation frequency force is expressed as

k =
5.6709× 104χδd

12.649e′ω2 + 5.6709× 104χδd
. (31)
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where χ = 0.63 [35], because of the uncertainty of the axial distribution of dynamic air gap eccentricity,
the Equation (31) was simplified according to the pretest. In this paper, the equivalent value δeq

d
of dynamic air gap eccentricity δd is approximated as δeq

d = e′, this moment, it can be seen that the
correction coefficient k is related to the square of angular velocity [35].

4.3. Experiment Design and Signal Analysis Scheme

In order to validate the newly corrected adaptive balancing approach for motorized spindles, the
balancing tests were done for two typical unbalance cases. The unbalanced mass and its vector position
are listed in Table 5. Two kinds of unbalance vectors were realized by inserting counterweight screws
into the threaded holes of the metal disc, as shown in Figure 4. In addition, the tested rotation speeds
were set by the frequency converter below 3000 rpm, including four speeds of 1500 rpm, 1800 rpm,
2100 rpm, and 2400 rpm.

Table 5. Unbalanced mass and its position used for the balancing test.

Case Unbalanced Mass m (g) Phase (◦) Vector Radius e (mm)

Case 1 4.5 0
36Case 2 9.0 180

The whole vibration test and the signal analysis scheme used in this paper are shown in Figure 5.
As shown in Figure 5a, by inserting the counterweight screws into the threaded holes of the

metal disc, the rotor unbalance of the motorized spindle was generated. For four different rotation
speeds, three kinds of vibration tests were successively carried out, including a vibration test before
balancing, a vibration test with conventional adaptive balancing [26,30], and a vibration test with the
newly corrected adaptive balancing considering the effect of UMP in this paper. For each kind of
test, the collected original vibration signals firstly underwent pre-processing as filtering, and then
the 1× rotating frequency vibration component was extracted using the fast Fourier transform (FFT)
algorithm [38], where FFT can transform the vibration signals at the constant speeds from time domain
to frequency domain. It can be seen from Figure 5b that FFT surely obtains all frequency components
of the tested vibration signals, and the 1× rotation frequency vibration component is found to be a
maximum peak compared to the other frequency components.
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Figure 5. Vibration test and analysis flow chart for balancing purpose: (a) the whole test scheme;
(b) vibration signal analysis scheme.

4.4. Results and Discussion

For the above experiment designs, tests and analyses were performed. The results are shown in
Figures 6 and 7, where the horizontal coordinate is the rotation speed and the vertical coordinate is
the 1× rotation frequency vibration amplitude. We give the 1× rotation frequency vibrations from the
#2 displacement sensor (a more sensitive channel to rotor unbalance-induced vibration than the #1
displacement sensor) and the #2 acceleration sensor (less disturbed than the #1 acceleration sensor),
where the unit of the acceleration signal is the gravitational acceleration (g = 9.8 m/s2).
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According to Figures 6 and 7, by comparing the three dotted lines in each figure, it can be known
that the conventional (marked by “•”) and newly corrected (marked by “N”) adaptive balancing
approaches using a single electromagnetic ring balancer surely reduce the 1× rotation frequency
vibration level caused by the rotor unbalance of the motorized spindle, regardless of the displacement
or acceleration signal. When the newly corrected balancing approach proposed in this paper was
applied, the residual 1× rotation frequency vibration level after balancing was further reduced
compared to the conventional method without considering the effect of UMP. The reduction rates of
the 1× rotation frequency vibration at different speeds using the conventional and corrected methods
are summarized in Table 6.
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Table 6. Vibration reduction rate using the proposed method compared to conventional method.

Case 1

Displacement (um) Acceleration (g)

Speed (rpm) 1500 1800 2100 2400 1500 1800 2100 2400

Before balancing 28.39 28.50 27.50 28.23 0.00066 0.00134 0.00251 0.00544
Conventional method 26.40 25.32 23.46 22.53 0.00054 0.00124 0.00218 0.00485
Reduction rate I (%) 7.00 11.16 14.69 20.19 18.18 7.46 13.15 10.85
Proposed method 23.89 23.64 21.53 21.54 0.00040 0.00123 0.00159 0.00362

Reduction rate II (%) 15.85 17.05 21.71 23.70 39.39 8.21 36.65 33.46
Rate difference (%) 8.85 5.89 7.02 3.51 21.21 0.75 23.50 22.61

Average (%) 6.32 17.02

Case 2

Displacement (um) Acceleration (g)

Speed (rpm) 1500 1800 2100 2400 1500 1800 2100 2400

Before balancing 28.53 30.59 33.93 38.56 0.00091 0.00204 0.00616 0.00748
Conventional method 25.88 26.48 28.95 29.85 0.00084 0.00190 0.00551 0.00700
Reduction rate I (%) 9.29 13.44 14.68 22.59 7.69 6.86 10.55 6.42
Proposed method 22.66 23.63 26.51 27.86 0.00062 0.00017 0.00311 0.00372

Reduction rate II (%) 20.57 22.75 21.87 27.75 31.87 91.67 49.51 50.27
Rate difference (%) 11.28 9.31 7.19 5.16 24.18 84.81 38.96 43.85

Average (%) 8.24 47.95

In Table 6, the vibration reduction rates I and II, as well as the difference of the two reduction rates
and the average of rate difference values at four speeds, are defined by Equations (32), (33), and (34).

ξI =
υI − υ0

υ0
, ξII =

υII − υ0

υ0
, (32)

∆ξ = ξII − ξI, (33)

∆ξ =

n∑
i=1

(∆ξ)i

n
, n = 4, (34)

where υi is the 1× rotation frequency vibration before balancing (i = 0), using the conventional method
(i = I), and using the proposed method in this paper (i = II), ξi is the relative vibration reduction rate
to vibration before balancing using the conventional method (i = I) and proposed method in this
paper (i = II), ∆ξ is the difference between ξI and ξII, and ∆ξ is average of ∆ξ for the same sensor and
unbalance vector.
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As seen in Table 6, the corrected method proposed in this paper improved the vibration reduction
rate by a maximum value (∆ξ)max of 84.81% and a maximum average value

(
∆ξ

)
max

of 47.95%, and the
variation law of vibration reduction rates is not linear. The data in Table 6 show that the newly proposed
adaptive balancing approach considering the air gap unbalance is effective for the improvement of the
active balancing capacity of a motorized spindle, which positively contributes to high-speed precision
machine tools.

5. Conclusions

The original intention of this work was to improve the existing rotor adaptive balancing method
by considering the effect of air gap unbalance on the balancing scheme, which is an interesting
topic for motorized spindles. In order to achieve this goal, we made the following assumptions and
simplifications: (i) a single-plane balancing strategy was adopted to mainly reduce the tool unbalance
in the machining process, which is an approximation to the tool–holder–shaft combined rotor; (ii) the
influence coefficient method (ICM) and the frequency-domain analysis of vibration signals were
adopted, which are based on the assumption that the spindle system runs smoothly; however, in
practice, the non-stationary factors affect the balancing effect; (iii) in the calculation of unbalanced
magnetic pull (UMP), the 1× rotation frequency component with small order and large amplitude
was retained, and the correction coefficient was approximately treated. Since the electromagnetic
vibration of a motorized spindle is complex, and the rotor balancing cannot be reduced to 0 in practice,
the balancing strategy can be accepted as long as its accuracy meets the requirements of the user.
Therefore, the above approximations and simplifications are feasible, and the tested results prove this
point. This idea is an exploration, and further research will be carried out in the future. The valuable
conclusions of this paper are as follows:

(1) The mechanical and electromagnetic effects caused by rotor unbalance for a motorized spindle
were introduced. Mechanical unbalance causes an inertia force, while electromagnetic unbalance
induces an unbalanced magnetic pull (UMP). The UMP contains many components, whereas this work
mainly focused on the 1× rotation frequency component affecting the frequency-domain adaptive
balancing strategy. The derivation of UMP for a three-phase asynchronous squirrel-cage spindle motor
was given, and, for a specific motorized spindle, the UMP and ratio of the air gap unbalance-induced
1× rotation frequency force component and the total 1× rotation frequency force were determined.

(2) Based on the study on UMP, a newly defined corrected coefficient for the improvement of the
active balancing effect was defined. A frequency-domain adaptive balancing algorithm based on the
corrected estimation scheme of the influence coefficient was built for motorized spindles.

(3) In order to validate the proposed balancing approach, a vibration test bed of a motorized
spindle with a single electromagnetic ring balancer was developed. In the tests, two typical unbalance
cases were designed, where displacement and acceleration sensors were used and the balancing tests
were done at four different speeds. Finally, the balancing data under no balancing, conventional
adaptive balancing, and the corrected adaptive balancing schemes were obtained. According to
the analysis results, the proposed adaptive balancing approach was surely proven effective for the
reduction of residual vibration after balancing for motorized spindles.

6. Patents

An invention patent from China was obtained (“On-line adaptive active balancing method for
motorized spindle considering air gap unbalance” (No. ZL 201810162477.8)), in which a corrected
adaptive balancing approach for motorized spindles considering the air gap unbalance was proposed.
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