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Abstract: Traditional Person Re-identification (ReID) methods mainly focus on cross-camera scenarios,
while identifying a person in the same video/camera from adjacent subsequent frames is also
an important question, for example, in human tracking and pose tracking. We try to address
this unexplored in-video RelD problem with a new large-scale video-based RelD dataset called
PoseTrack-RelD with full images available and a new network structure called ReID-Head, which can
extract multi-person features efficiently in real time and can be integrated with both one-stage and
two-stage human or pose detectors. A new loss function is also required to solve this new in-video
problem. Hence, a triplet-based loss function with an online hard example mining designed to
distinguish persons in the same video/group is proposed, called instance hard triplet loss, which can
be applied in both cross-camera RelD and in-video ReID. Compared with the widely-used batch
hard triplet loss, our proposed loss achieves competitive performance and saves more than 30% of
the training time. We also propose an automatic reciprocal identity association method, so we can
train our model in an unsupervised way, which further extends the potential applications of in-video
ReID. The PoseTrack-RelD dataset and code will be publicly released.

Keywords: person RelD; video; triplet loss; pose; unsupervised learning

1. Introduction

Given a query person image, person re-identification aims to identify persons with the same
Identity (ID) in the gallery images. Most existing methods focus on the problem that query images and
gallery images are from different camera views, i.e., a cross-camera problem. With the rising of deep
learning, the ReID community has witnessed a huge jump of accuracy in recent years. For example,
on the Market-1501 [1] dataset, a widely-used RelD dataset, a part-based model [2] has achieved
a 93.8% rank-1 accuracy.

With the progress of RelD, it is natural to apply RelD in other areas. Some researchers tried to
incorporate RelD with human tracking [3-5]. They utilized extra RelD datasets to train a ReID model
and used the obtained model for feature extraction. Those extracted RelD features were then utilized
to identify the tracking target from candidate persons, achieving a better performance. However,
directly using a model, trained on cross-camera RelD datasets such as the Market-1501 [1] dataset and
CUHKO3 [6] dataset, usually obtains an inferior performance due to the cross-domain bias that the
appearance in the source dataset is often much different from the appearance in the target dataset.

A possible solution is to collect and annotate RelD data of the target domain,
like DukeMTMC-relD [7], which comes from the DukeMTMC [8] dataset for Multi-Target,
Multi-Camera Tracking. Then, we can use the obtained RelD data to train a ReID model and improve
the tracking performance. However, the collection and annotation are often expensive and sometimes
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impossible to obtain. Furthermore, even if this cross-camera RelD dataset is available, we still cannot
directly use those cross-camera RelD data for person tracking within the same video sequence, because
person tracking within the same video needs to identify persons within the same video, which is
different from traditional cross-camera RelD that identifies persons across multiple cameras. In this
paper, we refer to person RelD within the same video as in-video RelD. As shown in Figure 1,
the traditional cross-camera RelD task searches for the same person from images captured by different
cameras at different times, while the in-video RelD task searches for the same person from subsequent
frames of the same video.

Frame 1

\
Camera 11
\

Search Frame 2

Frame 3

(a) Traditional cross-camera RelD (b) The in-video RelD

Figure 1. Illustration of (a) traditional cross-camera ReID and (b) the in-video RelD addressed in this
paper. Cross-camera RelD retrieves images of the same person from different cameras, while in-video
RelD finds the same person in the subsequent frames of the same video. The blue bounding boxes in
each sub-figure indicate the same person.

In this paper, we try to address the aforementioned in-video RelD problem that identifies a person

in the same video sequence. We argue that traditional cross-camera RelD and in-video RelD are
dissimilar in the following aspects:
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Single-camera view: Cross-camera RelD needs to identify persons appearing in multiple cameras;
thus, it forces the network to extract features consistent in all camera views and drop the
camera-specific features, leading to limited available features, while in-video RelD can fully
utilize all features.

Short-term: Cross-camera RelD tries to construct a long-term association that inevitably discards
transient clues. On the contrary, we will demonstrate that those transient clues are very critical
for in-video RelD.

Background: As we mentioned above, temporary clues like the background always act
as a distractor, and those features are often discarded in cross-camera RelD. For instance,
MGCAM [9] learns to predict a foreground mask of the human body area to suppress background
distraction. However, for in-video RelD, the background of a person usually does not change
dramatically within a few subsequent frames and can help to distinguish people with a similar
appearance.

Pose: The pose is also regarded as a distraction, and pose-unrelated features are preferred in
cross-camera RelD. For example, the recent FD-GAN [10] use Generative Adversarial Nets
(GAN) [11] to learn pose-unrelated representations.
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Similar looking persons often exist in the same video frame, engaged in the same activity, as shown
in Figure 1b. We need to fuse short-term information like background and pose with human body
features to discriminate highly similar persons for in-video RelD.

Since in-video RelD is quite different from existing cross-camera RelD, why bother to investigate
this new task? As mentioned in [12], in a video, people often disappear and re-appear again due
to occlusions by other people or objects. A tracking method without knowing identity information
cannot handle this situation properly, because it cannot distinguish well between a new person and
a re-appeared existing person. That is the reason why [5] argued that the ReID module is essential for
multiple person tracking. Some researchers in the pose tracking community also plan to embed a RelD
model in their method [13]. Thus, a good in-video method is helpful for person tracking and pose
tracking, as well as many downstream practical applications such as video surveillance and sports
video analysis.

In this paper, we try to address this new in-video RelD problem, and our main contributions can
be summarized in three-folds:

(1) A new large-scale video-based in-video RelD dataset with full images available. To the best of
our knowledge, no such in-video dataset has been released before. A RelD-Head network is also
designed to extract features for the in-video RelD task efficiently;

(2) A new loss function called Instance Hard Triplet (IHT) loss is proposed, which is suitable for
both the cross-camera RelD task and the in-video RelD task. Compared with the widely-used
Batch Hard Triplet (BHT) loss [14] for cross-camera RelD, it achieves competitive performance
and saves more than 30% of the training time (see Section 4.4, Table 2);

(3) Labeling RelD data is expensive and time consuming; thus, we also propose an unsupervised
method for automatically associating persons in the same video with the same identity through
reciprocal matching, so that an in-video RelD model can be trained using these associated data.

2. Related Works

Person RelD is a popular topic in the computer vision area. Benefiting from the advances of deep
neural networks, it has achieved great progress in recent years. The current person RelD studies can
roughly be divided into two categories: representation learning based methods [15-18] and metric
learning based methods [19-24]. In this section, we will introduce these two categories, respectively,
and then introduce their applications in the tracking area.

2.1. Representation Learning Based

Representation learning based methods mainly focus on the form of input and the structure of
the network for learning a better representation for the input information. Global features extracted
directly by the convolutional backbone are often used [15-17,19]. Apart from learning global features,
many part-based methods, such as Part-based Convolutional Baseline (PCB) [2], AlignedRelD [25],
and Spindle Net [26], learn discriminative local features for person re-identification. GLAD [27]
combines both global and local features to further improve the performance. For video-based RelD,
Li et al. [28] also combined the local short-term temporal cues and the global long-term relations to
exploit the multi-scale temporal cues in video sequences.

Extra input data like attributes are also helpful for the RelD task. FI-CNN [16] and
Attribute-Person Recognition (APR) [17] improve image-based person RelD by training jointly with
attribute data. Zhao et al. [29] proposed an attribute-driven method for feature disentangling and
frame re-weighting for video-based RelD.

2.2. Metric Learning Based

Metric learning based methods mainly focus on the loss function and the sampling scheme for
learning a discriminative embedding in the feature space. Deep metric learning defines a metric among
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samples to compute the loss, which focuses on maximizing inter-class similarities and inter-class
differences in the feature space.

IDE (Identity) [30] network treats each person as a class and directly exploits identity information
as supervision signals to learn discriminative features using cross-entropy classification loss.

Tripletloss [31] is a current commonly used metric method for person RelD. It employs a constraint
that the feature distance of person images with the same identity should be smaller than the distance
of ones with different identities. Based on the triplet loss, Chen et al. [20] proposed a quadruplet
loss, which further forced the intra-class distance to be less than the inter-class distance between two
other classes.

The performance of all the metric losses mentioned above is greatly influenced by the sampling
scheme. Many works [3,14,32-34] considered that the mining of hard samples plays an essential role
in the performance of deep metric learning for person RelD. Hermans et al. [14] proposed batch hard
triplet loss to select the hardest positive and hardest negative of each anchor in a mini-batch to compute
the triplet loss. Ristani et al. [3] developed it into Adaptive Weighted Triplet Loss (AWTL). In [34],
Yu et al. discussed the robustness of the batch hard triplet to outliers and proposed a more robust loss
called Hard-Aware Point-to-Set (HAP2S) loss. Xiao et al. [33] proposed Margin Sample Mining Loss
(MSML), which expands the batch hard triplet from a triplet loss to a quadruplet loss. The graph-based
metric is also used in the RelD task. For example, Ye et al. [35] proposed a Dynamic Graph Matching
(DGM) method for label estimation and unsupervised video RelD.

2.3. RelD for Tracking

With the development of person RelD, RelD features of person images have become popular
appearance features for Multiple Object Tracking (MOT) [36], especially for tracking-by-detect-based
methods. A survey [37] has summarized some hand-crafted features such as color, edge, and texture
features of person images for associating person bounding boxes of the same ID in the video.
In [38], random forest was applied to learn robust RelD features for the tracking task. However,
traditional methods cannot extract rather discriminative features to solve some difficult situations
like occlusions, pose variances, illumination variances, etc. Deep learning based trackers [3,4,39]
use a large-scale person RelD dataset to train the ReID model, which significantly improves the
performance. Zhang et al. [4] exploited AlignedRelD [25] as the feature extractor and directly connected
person bounding boxes according to the Euclidean and Jaccard distances of RelD feature vectors.
Such a simple method obtained great performance on the DukeMTMC tracking dataset [8] because
of the strong RelD model. DeepCC [3] combines spatio-temporal information with discriminative
RelD features to implement the data association. However, a systematic solution for the data, network,
and training methods is missing for a good RelD model in tracking, and an efficient way to jointly
perform detection and RelD is needed.

3. Our Approach

3.1. RelD-Head Network

To extract features of multiple persons in an image frame, the regular solution is first to use
a human detector to detect the human body area and then feed those bounding box images into
another RelD network to obtain the final representation. However, in this way, detection and RelD
cannot be combined properly, and this two-stage paradigm does each job without reusing features.

Efficiency is an important factor in a video-based real-time system, and the detection and RelD
feature extracting can share the low-level features to speed up. An attempt of this idea was proposed
in Person Search [40,41], which adopts a Faster R-CNN-like [42] structure, first generating candidate
bounding boxes from anchor, then feeding the ROI-pooling [43] feature to an identification net to get
the RelD features and refined detection bounding boxes. Features are reused for both detection and
RelD; however, there are many anchor boxes, and each will feed into an identification net separately
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without sharing features. As the detection area keeps advancing, this fixed anchor-based structure
cannot be integrated with some newly proposed detection methods such as CornerNet [44] and
YOLOV3 [45].

In this paper, we propose a new standalone ReID module consisting of a convolutional ReID-Head
and an ROIAlign [46] layer. It begins from the mid-level feature maps of a detection/pose model
and then produces its final representation for the entire input image by a light-weight convolution
network, as shown in Figure 2. The detection trunk network generates final bounding boxes,
and an ROIAlign [46] is applied for each bounding box to obtain the final RelD features.

SSD-Head _— Bounding Boxes

Backbone Detection Head

Input Image ROI Align

VU
RelD- . ——— RelD Features
Head

Standalone RelD Module

Figure 2. Our RelD-Head network structure. Given an input image, a backbone network is utilized for
feature extraction. The extracted feature maps are then reused for both person detection through the
Single Shot Detector (SSD)-Head and feature embedding through the ReID-Head. ROIAlign [46] is
applied on detected bounding boxes (red bounding boxes in the figure) to obtain the final RelD features.

In this paper, we adopt a Single Shot Detector (SSD) network [47] as a case study. As shown in
Figure 2, SSD [47] uses a VGG network [48] as the backbone, and we insert our ReID-Head module in
the output of conv4_3, where the first classifier of SSD connects. As for our ReID-Head, we use three
ResNet [49] bottlenecks followed by a 1 x 1 convolution to reduce the channel number to 10, and the
ROIAlign [46] size is 5 x 5, which makes the final feature vector for ReID have 250 dimensions.

Because the RelD module is a standalone part, the backbone in Figure 2 can be replaced by
the more complicated ResNet-50 [49], ResNet-101 [49] or ResNeXt-101 [50], as in [46], while the
detection head can be replaced by other detection heads like Feature Pyramid Networks (FPN) [51].
More complicated backbones and detection heads can further improve the performance, but that is
not the focus of this paper. We choose the VGG [48] backbone and SSD [47] head as a case study in
this paper.

There are several advantages of our proposed RelD-Head design:

(1) It canjointly get detection and RelD results in a single network, and the network can be trained
end-to-end.

(2)  The RelD-Head module can be integrated into both one-stage detectors like YOLO [52] and
CornerNet [44] and two-stage detectors like Faster R-CNN [42] and Mask R-CNN [46], as well
as keypoint detectors like OpenPose [53,54], benefiting from the progress in the detection area
and improving.

(3) It has high efficiency with feature reusing. Furthermore, the computational cost of RelD features
will not linearly increase with more anchor boxes as in Person Search [40,41].

3.2. Instance Hard Triplet Loss

Person re-identification is a zero-shot problem, i.e., the IDs in the test set will not appear in the
training set, and we need to distinguish different IDs without seeing any of them before. Therefore,
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regarding each ID as a class and training a classification network to distinguish every training IDs may
have inferior performance in testing.

Therefore, metric learning methods are introduced to learn a good embedding in the feature space
supervised by a specific metric. The most famous metric learning method is the triplet-based metric,
which was first introduced in the face recognition area [55,56].

A triplet is composed of an anchor sample, a positive sample, and a negative sample. The triplet
loss force distance between the anchor and positive samples is smaller than the distance between the
anchor and negative samples by a predefined margin, which can be formulated as follows:

Lyi = [D(xq,%5) — D(xa, xp) +a] | (1)

where x; and x;, are the features of two different samples of person 4, x, is a feature of another person
p, & is a margin constant, [z] is max(0, z) to guarantee the loss is non-negative, and D(-) is a distance
function between two features like the Euclidean distance.

Triplet loss can pull positive pairs together and push negative pairs away in the feature space.
However, how to generate a proper training triplet is still a problem because there is a large number of
potential combinations.

Batch hard triplet loss [14] generates triplets from the training batch by choosing the hardest
negative and positive samples for each anchor sample as follows:

P .
ko i . k
Lgur =Y. ) max D(xp,xp) — nglll.{lpD(x”’x]") +a )
p=lk=1 j=1.K
n#p +

where x”‘, is the p'h person’s k" sample; there are P persons in the batch, and each person has K samples.
In this way, easy triplets that benefit the training a little are discarded, and hard triplets are mined.
A visualization can be seen in Figure 3a.

avg —

LOE
OJEN

(a) Batch Hard Triplet (b) Instance Hard Triplet

Figure 3. Visualization of the distance matrix between every two samples in a mini-batch for (a)
the Batch Hard Triplet (BHT) and (b) Instance Hard Triplet (IHT) loss. Here, P = 3 and K = 4.
The maximum in each green colored area and the minimum in each yellow colored area are computed,
then K triplets are generated by BHT loss, and one triplet is generated by IHT loss for each person.
As we can see, IHT needs less computation.

However, there are still two problems remain:

(1) Imbalance: As shown in Equation (2) and Figure 3a, there is an imbalance between positive
and negative samples that only K positive pairs, but P x (K — 1) negative pairs are compared,
resulting in a harder negative sample mining.
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(2)  Computation: This requires a huge computation overhead. For P x K samples in a batch, it needs
P x K comparisons to generate triplets, leading to a computational complexity of O (P?K?).

Unlike the motivation for batch hard triplet loss [14] to find the hardest positive and negative
pairs in a batch, our motivation of instance hard triplet loss derives from the observation of persons in
a video sequence. As shown in Figure 4, there are multiple persons in an image frame. If we want to
identify each person in the subsequent frames, we should guarantee that the feature representations are
similar among those frames across time. Meanwhile, to distinguish all persons correctly, we should also
force the representation of persons in the same image to be different. Based on the above observation,
we come up with a new loss function with the following form:

P

L = max max D xk,xi — min min D xj xj +a
AT p;l k=1..Ki=1..K (xprp) j=1..K ncP; (xp,xn) ®)

n#p +

k
P

of persons that appear in all K images, and IP; is a set of all persons that show up in the jM image.

where x% is the feature of the p person in the k™ image, K is the number of images, P is the number
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Figure 4. The motivation of our instance hard triplet loss is to keep features consistent across frames
and distinguishable with other persons in the same frame. II;’ is the p™ person in the k" image and x';
is the corresponding feature. Note that a variable number of persons shows up in every frame, because
persons often appear and disappear in a video.

Recalling Figure 4, the proposed instance triplet hard loss in Equation (3) selects P persons
appearing in all K images, and three constraints are required: (1) features of each person should be
consistent across all images; (2) features of all persons in the same image should be distinguishable;
and (3) even the hardest positive sample should still be more similar to the anchor than the closest
negative sample in every image by a predefined margin «.

The above motivation is clear, and the formulation is in line with our intuition. This loss functions
also show much flexibility and can be generalized to an image-based cross-camera problem, where we
can group a P x K batch into K groups with P different persons in each group. The variant can be
formulated as follows:
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P . .
Linr = max max D(x¥,x1) — min min D(x},x},) +« 4
e ; k=1..Ki=1..K (xprp) j=1..Kn=1_Pp (p, x3) 4
- n#p N

A visualization is shown in Figure 3b, where we only compare negative samples in the same group.

Different from batch hard triplet loss, instance hard triplet loss only compares the anchor person
with persons in the same image rather than all negative samples. For K images with average P persons
in each image, we compare the anchor sample with K positive samples and P negative samples,
rather than P x (K — 1) negative sample in batch hard triplet loss. Thus, the proposed loss is more
balanced between positive and negative pairs. On the other hand, we generate only one triplet for
each person with comparison times of K? and P x K for positive and negative pairs, respectively.
Therefore, for a batch with P person, the computational complexity is O(PK(P + K)). Since we exploit
all instances of each person and find the hardest triplet, we call it instance hard triplet loss.

In summary, compared with the widely-used triplet batch hard loss, our proposed loss is:

(1)  more balanced between positive and negative pairs;

(2) faster with a smaller computational complexity of O(PK(P + K)) compared to O(P?K?);

(3)  competitive in performance, which can be seen in the experimental part of this paper;

(4) more general for both the cross-camera and in-video RelD problem, the image-based and
video-based RelD problem, as well as training samples with an indefinite quantity persons.

3.3. Unsupervised In-video ReID

In practice, labeling cross-camera RelD data is expensive and time consuming, because it involves
identifying a person from a camera network. Although our in-video RelD only requires associating
a person from continuous frames, which is much easier for labeling training data, annotating for each
new scenario still needs much manpower, and this deficiency limits the potential large-scale practical
applications of in-video RelD.

Can we train an in-video RelD model in an unsupervised way? We observe the fact that a person
can only appear once in a frame; in other words, we will not see the same person twice at the same time.
Therefore, we can guarantee that the detected persons within the same frame are different persons,
and images of other persons in the same frame can be used as negative samples. Now, the problem is
how to get positive samples of a person with the same identity. In this paper, we propose a Reciprocal
Identity Association (RIA) method to associate the same person across frames automatically for
in-video RelD.

For a person p in a frame, we denote the k-nearest neighbors as:

N(p,k) = {81,828}, IN(p. k)| = k (5)

where g is the persons in the next frame, g; is the i" sample in the top k ranking list of p, and | - | is the
number of samples. If g; is in the k-nearest neighbors of p, in turn, p should also be in the k-nearest
neighbors of g; if they are the same person, and the k-reciprocal neighbors [57] can be defined as:

R(p,k) = {8il(gi € N(p,k)) A (p € N(gi,k))} (6)

Persons in R(p, k) are potential positive samples. With a larger k, it is more likely that R contains
the correct match, but it also brings more ambiguity into determining the corresponding identity.
Because there is only one correct match in the next frame, we choose k = 1. If [R(p, 1)| = 1, we takeitas
a positive sample. In this way, some person associations will be missed (|R(p,1)| = 0, no sample meets
the condition), but the remaining association is more reliable. In our experiments, wrong associations
with false supervision signals are more likely to cause model degeneration. Although we dropped
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some potentially available associations, in a real scenario, we can usually collect many unlabeled data,
which is much less expensive than collecting labeled data, so plenty of reliable associations can be
automatically generated, and this problem could be compensated.

4. Experiments

4.1. Datasets

For the cross-camera RelD task, we used three widely-used public datasets, Market-1501 [1],
DukeMTMC-relD [7], and CUHKO3 [6], while for the in-video RelD task, we used a new proposed
in-video RelD dataset called PoseTrack-RelD.

Here is the introduction for the three public cross-camera RelD datasets:

Market-1501 was collected at Tsinghua University using 6 cameras. There were 1501 identities
and 32,668 bounding box images in total. Those bounding box images had a fixed size of 128 x 64 and
were generated by a Deformable Part Model (DPM) [58] pedestrian detector.

DukeMTMC-reID is an image-based person re-identification based on the DukeMTMC dataset [8],
in the format of the Market-1501 dataset. It crops pedestrian images from the videos every 120 frames,
yielding in total 36,411 bounding boxes with IDs.

CUHKAO03 was proposed in [6], collecting images using 10 cameras. Each identity was observed by
a pair of 2 cameras, and there were 1467 identities in all. Both DPM [58] detected and manually labeled
bounding boxes were provided. We used the labeled version in this paper. A new recent protocol
proposed in [57] was adopted in this paper with a fixed split for which 7368 images of 767 identities
were used for training and 6728 of 700 identities were used for the testing.

Despite the fact that the above three public cross-camera datasets are widely used, they are not
applicable to the in-video RelD task. To solve the in-video RelD problem, we needed a dataset to
train and evaluate an in-video RelD method, which should (1) be video-based, (2) have annotations
for persons appearing in the same frame, (3) be large enough, and (4) provide full images so the
pedestrian detection errors can be examined. However, no existing RelD dataset satisfied those
demands. Therefore, we proposed a new large-scale video-based in-video RelD dataset, called
PoseTrack-RelD.

Our PoseTrack-RelD raw images came from a pose tracking dataset, PoseTrack [59]. The original
PoseTrack [59] dataset contained human keypoint annotations, but did not have the bounding box of
a human body. Based on the keypoint annotations, we first removed persons with less than 6 keypoints
and obtained the bounding box of all keypoints. Then, we adjusted those bounding boxes to surround
the whole body. We also removed frames with less than two persons present.

We split PoseTrack-RelD into a fixed train/val/test division with 250/37/50 videos, respectively.
Statistical information and a comparison with the above three cross-camera datasets and some
video-based datasets are shown in Table 1. Samples are shown in Figure 5.

Table 1. Comparison of the statistical information between PoseTrack-ReID and some widely-used
cross-camera RelD datasets. # is the number of the corresponding item. MTMC, Multi-Target,
Multi-Camera.

Name #identities #bboxes Video? Full Image?
CUHKO3 [6] 1467 13,164
Market-1501 [1] 1501 32,217
DukeMTMC:-relD [7] 1812 36,441 v
PRID2011 [60] 934 24,541 v
iLIDS-VID [61] 300 42,495 v
MARS [62] 1261 1,191,003 v
PoseTrack-RelD 3088 84,443 Ve v
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Figure 5. Samples from the proposed in-video (d) PoseTrack-RelD dataset and some other widely-used
cross-camera RelD datasets, including (a) Market-1501 [1], (b) CUHKO3 [6], and (c) MARS [62].

Note that the MARS [62] dataset contained more bounding boxes from a long continuous sequence,
but it had fewer identities and missed full-frame images. MARS [62] contained only campus images of
Tsinghua University. DukeMTMC-relD [7] also only contained campus images of Duke University.
As a comparison, our PoseTrack-RelD dataset contained a large-scale of identities and bounding boxes,
with full-image videos available in diverse scenes. As shown in Figure 5d, each video contained
multiple persons, and the persons could be very similar to each other.

Each video had about 31 labeled frames, and unlabeled images before and after those labeled
frames were also provided for future unsupervised methods.

4.2. Evaluation Protocol

Cross-camera RelD: We used the standard single query setting for cross-camera RelD as in [1].
For each query image, a model was used to retrieve images belonging to the same person from
different cameras.

In-video RelD: For each video in PoseTrack-RelD, we left the last 15 labeled frames in each
sequence of the test set as gallery images only, and the rest of frames were used as query images and
potential gallery images as well. We performed an in-video person RelD in the recent subsequent
frames, more specifically, for persons in a frame, and we identified the same person in the next several
frames. In our experiments, we chose the frame interval G € {1,5,10,15} to identify query persons in
the image that was G frames after the query image. For different G, the total query bounding boxes
were slightly different. We assigned a detected bounding box with the Intersection over Union (IoU)
larger than 0.5 with a ground truth box the corresponding ID label and an ID of —1 otherwise.

Evaluation metric: We used rank-1 accuracy as our evaluation metric for both the cross-camera
RelD task and the in-video RelD task. Given a query image, a ranking list was obtained based on the
similarities between the query image and all candidates. The first image (rank-1) in the ranking list



Appl. Sci. 2020, 10,2198 110f18

was the most similar image, and the percentage that it belonged to the same person with the query
image was computed.

4.3. Implementation Details

We implemented our network using the PyTorch framework. In all experiments, the margin
constant & was fixed to 0.3. We made a clean network design so that the results could be easy to be
reproduced, and our code will also be publicly released. Two networks were designed:

ReID-Head: The input image size was 300 x 300. We used an SSD network pre-trained on the
PASCAL VOC dataset [63] with an mAP of 77.4% on the VOC2007 Test. To compare different RelD
methods with the same detection performance fairly, we fixed the detection part and only trained the
proposed RelD-Head. Besides, the relationship between detection and RelD performance had already
been fully investigated in [19]. Because the ReIlD-Head was light-weight, we only trained it for 10
epochs using an Adam [64] optimizer with the learning rate linearly increasing from 575 to 574.

Baseline for cross-camera RelD: To evaluate the efficiency of our proposed instance hard triplet
loss on cross-camera RelD task, we compared it with the widely-used state-of-the-art metric batch hard
triplet [14] loss on three public cross-camera RelD datasets. As for the network structure, we chose the
IDE network [30], which was commonly used as a baseline, like in [7,30,65-68]. The IDE network [30]
uses a standard ResNet-50 structure [49] and the pre-trained weights on ImageNet for initialization.
After the last convolution layer, a global average pooling follows to get the final RelD feature, which is
a 2048-dimension vector for every sample. The input image size we chose was 256 x 128, and only
random horizontal flipping data augmentation was used. We used an Adam [64] optimizer with an
initial learning rate 5~° and linearly increased the learning rate to 1-3 within 20 epochs. We kept this
learning rate for 60 epochs and then lowered it to 1~ for 20 epochs and 17 for another 80 epochs.
We used a PK sampling strategy [14] with P = 32 and K = 4, which meant there were 32 persons and 4
images for each person in a mini-batch. The same network structure was used for instance hard triplet
loss. Except for the loss function, all the remaining settings were identical, and the results on three
public cross-camera datasets are reported.

Baseline for in-video RelD: To evaluate the efficiency of the proposed RelD-Head network and
instance hard triplet loss on in-video RelD task, we compared it with a state-of-the-art cross-camera
RelD method, Part-based Convolutional Baseline (PCB) [2]. For the PCB network, following [69-71],
we used an input image size of 256 x 128. The number of horizontal stripes was fixed to 4 accordingly.
The PK-sampling strategy with P = 12 and K = 4 was used to help the network converge.
We trained it on the widely-used DukeMTMC-relD [7] cross-camera RelD dataset and then evaluated
its performance on the in-video RelD task.

4.4. Cross-camera RelD Results

We first compared our proposed instance hard triplet loss with the widely-used batch hard triplet
loss on the IDE [30] network for the cross-camera RelD task. The result is shown in Table 2. As we can
see, on all three datasets, our instance hard triplet loss outperformed the batch hard triplet loss. In the
meantime, our new loss could train the network faster with an iteration time of 0.53 s, saving about
35% training time, which meant the proposed loss was both better and faster.

The faster speed could be attributed to the smaller computation complexity, and the better
performance could be attributed to the new hard triplets mining mechanism with more balanced
positive and negative pairs.
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Table 2. Comparison of two loss functions on the IDE [30] network for the cross-camera RelD task.
Rank-1 accuracy is reported. The time for an iteration (forward + backward time) was tested on
an NVIDIA Titan Xp GPU. Our proposed instance hared triplet loss achieved a better performance
with less training time.

Method Market-1501 DukeMTMC-reID CUHKO03 Time

BHT [14] 85.9 78.1 586  0.8ls
IHT (ours) 87.0 80.3 592 0.53s

With a large input image size (like 384 x 128), more data augmentation (like random crop and
random erasing [68]), a stronger backbone (like ResNet-101 [49]), multiple part-based features (like six
horizontal features in PCB+RPP [2]), and other tricks, we may achieve a better performance, but that
was not our main purpose. We kept our network design simple to demonstrate the flexibility, speed,
and efficiency of our new loss; hence, the results were easy to reproduce, and we will also release our
implementation.

4.5. In-video RelD Results

We also investigated the generality of our novel loss function and the efficiency of the ReID-Head
network for the in-video RelD task.

We trained our ReID-Head network with different K in the PK-sampling strategy for the ablation
study, where K is the number of images for each person in a mini-batch. The results are shown
in Table 3. As we can see, when K = 2, the ability of hard example mining could not be fully
utilized, thus resulting in an inferior performance. When K = 8, the time span was large, so a more
diverse appearance could be seen in the training time. However, in this way, as we discussed in the
Introduction part, short-term features were discarded. When K was very large, the task was more
like a cross-camera RelD, but without a camera difference, viewpoint changes, and scene transition.
In our in-video RelD problem, we cared more about RelD in the next few frames, so too big K was
unnecessary, and note that we only had a length of about 31 labeled frames in each video. Therefore,
in the following experiments, we chose K = 6.

Table 3. Experimental results on PoseTrack-RelD with different K values by our ReIlD-Head network.
K'is the number of images for each person in a mini-batch, and G is the frame interval. Rank-1 accuracy
is reported.

G=1 G=5 G=10 G=15

39.1 37.9 36.3 349
39.9 39.2 37.8 36.4
40.0 39.2 37.8 359
40.0 39.0 37.9 36.3

@ NN | R

We also evaluated the results using two sets of bounding boxes in the gallery: one was detected
using the SSD trunk, and the other was the labeled ground truth. As shown in Table 4, using the
labeled bounding boxes yielded a much better result, which revealed the huge influence of the
detection accuracy on RelD performance. With better detection, we could achieve a better RelD result,
because a good bounding box contained more body areas and less background distracting information.
Some examples of both detected and labeled results are shown in Figure 6.
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Figure 6. Some sample results obtained by our in-video ReID method. For each column, the first image
is the query frame, and the second is the gallery frame. Query and candidates” bounding boxes are
drawn. The number in the gallery is the ordinal number in the ranking list, so the number 1 is the most

similar match. Wrong matches are drawn in red color, and correct matches are drawn in green.

Many failure cases were caused by the wrong detection, as shown in the first column of
Figure 6; all candidate bounding boxes were wrong, so the ReID-Head could not find a correct match.
Detection affected RelD so much that we designed our RelD-Head as a separate independent module.
Unlike some other rigid network designs, in this way, as the detection area progressed, we could
constantly shift to the new better detection frameworks and achieve a better RelD performance.
Moreover, our RelD-Head could be plugged into both one-stage and two-stage detection networks
with good flexibility.

Another thing that needs to be mentioned is that rank-1 accuracy when G = 1 using labeled
ground truth bounding boxes was as high as 99.5%. After investigating the image results, we found it
normal because when G = 1, the query frame and that right after the next frame (gallery frame) were
very similar. For a 24 fps video, G = 1 meant only a 1/24 second time interval, and the images did not
change much. Therefore, the query and gallery images were almost the same.

Table 4. Results on the PoseTrack-RelD using detected and labeled bounding boxes, respectively.
Rank-1 accuracy is reported.

Bounding Boxes G=1 G=5 G=10 G=15

detected 40.0 39.2 37.8 359
labeled 99.5 93.6 87.1 81.1

We also evaluated the performance of a state-of-the-art cross-camera RelD method, the PCB [2]
model, on the in-video ReID task. We first trained the PCB model on a popular large-scale cross-camera
RelD dataset, the DukeMTMC-relD [7] dataset, and our implementation achieved a rank-1 accuracy
of 85.0%, which was slightly better than the 83.3% rank-1 accuracy reported in the original paper.
We then evaluated this model on the PoseTrack-RelD dataset to obtain in-video RelD performance.

Results are shown in Table 5, and there were three interesting observations that can be obtained
from the results:

(1)  Even a state-of-the-art model trained on a popular large-scale cross-camera RelD dataset still
performed badly on the PoseTrack-RelD dataset, because in-video RelD was a different problem
with cross-camera RelD, and we needed to train a new model to fit for the new job, that is why
we proposed a new dataset, a new network structure, and a new loss function to answer how to
train for the new in-video problem;

(2) Unlike RelD-Head, the performance of PCB did not descend with a larger G, because
cross-camera RelD is a long-term problem, which discards short-term clues, while in-video
RelD is a short-term problem;
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(3)  Our light-weight ReID-Head was much faster than the PCB model. Unlike the traditional
two-stage way with independent detection and the RelD model, our ReID-Head could achieve
real-time multi-person RelD feature extracting with almost no increasing time by fully reusing
features when the number of persons in a video increased. When bounding box number was
larger than the maximum batch size of the GPU, traditional RelD models would need multiple
forwards, costing even more time.

Table 5. Comparison of PoseTrack-RelD for the in-video RelD task with the state-of-the-art PCB [2]
model. Feature extracting time t on an NVIDIA Titan Xp GPU for a bounding box and for
an image with 10 bounding boxes are also provided. Rank-1 accuracy is reported. PCB, Part-based
Convolutional Baseline.

Method G=1 G=5 G=10 G=15 t/bbox t/img

PCB [2] 20.2 20.6 20.9 20.8 10.5ms 147 ms
ReID-Head  40.0 39.2 37.8 35.9 1.7 ms 1.7 ms

The key point was not the network structure, but the loss function. A state-of-the-art cross-camera
RelD model with classification or batch hard triplet loss is not applicable to the in-video RelD task due
to the varying number of persons in each frame. With the help of the proposed instance hard triplet
loss, even a simple network structure like ReID-Head in this paper could achieve a better in-video
RelD performance, which demonstrated the efficiency of our proposed loss function.

4.6. Unsupervised In-video RelD Results

We leveraged the proposed reciprocal identity association method to match the same person
across frames. We used those generated data as a training set to train a ReID-Head network. The results
are shown in Table 6. As we can see, when tested on detected bounding boxes, the unsupervised
version was even slightly better than the supervised version. The explanation was that when training
with ground truth bounding boxes, detection errors were missing. Using RIA-generated data was
actually acting as data augmentation, so the model was more robust to detection errors. When it came
to labeled test data, the RIA-generated model was inferior to the model trained on human-labeled data.

Table 6. Comparison of models trained on human-labeled data and Reciprocal Identity Association
(RIA)-generated data, respectively, on the PoseTrack-RelD dataset. Rank-1 accuracy is reported. Results
on both detected bounding boxes and labeled bounding boxes are reported.

Training Data TestBbox G=1 G=5 G=10 G=15

Human-labeled  detected 40.0 39.2 37.8 35.9
RIA-generated detected 40.2 39.2 37.9 36.4

Human-labeled labeled 99.5 93.6 87.1 81.1
RIA-generated labeled 99.4 92.6 84.8 76.9

Those results demonstrated the efficiency of our RIA method and implied that our unsupervised
model could achieve competitive accuracy in scenarios with no labeled data available.

5. Conclusions

In this paper, we investigated the in-video person RelD task. To address this problem, we proposed
a new large-scale video-based in-video RelD dataset, PoseTrack-RelD, with full images available.
We also proposed a ReID-Head network, which could incorporate both one-stage and two-stage human
detectors, realizing a real-time multi-person RelD feature extracting with reused features. We designed
a novel instance hard triplet loss, which could be applied in both cross-camera and in-video RelD
problems even with an indefinite quantity of persons and bounding boxes. An unsupervised
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reciprocal instance association method was also proposed so that we could obtain an in-video model
in an unsupervised way, further extending the potential applications of in-video RelD. Next, we will
integrate the in-video RelD method into a human tracking system to improve its performance.
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