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Abstract: The rise in renewable energy has increased the use of DC/AC converters, which transform
the direct current to alternating current. These devices, generally called inverters, are mainly used
as an interface between clean energy and the grid. It is estimated that 21% of the global electricity
generation capacity from renewable sources is supplied by photovoltaic systems. In these systems,
a transformer to ensure grid isolation is used. Nevertheless, the transformer makes the system
expensive, heavy, bulky and reduces its efficiency. Therefore, transformerless schemes are used to
eliminate the mentioned disadvantages. One of the main drawbacks of transformerless topologies is
the presence of a leakage current between the physical earth of the grid and the parasitic capacitances
of the photovoltaic module terminals. The leakage current depends on the value of the parasitic
capacitances of the panel and the common-mode voltage. At the same time, the common-mode
voltage depends on the modulation strategy used. Therefore, by the manipulation of the modulation
technique, is accomplished a decrease in the leakage current. However, the connection standards for
photovoltaic inverters establish a maximum total harmonic distortion of 5%. In this paper an analysis
of the common-mode voltage and its influence on the value of the leakage current is described. The
main topologies and strategies used to reduce the leakage current in transformerless schemes are
summarized, highlighting advantages and disadvantages and establishing points of comparison
with similar topologies. A comparative table with the most important aspects of each converter is
shown based on number of components, modes of operation, type of modulation strategy used, and
the leakage current value obtained. It is important to mention that analyzed topologies present a
variation of the leakage current between 0 to 180 mA. Finally, the trends, problems, and researches on
transformerless grid-connected PV systems are discussed.

Keywords: DC/AC converter; modulation strategy; grid-connected; leakage current; PV systems

1. Introduction

Nowadays, the increase in the world population, environmental pollution resulting from the
burning of fossil fuels, and the need to deliver electricity to remote areas are factors that drive the use of
renewable energy (RE). It is expected that these fundamental tasks and the fulfillment of international
agreements related to the protection of the environment will be solved with the greater use of clean
energy [1]. Solar, hydroelectric, and wind power are the primary sources that are being used by the
new technologies [2].
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Advances in electronic devices have led to an increase in power generation capacity from RE [3].
In 2016, the main contributions came from the European Union with 106 GW (Germany 41.3 GW),
followed by China with 77.4 GW, Japan with 42.8 GW, and the United States with 40.9 GW for a total of
303 GW [4]. The power generation capacity from solar energy, in 2018, exceeded 505 GW [5]. The fast
development of photovoltaic (PV) cell technologies, the continuous reduction of module costs, as well
as advances in power electronics, are factors that drive the use of solar energy over other renewable
energies [6]. Figure 1 shows the power generation capacity from the main sources of RE.

Figure 1. Electricity generation capacity scheme from renewable energy sources.

The DC/AC converters are used in a wide variety of applications, from power supplies [7–9],
to high-power industrial applications [10–12]. At present, they are also used as an interface for
the control of motors for electric vehicles [13]. However, one of the most important uses is the
transformation of the direct current generated by the photovoltaic panels, accumulators or batteries,
into alternating current [14]. There are many points of view from which inverters are classified, one
of the essential classifications is made according to their power supply. In this way, three types of
inverters are established—Voltage Source Inverter (VSI) [15], Current Source Inverter (CSI) [16] and
Z-Source Inverter (ZSI) [17]. As a summary, the main classifications of these power converters are
presented in Figure 2.

DC/AC Converter

Voltage Source Z Source

Half Bridge Full Bridge Multilevel

Current Source

LCI PWM CSI Multilevel

Embedded Two Stage ParalleledNPC
Flying 

Capacitor
Cascaded Hexagram Hybrid

Figure 2. DC/AC converters classification [18].

It is important to note that the average lifetime of DC/AC converters is over five years [19].
Research focuses on developing more durable topologies, reducing the installation and maintenance
costs of PV systems. In this sense, Reference [20] presents a method for the accurate sizing of
stand-alone photovoltaic (SAPV) residential generation systems for a pre-established reliability level.
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Grid-connected photovoltaic systems are typically categorized in two ways, with transformer and
transformerless. For low-power applications, single-phase converters with a high or low-frequency
transformer are generally used. It is possible to remove the transformer to reduce the weight, size,
cost, and losses of the system. In this way, the efficiency of the inverter is increased by 1 or 2%.
Therefore, the transformerless PV inverters are promising and attractive in industrial and academic
fields [21]. However, due to the lack of galvanic isolation, high-frequency common-mode voltage
(CMV) cause undesirable leakage current resulting in output-current distortion and safety trouble [22].
The leakage current depends mainly on the topology and the modulation strategy used. The main
problems are—an increase in losses, current harmonics, safety issues, and interference problems of
electromagnetic effect [23]. These problems have been reported in different papers [24–27].

At this point, it is established that the leakage current depends on the value of CMV,
the modulation strategy and the value of the parasitic capacitance [28]. At the same time, parasitic
capacitance depends on [29]:

• PV panel and frame structure.
• The surface of the cells.
• The distance between cells.
• Weather conditions.
• Type of electromagnetic compatibility filter.

Three methods in general have been used to mitigate the effects of the leakage current [30]:

• Disconnect the AC side and the PV during free wheeling times.
• Connect the midpoint of the DC-link capacitors to the neutral line of the utility grid.
• Connect the PV negative terminal to the neutral line of the utility grid directly, referred here as

CM converters.

Transformerless inverters must eliminate, or at least, reduce the leakage current, for example,
by including passive damping components or by modifying the modulation strategy [31]. In order to
improve efficiency, transformerless topologies have been developed [28,32–35]. Generally, the inverters
used in RE applications employ the VSI topology due to their low cost, easy control, and mature
technology. The leakage current circulates through the physical earth of the grid and parasitic
capacitances of each pole of the panel, as illustrated in Figure 3. This current impairs the functioning
of the system, injecting harmonics into the grid and produces risks to human health.

Figure 3. General scheme grid-connected transformerless VSI topology.

The paper is structured as follows. In Section 2, the main standards and requirements of panels
and inverters are presented. The VDE-AR-N 4105 and VDE 0126-1-1 standards establish the rules
for grid-connected systems. An analysis of the common-mode and how it influences in the leakage
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current is performed in Section 3. Current research also seeks to reduce components number, control
complexity and increase the inverters efficiency. Section 4 presents certain topologies that allow
comparisons with similar schemes. This section also shows a general comparison of the different
converters and their main features; in this way, the reader can differentiate each topology based on
the most important elements of each scheme. Also, the discussion of current problems, solutions,
and trends in this field of research are described.

2. Standards, PV Module and Inverter Requirements

The grid power supplied corresponds with the available energy sources account and the systems
efficiency. However, a grid-connected generation system must meet specific standards, thus seeking to
ensure a secure connection for both sides of the grid [36]. Each country or region sets its connection
standards. In this section, two of the most used are addressed. In addition, certain requirements of the
PV modules and inverter to be used are presented. By the way, the authors of Reference [37] show
an analysis of the issues and impact of photovoltaic energy in the grid. The authors provides useful
information, serves as a reference for researchers and utility engineers on issues to be considered with
regards to PV penetration.

2.1. VDE-AR-N 4105 and VDE 0126-1-1 Standards

At present, specific standards regulate the generation systems connected to the grid. The code
VDE-AR-N 4105 governs the implementation of the European Network Code Requirements for
generators for the low-voltage (LV) grid in Germany. In general, the code describes the grid connection
requirements for generators at all voltage levels [38]. The regulations include capabilities for frequency
stabilization, provision of reactive power to the point of black start capacity of large installations.

According to VDE 0126-1-1 [39], an independent switching system is required capable of
controlling the contribution to the 230/400 V grid from the photovoltaic installations. It must be
possible to disconnect small power generators from the grid within 200 ms when the consumer or
the protection device wishes to interrupt the connection. The voltage, frequency, and recognition
controls of the service operations are the most demanded requirements at the automatic switching
points. For this, a control and frequency relay is used that complies with the standard above at the
automatic switching points between the power generators and the national low-voltage grid. Table 1
summarizes the main characteristics of both regulations and highlights the differences between them.

Figure 4 shows a general connection scheme for grid-connected PV systems. In this scheme, two
crucial issues are raised, the minimum voltage control and the frequency at the grid connection point.
Generally, there are protections systems that disconnect the system if its voltage supply is reduced by
35% of its nominal value.

Figure 4. General connection scheme for grid connected photovoltaic (PV) systems.



Appl. Sci. 2020, 10, 2384 5 of 26

Table 1. German Code VDE Comparison [40].

Issue VDE 0126-1-1 VDE-AR-N 4105

Leakage current

RMS Value
The use of the leakage current
protection devices is inevitable.
The standard IEC 60755 defines the
detail requirements for the leakage
current protection devices.

i > 300 mA

∆i > 30 mA

∆i > 60 mA

∆i > 150 mA

Grid
frequency
monitor

50.2 < f < 51.5
Disconnected
from the grid
within 0.2s

Adjustable generation systems shall
(for f decreases) the active power
PM generated instantaneously with
a gradient of 40% of PM per Hertz.

f > 51.5 or f < 47.5 Disconnected from the grid within 0.2s

Active power None

The generation systems (>100 kW)
could reduce their active power to
set point provided by the network
operator.

Reactive power None

The generation systems should
output required reactive power in
accordance with the characteristic
curve provided by the network
operator.

2.2. PV Module Requirements

PV modules must meet a range of regulations and standards before they are considered suitable
for sale and for renewable energy funding programs. PVs get their success due to long-term reliability
and safety. On average, current PVs have a guarantee of use of around 25 years, with a degradation
rate of 0.8%, based on international standards. An interesting study is presented in Reference [41] that
analyzes the energy requirements for the production of PV and the generation throughout the useful
life of the finished product. The research results showed that this technology is self-sustaining because
it can generate several years of clean energy. In Reference [42], the standards for PV modules and
components are summarized. In general, panels must comply with a range of international standards
including IEC 61215, IEC 61646, IEC 61730-1/2, ISO 9000, ISO 14001. There are three types of main
classifications for these PVs, which do an excellent job of identifying design, materials, and process
flaws that could lead to premature field failures:

• IEC 61215 for Crystalline Silicon Modules.
• IEC 61646 for Thin Film Modules.
• IEC 62108 for CPV Modules.

From the electronic point of view, in Reference [43] it is specified that ...The PV cell, and module,
is hypersensitive to ripple in the output current and voltage. The ripple does not damage the PV
cell, but it reduces the available power dramatically... According to [44], the maximum voltage ripple
allowed for a PV is defined as:

∆v =

√
2(KPV − 1)PMPP

3αVMPP + β
= 2

√√√√√2(KPV − 1)PMPP
d2

PPV
dVPV

2

, (1)

where ∆v is the voltage ripple, PMPP and VMPP are the power and voltage at maximum power point
(MPP), PPV and VPV are the power and nominal voltage of the panel, α and β are the coefficients which
describe the second–order Taylor approximation of the current and KPV is the utilization ratio which is
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given from the rate of average generated power to the theoretical MPP power. The coefficients are
calculated as follows [43]:

iPV = αVPV
2 + βVPV + γ (2)

VPV ≈ VMPP + ∆v sin(wt) (3)

α =
1
2

d2 IMPP

dVMPP
2 (4)

β =
dIMPP
dVMPP

− 2αVMPP (5)

γ = αVMPP
2 − dIMPP

dVMPP
VMPP + IMPP. (6)

For example, for FS55 CdTe PV module, 55 W, the parameters are calculated according to the
Equations (1)–(6) as: α = −0.0161 , β = 1.0276, and γ = −11.7038. By setting KPV = 0.98 , it is obtained
that the system have a maximum ripple voltage of 7.96 V. This value represents a permissible voltage
ripple of 13.05% of VMPP. The second-order ripple power must be taken into account, and this is
inherent in single-phase systems. The power that is injected into the grid varies in time to twice the
frequency of the grid; however, the energy extracted from the PV must be constant to maximize energy
extraction [45], although a variation of 13.05% of the nominal voltage is permissible.

2.3. Inverter Requirements

Existing standards applicable to PV inverters mainly cover the objectives of ensuring wave quality,
performance, electrical safety and compatibility with the grid and system operator requirements.
Table 2 shows the standards and a brief description of their content.

The voltage value is one essential characteristic from which it is possible to identify if the
system works correctly. Table A1 presents the international standards for normal operation in LV
grid [46]. On the other hand, Table A2 summarizes acceptable voltage ranges according to EN
50438 by countries [47]. In countries with increased PV penetration (Germany, Spain and France),
in normal conditions, the voltage limits specified by the LV grid codes should not exceed the limits
expresses in Table A3 [48,49]. Frequency stability represents another crucial element in determining
the correct operation of the system, in this regard, Table A4 specifies the frequency ranges in which the
system can operate; also, the disconnection times are specified [50]. Other important aspects such as:
limits of under/over frequency, the clearance periods and reconnection requirements are shown in
Tables A5–A8. A survey of existing standards for inverters in certain IEA countries is given in Table 3.



Appl. Sci. 2020, 10, 2384 7 of 26

Table 2. Standards applicable to PV inverters.

Standard Description

IEC 61683:2000

Photovoltaic systems—Power conditioners—Procedure form a suring
efficiency. It establishes the measurement procedure, test conditions and
method of calculating the performance of a photovoltaic inverter (both
isolated and grid connection).

EN50530:2000

Overall efficiency of grid-connected photovoltaic inverters. Test methods
for measuring static and dynamic efficiency of PV inverters. Based on
the IEC61683 standard, new test conditions are added and the concept of
inverter performance is redefined, including the MPPT system as a factor
to be considered.

IEC61727:2004

Characteristics of Utility Interface. It applies to PV systems
interconnected to an electrical distribution network and operating in
parallel with it. In these systems, the use of solid-state inverters with
anti-island systems and various interconnection requirements of PV
systems to the grid is defined.

EN50524
Datasheet and nameplate for photovoltaic inverters. Define the
nameplate that a PV inverter must have and the information contained
in it.

IEC62109
Safety of power converters for use in photovoltaic power systems. Its
purpose is to ensure that the design and construction methods used are
safe for the operator and the surrounding area.

Table 3. Standards in selected IEAcountries [43].

Countries Voltage
Fluctuation

Isolation
Transformer

Flicker Harmonics Power Factor

Australia 200-270 V
DC monitoring, Max 120
mAh/day AS2279 AS2279 >0.8 @ 20%

Austria 184–253 V No - EN61000-3-2-A >0.9

Denmark 207–253 V HPFI relay-30 mA, Max
1% of nominal

EN61000-3-3 EN61000-3-2-A >0.95 @ 50%

Germany 216–244 V No <3% EN61000-3-2-A >0.9

Italy 207–253 V DC monitoring - EN61000-3-2-A >0.9

Japan 182–222 V DC monitoring, Max 1%
of nominal

<10% THD <5% each
harm <2%

>0.85

Holland 207–244 V No IEC1000-2-2 EN61000-3-2-A >0.9

Portugal 187–253 V No - EN50160 -

Switzerland Not specified DC monitoring - EN61000-3-2-A -

United Kingdom 226–254 V DC monitoring <3% EN61000-3-2-A >0.85

United States - DC monitoring - THD <5% each
harm <2%

>0.95

3. Common-Mode Voltage Analysis

The use of transformers in the PV grid-connected systems guarantees isolation and eliminates
the leakage current. These systems are expensive, heavy, bulky and low efficiency [51]. The current
trend is focused on removing this device (transformer), in order to eliminate the aforementioned
disadvantages [52]. However, removing the transformer is a new challenge, as the leakage current
arises in the system. The leakage current is mainly affected by the variation of the voltage in common
mode over time [53]. Taking as an example an inverter without transformer with complete bridge
topology for a residential PV system connected to the single-phase grid, the equivalent CM circuit of
Figure 5 is considered.
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Figure 5. Equivalent circuit of a common-mode single-phase transformerless topology [54].

The analysis presented in [54], assumes that the negative (N) terminal of PV is the reference
point and the midpoints of the bridge leg (1) and (2) as output terminals. From the definitions of
differentiation mode, VCM and VDM is related as follows:

VCM =
V1N −V2N

2
(7)

VDM = V1N −V2N (8)

where: VCM is the common voltage, VDM is the differential voltage, V1N is the voltage between (1) and
(N) and V2N is the voltage between (2) and (N).

Taking into account Equations (7) and (8), V1N and V2N are expressed as:

V1N =
VCM + VDM

2
(9)

V2N =
VCM −VDM

2
(10)

The scheme in the Figure 6 illustrates the diagram of a current full-scale leakage analytical model
considering the parasitic branch.

Figure 6. Simplest common-mode model for single-phase grid-connected inverter.

where: VCM−DM indicates the influence of the differential mode voltage to the
common-mode voltage.
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At this point, it is seen that the common-mode voltage has a marked influence on the leakage
current. Also, there is an additional common-mode voltage (Vd−to−c) that is defined as:

Vd−to−c = VDM
L2 − L1

2(L2 + L1)
(11)

Taking into account Equation (11), the differential voltage with the unbalanced L1 and L2 inductors
contributes to the common-mode voltage, increasing the leakage current.

VTCM = VCM + Vd−to−c =
V1N + V2N

2
+

V1N + V2N
2

L2 − L1

(L2 + L1)
(12)

where: VTCM is the total high-frequency common-mode voltage.
By considering only one of the inductors (L1 or L2), Equation (12) is reduced, for example,

by considering only L1:

VTCM =
V1N + V2N

2
− V1N −V2N

2
= V2N (13)

Therefore, it is concluded that if L1 = L2, then the common mode voltage is expressed as:

VTCM =
V1N + V2N

2
= VCM (14)

From the model presented in Figure 6, two rules are established to eliminate or reduce the leakage
current in PV systems [54]:

• For symmetrical power topologies with zero VCM−MD, designing a sinusoidal pulse width
modulation (SPWM) strategy to constantv CM.

• Matching circuit parameters to make the sum of VCM−MD and VCM be a constant.

4. Grid-Connected PV Inverter Topologies

In this section, different topology of latest generation photovoltaic inverters are presented.
Essential aspects such as: modulation strategy, modes of operation, advantages and disadvantages are
discussed. In addition, a summary table is presented that allows the comparison of each topology.

4.1. Common-Grounded Inverter

In transformerless systems, the use of common-grounded inverters is one of the most used
topologies to prevent the leakage current. In these converters, the negative terminal of the PV is
directly connected to the neutral point of the grid; therefore, the general CMV is removed correctly [55].
Today, other common-grounded schemes have tried to reduce the number of DC voltage sources by
using capacitors [56]. Switched-Capacitor based inverters use the virtual dc-link concept to obtain two
times boost factor within a single-stage operation without using any auxiliary inductors. For example,
in Reference [57], a novel topology for the single-phase transformerless grid-connected inverters family
is presented. This converter is shown in Figure 7.
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Figure 7. Grid-connected inverter topology proposed in Reference [57].

This type of converter boosts the input voltage to double by using the one-stage SC, eliminating
the disadvantages of two stages [58,59]. The presented design employs a unipolar PWM method and
only has two energy levels at its output. Using unipolar PWM, the THD and the size of the inductor
is be reduced [60], but VCM varies in the switching frequency of the inverter and its multiples [61].
The low impedance offered by the parasitic capacitance (CPV) between ground and PV at these
frequencies, causes a higher common current than bipolar PWM [62]. Particularly in this paper,
the topology eliminates the leakage current up to a value close to 0 mA.

The four modes of operation of the proposed inverter are shown in Figure 8. The topology
always maintains a connection between the negative terminal of the panel and the neutral of the grid.
The switches use a switching frequency of 25 kHz. The capacitors will be charged both in the positive
and the negative half-cycle; this feature allows the use of metalized polyester film capacitors or MKT
capacitors instead of electrolyte capacitors.

The previous design has certain disadvantages; for example, the use of capacitors decreases the
useful inverter life. Besides, it only has two levels of energy at the output (positive and negative), which
increases the THD compared to inverters with more than two levels. On the other hand, the switching
frequency can be considered high, causing the elements to wear and sometimes noise to the system.
Compared to MLI, the topology must be used for low powers. SC-based multilevel inverters (SCMLI)
are being addressed to increase the number of levels, decrease THD and increase the total power that
this type of device can handle. New configurations of SCMLIs were suggested in the literature [63–65].
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(a) Mode 1

(b) Mode 2

(c) Mode 3

(d) Mode 4

Figure 8. Operating modes of the proposed grid-tied inverter in Reference [57].
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Another type of common-ground based inverter is the one that uses floating capacitors. In
Reference [66], a Type-I inverter with two switches in series during the positive cycle is proposed.
The authors of Reference [67] analyze Type-II and Type-III inverters. In the Type-I topology, only one
switch carries the load current during the positive cycle. For its part, Type-III topology no requirement
of an extra diode as in the previous two topologies to form a topology similar to a conventional
H-bridge. The three topologies use unipolar SPWM as a modulation technique to reduce system
losses, THD and output filter size. In all three cases, only four active switches are used to realize the
basic inverter circuit and reduce the leakage current until practically eliminate it. The reduction in
common-mode frequency has also been achieved using transformerless topologies with multilevel
neutral point clamp [68] or its variant, using split inductors [69].

4.2. H5, H6 and HERIC Inverters

Current source inverters are used in high-power applications due to its high reliability, inherent
short-circuit protection, and regenerative capability [70]. The VSIs are dominant due to low cost,
simple control, and mature technology. Usually, in residential renewable power generation systems
such as PV systems, VSIs are of most employed [71]. The difference between VSI and CSI lies in the
type of DC source from which they take their energy. The basic concepts and operations are different
for each inverter. Some CSI topologies have been shown in recent research [72–74]. Nowadays, CSI
topologies try to reduce the leakage current, such as H5 [75], H6 [76] and HERIC [77].

In Reference [78], three similar topologies of transformerless current source inverters (full-bridge,
H5 and H6 topologies) are compared to highlight their differences. The analysis makes a comparison
considering the efficiency, the leakage current and the quality of the output current. In the paper
the most important conclusion could be: ...among the topologies examined, inverter H5 seems the
best compromise in terms of efficiency, reduction in the leakage current, number of components,
and current quality...

In Reference [79] a novel transformerless dual-buck full-bridge grid-connected inverter (GCI)
with H5-type (TDFGI-H5) topology for PV systems is presented. The topology shows that TDFGI-H5
has the advantages of the three-level output, no shoot-through problem, high reliability, and can
completely meet the condition of eliminating common-mode leakage current. Figure 9 shown the
proposed inverter.

Figure 9. Circuit topology of the proposed TDFGI-H5 in Reference [79].
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(a) Mode 1

(b) Mode 2

(c) Mode 3

(d) Mode 4

Figure 10. Operating modes and its equivalent circuits of TDFGI-H5 in Reference [79].
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The modes of operation presented in Figure 10 depend on the direction of the grid current (ig).
Acting on the switches (S1 − S5), TDFGI-H5 can be divided into four operating modes. In this case,
according to the authors in [80,81], the leakage current is defined as in Equation (15). However,
during the operating modes uecm = uGN and uGN remains constant. Therefore, the leakage current
is eliminated.

itcm = CG
duecm

dt
= CG

∆uecm

∆t
. (15)

In the paper, unipolar SPWM is used, which, in combination with the topology and control
strategy, keep the common-mode voltage constant. It is important to point out several features of this
design. This topology has a more significant conduction loss than its BDFGI counterpart. The inductors
used have a longer useful life than the capacitors. Current research is working to reduce the size of the
storage elements since it makes the system more expensive, bulky and bright than VSI.

Despite the advantages mentioned in the previous topology, the H6 topology is the only one that
has bidirectional capability [82]. In Reference [76], an unusual topology is shown whose challenge is
to find an efficient solution to the bidirectionality of this type. As a result, the research uses a hybrid
modulation strategy, both for the rectifier and the inverter. Among the most relevant results is the
possibility of extrapolating the modulation strategy proposed for similar topologies.

The highly efficient and reliable inverter concept (HERIC) inverter is a cost-effective topology,
which has low leakage currents and relatively high efficiency. Among various transformerless
topologies, the HERIC is a promising candidate due to the simple structure and high efficiency. In
Reference [77], a unipolar modulation strategy for a HERIC inverter is presented. The proposed method
takes the advantages of the conventional UP-PWM, the UP-PWM with dead time, and the modulation
strategy of reactive power capability. To further improve power quality, the effects of the dead time
and minimum pulse width limitation were compensated through the hybrid UP-PWM scheme.

4.3. Single-Stage Buck-Boost Inverters

Generally, topologies can only offer the same input voltage at the output, for example, traditional
buck inverter-based topologies. However, many applications require to boost the input voltage for
proper operation. The main differences between the buck-boost inverter topology with traditional
full-bridge buck inverter and boost inverter are summarized in Reference [83]. The conventional
full-bridge inverter is a converter that does not produce a larger output at the input but is easily
controlled. For its part, the boost inverter, like the buck-boost inverter, generates an AC output higher
than the input, controls the duty cycle.

Recent research focuses on designing a single-stage buck-boost inverter topology [84–86], basically
to reduce the number of components such as switches; also, the two-stage power conversion results in
the complex circuit structure and control algorithm [87]. Generally, single-stage buck-boost inverters
consist of distinct circuits operating individually in buck/boost or positive/negative modes, the latter
leading to crossover distortion in the output current [88]. Usually, in a single stage, an output peak
ac voltage higher than the input dc voltage is obtained by using a full-bridge inverter followed by
a low-frequency step-up transformer. However, the bulky transformer increases the volume, loss,
and system cost [89].

This type of converter compensates for variations in renewable energy sources, such as: shading,
irradiance, cloudiness and temperature. Other typologies may offer similar results to these natural
variations, for example, the traditional full-and-bridge inverters followed by a boost-type DC/DC
converter. However, it requires multiple inductors and capacitors for the same result. The differential
boost inverter presented in Reference [90] provides buck-boost operation in a single-stage from two
identical DC/DC boost converters. This topology employs two inductors; all its switches operate at
high frequency, and it has no common ground.

In Reference [91], a single-stage bidirectional buck-boost transformerless inverters using a single
inductor and eliminating the common-mode leakage current is proposed. The scheme is shown in
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Figure 11 has two input supplies, these supplies can have the same or different voltage value, so
the topology allows to obtain the energy from several types of clean sources. The authors highlight
that due to its buck-boost ability, one of the advantages of the proposed inverter is its capability of
generating a sinusoidal output voltage even if Vin1 6= Vin2. Another variant is also described in the
same work, an inverter from a single input source. This scheme is similar to the traditional half-bridge
inverters [92], noting that it does not require a higher input voltage, with the use of two capacitors C1

and C2.

Figure 11. Proposed inverters with PV panels and parasitic capacitors in [91].

The modes of operation are presented in Figure 12. The inverter has 3 modes of operation, which
make it bidirectional and can provide reactive power. The paper points out that the leakage current is
reduced since the output voltage (V0) is low frequency sinusoidal ac voltage, Vin1 and Vin2 are dc
constant voltages and the values of the parasitic capacitances are extremely small.

The scheme presented requires a higher number of devices compared to the other topologies
presented up to this point. Besides, it is valid to specify that, although two of its switches operate
at a low-switching frequency S1 and S2 and conduction losses are negligible in this case, two other
switches S3 and S4 operate at one high-switching frequency. In the latter case, the losses are due
to the discharge of the junction capacitor Coss. The work shows an important comparison of the
buck-boost inverters. The comparison summarizes some of the essential features of this type of
converter: common-mode leakage current, bidirectional operation, components amount, operated as
grid-connected or stand-alone.

At present, several investigations have been developed that address the topology in question.
A combination of a front-end boost stage, a half-bridge inverter stage, and a buck-boost power
decoupling stag is proposed in Reference [93]. It requires two capacitors that function as independent
sources, and only one of them is used at a time. In Reference [94] a novel single-stage full-bridge
series-resonant buck-boost inverter (FB-SRBBI) is proposed. In this case, a greater number of devices
conduct at the same time, thus increasing conduction losses. A new transformerless single-phase
single-stage buck-boost grid-connected VSI topology is proposed in [95]. Each mentioned topology
has advantages and disadvantages. The scheme to use depends on the application.



Appl. Sci. 2020, 10, 2384 16 of 26

(a) Mode 1

(b) Mode 2

(c) Mode 3

Figure 12. Operational modes of the type-I inverter in Reference [91].

4.4. Comparative Study

The section presents a comparative Table 4 of the inverter topologies connected to the grid
currently used. Some works show a significant reduction in leakage current. This reduction is achieved
by combining the design with the control strategy. The type of converter, the number of components,
modes of operation, the output filter, the input voltage, the modulation strategy, and finally, the leakage
current reported are summarized, according to the experimental results.
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Table 4. Comparision between different structures.

Ref. Type of
Converter

Components Operation
Modes

Output
Filter

Vin
Modulation

Strategy
Leakage
CurrentS D L C

[28] HBZVR 5 10 2 3 4 2(1.8 mH),
2 µF

350 V PWM 74.4 mA

[51]
T-type
hybrid 8 4 5 4 5

2(3 mH)
2(0.6 mH)

2(1 µF)
200 V LSPWM 16.7 mA

[57]
Common
ground 6 2 1 2 2 or 3 3 mH 200 V PWM ' 0 mA

[80]
Common
ground 2 0 2 1 7 1 mH, 2.2 µF 400 V PWM ' 0 mA

[96] Step-up
non-isolated

6 1 3 2 6 4.4 mH, 0.42
mH, 2.2µF

30–60 V SPWM ' 0 mA

[97]
quasi

Z-Source
Inverter

6 1 4 3 5 3 mH 30–60 V SPWM ' 0.4 A

[98]
Current
Source

Inverter
6 6 4 1 3 2(2.5 mH),

9.4 µF
- SPWM 140 mA

[99] CH5 5 0 2 1 5 44 µF - SPWM 24.7 mA

[100]
Full

Bridge 6 0 2 1 4 2(4 mH) 380 V bipolar SPWM 50 mA

[101]
Common
gorund 7 2 3 1 3 2.8 mH 400 V PWM 10 mA

[102] NPC 6 0 2 0 3 2(4 mH),
6.6 µF

400 V SPWM 44 mA

[103] FBNPC 8 4 1 2 6 6 mH 200 V SPWM 181.4 mA

[104] H5 HERIC 8 4 1 2 5 1.2 mH 600 V SLS-PWM 181 mA

[105] Derived
HERIC

8 2 1 2 5 3 mH 600 V PWM 180.3 mA

[106] CMLI 8 0 4 3 6 4(2 mH),
0.1 µF

400 V PWM 56.5 mA

[107] Derived
CHB

10 2 0 2 7 2(2.5 mH) 72 V PWM 17.7 mA

[108]
Common
ground 5 0 2 1 4 3.5 mH,

3.3 µF
100 V - ' 0 mA

In Reference [57] a comparative table is presented, which also highlights the maximum average
current of the switches and the overall efficiency of the system. The research [108] also shows a
comparative study with structures similar to transformerless single-phase single-stage grid-tied flying
inductor inverters.

5. Conclusions

The rise in renewable energy has caused an increase in the use of inverters. These devices are used
as an interface between the power source and the grid. Moreover, it is common the use of transformers
to have electrical isolation between the input and output. However, these elements are expensive,
bulky, heavy, and have magnetic losses. Transformerless inverters have been developed to avoid the
aforementioned limitations. One of the main drawback in this type of topologies is the presence of a
leakage current between the terminals of the photovoltaic cell and the physical ground of the grid.

The paper presents a general review of the state-of-the-art of grid-connected inverters with leakage
current reduction. Moreover, the main standards of the PV modules and inverters are presented.
The behavior of the CMV, its origin and effect in transformerless grid-connected inverters are analyzed.
Also, a comparative analysis of the most common topologies is performed. Finally, the main challenges
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and research trends within this topic are highlighted. Hopefully, this review will lead to increased
efforts in the research and investigation of leakage current reduction in transformerless inverters.

In this paper, it is concluded that grid-connected systems have to comply with specific standards
for each region or country. A THD less than 5% and a leakage current less than 300 mA are some
of the most important standards to consider. Moreover, the output of the PV requires particular
attention, since it presents a voltage ripple that do not damage the PV cell, but it reduces the available
power. Furthermore, the unbalance in the inductors of the output filter increases the leakage current.
The unbalance in the inductors is due to a dispersion in the capacity, aging rate and temperature
behavior of the output inductors. These factors must be considered in the design of the controller to
mitigate the effects of this undesirable phenomenon.

Within the analyzed topologies, it should be noted that the H5 topology provides a good
compromise in terms of reduction in the leakage current, number of components, and current
quality. This topology and other schemes, connect the negative terminal of the PV to the neutral
point of the grid using passive components and switches. Furthermore, another commonly used
strategy is the disconnection of the AC side and the PV during free wheeling times of inductors in
current-source inverters.

Finally, it was highlighted that the modulation strategy is a critical factor in reducing the leakage
current. Bipolar modulations offer the greatest reduction of this current in PV applications. However,
its high complexity makes it difficult to use. Otherwise, the unipolar modulation strategy is widely
used for its simplicity. In the works reviewed in this paper, only one of seventeen articles presented
the bipolar modulation.
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Abbreviations

The following abbreviations are used in this manuscript:

RE Renewable Eneregy
PV Photovoltaic
CSI Current Source Inverter
VSI Voltage Source Inverter
ZSI Impedance Source Inverter
DC Direct Current
AC Alternating Current
SAPV Stand-Alone Photovoltaic
CMV Common Mode Voltage
RMS Root Mean Squared
CM Common Mode
DC Direct Current
AC Alternating Current
CPV Concentrator Photovoltaics
MPP Maximum Power Point
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LV Low Voltage
IEA International Energy Agency
SPWM Sine Pulse Width Modulation
PWM Pulse Width Modulation
SC Switched Capacitor
SCMLI Switched Capacitor based Multilevel Inverters
THD Total Harmonic Distortion
THD Total Harmonic Distortion
PLL Locked Phase Loop
P&O Perturb and Observation
MLI Multilevel Inverters
GCI Grid-Connected Inverter

Appendix A

Table A1. Comparison of voltage requirements standards for LV PV systems.

IEEE 1574 IEC 61727 VDE-AR-N4105
Voltage range (%) Disc. (sec) Voltage range (%) Disc. (sec) Voltage range (%) Dis. (sec)

V < 50 0.16 V < 50 0.10 V < 80 0.1

50 ≤ V < 88 2.00 50 ≤ V < 85 2.00 V ≥ 110 0.1

110 < V < 120 1.00 110 < V < 135 2.00

V ≥ 120 0.16 V ≥ 135 0.05

Table A2. Voltage requirements in EU countries [109].

Max. Clearance Time (sec) Voltage Trip Setting (V)

Over voltage Satge 1

Default 0.2 230V+15%

CZ 0.2 230V + 15%

DE 0.2 230V + 10%

DK 40 230V + 10%

ES - 230V + 10%

FR 0.2 230V + 15%

GB 1.5 264

IT 0.1 230V + 20%

Under voltage

Default 1.5 230V-15%

CZ 0.2 230V − 15%

DE 0.2 230V − 15%

DK 10 230V − 10%

ES - 230V − 15%

FR 0.2 230V − 15%

GB 1.5 207

IT 0.2 230V − 20%

Table A3. Voltage range.

Supply Voltage Variation

VDE-AR-N- 4015 Germany RD 661/2007 Spain Arrêté 2011 France

0.8Vn < V < 1.1Vn 0.85Vn < V < 1.1Vn 0.9Vn < V < 1.1Vn
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Table A4. Frequency deviations and disconnection time.

IEEE 1574 IEC 61727 VDE-AR-N 4105
Frequency range (Hz) Disc. (sec) Frequency range (Hz) Disc. (sec) Frequency range (Hz) Disc. (sec)

59.3 < f < 60.5 0.16 49 < f < 51 0.2 47.5 < f < 51.5 0.10

Table A5. Normal operation range MV grids.

BDEW 2011 Germany RD 661-2007 Spain Arrêté 2011 France

LV requirements

47.5 Hz < f < 51.5 Hz 48 Hz < f < 51 Hz 49.5 Hz < f < 50.5 Hz

MV requirements

47.5 Hz < f < 51.5 Hz 48 Hz < f < 51 Hz 47.5 Hz < f < 52 Hz

Table A6. Clearance time for frequency deviations.

Max. Clearance Time (sec) Trip Setting

Over Frequency

Default 0.5 51 Hz

CZ 0.2 50.5 Hz

DE 0.2 51.5 Hz

DK 0.2 53 Hz

ES ND 50 Hz + 2%

FR 0.2 50.5 Hz

GB 0.5 50.5 Hz

IT 0.1 51 Hz

Under frequency

Default 0.5 47 Hz

CZ 0.2 49.5 Hz

DE 0.2 47.5 Hz

DK 0.2 47 Hz

ES ND 50 Hz-2%

FR 0.2 49.5 Hz

GB 0.5 47 Hz

IT 0.1 49 Hz

Table A7. Reconnection requirements.

IEEE 1574 IEC 61727 VDE-AR-N 4105

88 < V < 110 [%] 85 < V < 110 [%] 80 < V < 110 [%]

59.3 < f < 60.5 [Hz] fn−1 < f < fn+1 [Hz] 47.5 < f < 51.5 [Hz]

Delay of 5 minutes Delay of 3 minutes Delay of 5 seconds

Table A8. DC current monitoring.

IEEE 1574 IEC 61727 VDE 0126-1-1

IDC < 0.5 [%] IDC < 1 [%] IDC < 1AMaxTripTime0.2s
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