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Abstract: This paper proposes a new method to get explicit expressions of some quantities associated
with performance analysis of the maximum likelihood DOA algorithm in the presence of an additive
Gaussian noise on the antenna elements. The motivation of the paper is to make a quantitative
analysis of the ML DOA algorithm in the case of multiple incident signals. We present a simple
method to derive a closed-form expression of the MSE of the DOA estimate based on the Taylor series
expansion. Based on the Taylor series expansion and approximation, we get explicit expressions of the
MSE:s of estimates of azimuth angles of all incident signals. The validity of the derived expressions is
shown by comparing the analytic results with the simulation results.

Keywords: maximum likelihood (ML); angle-of-arrival (AOA); uniform linear array (ULA); approximation

1. Introduction

There has been a lot of research on the direction-of-arrival (DOA) estimation [1-19]. Our interest
in this paper is the performance analysis of the maximum likelihood (ML)-based DOA estimation
algorithm.

In [8], a performance analysis of the ML DOA estimation algorithm for low SNR and small
number of snapshots is considered. A threshold effect in the ML DOA algorithm is exploited, and the
authors derive approximations to the mean square error and probability of outlier.

If the noise variance at each sensor in the array antenna system is equal, the noise covariance
matrix is considered to be multiples of an identity matrix. In [9], nonuniform white noise, whose
covariance matrix can be expressed as an arbitrary diagonal covariance, is considered, and the new
ML DOA algorithm for nonuniform noise is proposed, and the performance analysis of the proposed
algorithm is also presented.

In [10], the authors addressed the DOA estimation using sparse sensor arrays, where the
sensor noises can be uncorrelated between different subarrays due to large intersubarray spacings.
The authors proposed a new maximum-likelihood estimator, which can be extended to the uncalibrated
arrays with sensor gain and phase mismatch.

A new computationally efficient ML DOA algorithm exploiting spatial aliasing is proposed
in [11]. Generally, spatial aliasing is undesirable since it degrades the DOA estimation accuracy. In [11],
the authors adopted a nested array structure with a doubly spaced aperture. The computational burden
of the ML DOA estimation algorithm is reduced by the highly compressed search range and the small
number of candidate angles to be searched. The authors also presented Monte Carlo simulation based
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mean square error (MSE). However, analytic performance analysis of the proposed scheme is not
presented in [11].

A new ML DOA algorithm for use with a uniform linear array is proposed [12]. The scheme is
superior to the conventional ML algorithm when the true DOAs of two incident signals are very close
to each other. The formulation for the new DOA algorithm is based on an asymptotic approximation of
the unconditional maximum likelihood (UML) procedure when two closely space signals are incident
on the ULA. Taylor approximation is also adopted for derivation of the new algorithm. Empirical
MSE is illustrated to validate the proposed scheme. However, the authors do not present analytic
performance analysis of the new DOA algorithm.

To overcome the problem of large computational complexity for implementation of the ML DOA
estimation algorithm, based on a spatially overcomplete array output formulation, an efficient ML
DOA estimator is proposed in [13]. Empirical performance from Monte Carlo simulation is present to
illustrate the superiority of the proposed scheme over the other DOA algorithms. Analytic performance
analysis is not given.

Although the ML estimator is known to be optimal in DOA estimation, its computational cost
can be quite prohibitive, especially for a large number of incident signals. To solve this problem,
in [14], three kinds of natural computing algorithms, differential evolution, clonal selection algorithm,
and the particle swarm optimization, are applied for implementation of the multivariable nonlinear
optimization of the cost function of the ML DOA estimation algorithm. It turns out that all three
natural computing algorithms are capable of optimizing the ML DOA cost function, irrespective of
the number of incident signals and their nature. In addition, the number of points evaluated by
natural computing algorithms is much smaller than that associated with exhaustive grid search-based
algorithms, justifying the application of these natural computing algorithms to the optimization of the
cost function of the ML DOA estimation algorithm.

In [15], a new implementation of ML DOA estimation, which outperforms the other DOA
algorithms for closely spaced incident signals, is proposed. The concept of Monte Carlo importance
sampling is applied. The superiority of the proposed scheme comes from its better convergence to a
global maximum in comparison with other iterative approaches. Although analytical performance
analysis of the proposed scheme is not presented, empirical performance of the propose algorithm and
the other DOA algorithms is given. Note that Monte Carlo simulation is employed to get empirical
performance in terms of the MSE of the DOA estimate.

A heuristic optimization algorithm, called gravitational search algorithm, is presented to optimize
the cost function of the ML DOA estimation algorithm for a uniform circular array [16]. It is
empirically shown that the proposed algorithm is superior to the MUSIC algorithm and particle
swarm optimization-based ML algorithm. Analytic performance analysis of the proposed scheme is
not presented in [16].

To reduce computational burden of optimizing the cost function of ML DOA estimation algorithm,
the artificial bee colony (ABC) algorithm is applied to maximize the cost function of the ML DOA
estimation algorithm [17]. It is empirically shown that the proposed scheme is superior to other
ML-based DOA estimation methods in the view point of efficiency in computation and statistical
performance. Analytic performance analysis of the proposed scheme is not presented in [17].

DOA estimation of narrowband sources in unknown nonuniform white noise is considered
in [18]. The stepwise concentration of the log-likelihood function with respect to the signal parameters
and noise parameters is obtained by alternating minimization of the Kullback-Leibler divergence.
Closed-form expressions for the signal parameters and noise parameters are derived, implying that
the proposed scheme results in significant reduction in computational complexity in comparison with
exhaustive multidimensional search-based ML DOA algorithms.

In [19], a new wideband ML DOA estimation algorithm for an unknown nonuniform sensor noise
is proposed to reduce the performance degradation due to nonuniformity of the noise. Two associated
implementation schemes are proposed: one is iterative and the other is non-iterative. Simulation
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results show that the performance of two processing algorithms is consistent with the Cramer-Rao
lower bound. Analytic performance analysis, more specifically the Cramer-Rao lower bound, of the
proposed algorithm is presented in [19].

In this paper, we are concerned with quantitative study on how much estimation error is induced
due to an additive Gaussian noise on array antennas. More specifically, mean-squared error (MSE) of
direction-of-arrival estimation in terms of a standard deviation of an additive noise is derived. In this
paper, performance analysis of azimuth estimation using uniform linear array (ULA) is presented.

In this paper, the estimate with no superscript denotes the estimate of the original ML algorithm.
Note that no approximation is used in getting the estimate with no superscript. In this paper,
the estimate with the superscript (¢ = 1) denotes the estimate by using the first approximation,
and that with the superscript (4 = 1,v) represents the estimate by using the first approximation and
the second approximation.

The difference between the estimate with no superscript and the estimate with the superscript
(u = 1) quantifies the error due to the first approximation since the first approximation is applied in
getting the estimate with the superscript (1 = 1). Note that no approximation is applied in getting the
estimate with no superscript. Similarly, the difference between the estimate with the superscript (1 = 1)
and the estimate with the superscript (u = 1, v) quantifies the error due to the second approximation
since the first approximation and the second approximations are applied in getting the estimate with
the superscript (1 = 1,v). Based on this intuition, by comparing these three estimates, we can easily
determine which approximation results in the dominant approximation error. This inspection cannot
be obtained from the scheme presented in the previous study [7-9,19].

In this paper, Gaussian noise is used to model measurement uncertainty. The effect of Gaussian
noise on the accuracy of the azimuth estimate is rigorously derived. Furthermore, an explicit expression
of the MSE of the azimuth estimate is also derived. In comparison with the previous studies on the
performance analysis of the maximum likelihood algorithm [7-9,19], a more explicit representation of
the MSE of the azimuth estimate is proposed in this paper.

Many previous studies on the ML DOA estimation algorithm focused on how the performance of
the ML DOA estimation algorithm can be improved by proposing new algorithms or by modifying
the ML DOA estimation algorithm [9-19]. Note that our contribution in this paper does not lie
in how much improvement can be achieved by proposing an improved ML DOA algorithm. Our
contribution lies in a reduction in computational cost in getting the MSE of an existing ML DOA
algorithm by adopting an analytic approach, rather than the Monte Carlo simulation-based MSE under
measurement uncertainty which is assumed to be Gaussian distributed. That is, the scheme described
how analytic MSE can be obtained with much less computational complexity than the Monte Carlo
simulation-based MSE.

In this paper, the derivation is based on the Taylor series expansion of the sample covariance
matrix since the cost function of the ML DOA estimation algorithm can be explicitly written in terms
of the sample covariance matrix. The difference between the sample covariance matrix associated
with noisy measurement and that associated with noiseless sample covariance matrix is explicitly
expressed in terms of additive noises on the antenna arrays. Azimuth estimation error is explicitly
expressed in terms of the additive noises. Finally, the MSE of the azimuth estimate is given in terms of
the statistics of an additive noise. To the best of our knowledge, no previous study presented these
explicit expressions of the azimuth estimation error and the MSE of the azimuth estimate in terms of
the statistics of an additive noise.

The proposed scheme can be used in predicting how accurate the estimate of the ML DOA
estimation algorithm is without a computationally intensive Monte Carlo simulation. The performance
of the ML algorithm depends on various parameters including the number snapshots, the number
antenna elements in the array, inter-element spacing between adjacent antenna elements, and the
SNR. Therefore, Monte Carlo simulations for different values of the various parameters can be
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computationally intensive. Therefore, the scheme presented in this paper can be adopted to predict the
accuracy of the ML DOA algorithm for different values of various parameters.

2. Maximum Likelihood Algorithm

In this section, the maximum likelihood (ML) for use with the uniform linear array (ULA)
algorithm is briefly described.

In the case of ULA, for the incident signal from 6., the array vector associated with the m-th
antenna can be written as

am (6c) = exp ]2% (m—1)Asinb.|, 1)

where A is wavelength and A is the distance between two neighboring elements.
Using (1), A (61,6, - - ,6;) is defined as

ap (1) a1 (62) - a1 (6a)
A(91,92,- -0y = . : i : )

apm (61) am(62) -+ am(6q)

where the number of incident signals is d.
Projection matrix on to the column space of A (61,65, - - - ,6;) can be expressed as [6]

PA(Q],QZ,"',Gd) :A(91/92/"‘ /Gd) <A (91/92/"' /Gd)HA(GlIGZI"' ,9d)) A(91/92/”' rgd)H' (3)
The incident signals on the array antenna elements can be written as, fori =1,--- , L,

X (ti) =A (91,92, ce ,Gd) S (ti)

s1(t)
x1 (¢
L) 52 (1) @
: :A(91/92/"'/9d) . .
1
The noisy incident signals can be expressed as
X'(t) = A(61,02,,02)s(t) +n(t)
Iy s1 (t) .
X1 (tl) Sy (ti) ni (tl)
: = A (61/ 92/ e /Gd) : + . (5)
X4 (1) ity | L)

It is assumed that the entries of the Gaussian vector are independent and identically distributed
Gaussian random variables with the same mean and the same variance. Note that the noise are
complex-valued and that the real part and the imaginary part of the noise are independent Gaussian
random variables with non-zero mean y. The variance of the real part is denoted by ‘772, which is equal
to the variance of the imaginary part,%z.

Let L denote the number of the snapshots. R is a sample covariance matrix given by

R =

Y {X(fz')x(fi)H} =1 (©)

ti=1 A N

| =
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where x (f;) is given by (4).
From (5), we get

. Ry o R
R == 2 {X/ (t) x' (i’i)H} = . )
L ti=1 A1 A/
Ryn - Rym
OR is defined as
JR=R—R. (8)

In the ML algorithm, the estimates, [91, O, , 9,1] , are obtained from

where 6, is given by 8, = 9§°) +0.(c=1,---,d),and tr (PA(gl,gz,..‘,gd)f{’) can be written as

Pr1 (01,62, ,05) -+ Pim (01,02, ,04) Ry, - Ry
tr (PA(91/92/“‘,9d)ﬁ/> =t 10
Py (91,92,"' ,Gd) <o+ Pum (61/62/"'/9d) Rﬁ\/n R}/IM ( )
M M .
= Zl 121 Py (61,62, -+ ,0q) R

where M is the number of antenna elements.

3. Closed-Form Expression of Estimation Error

From (1) and (3), we get
am (Gc) X afn (Gc) =1 (11)

From (11), we obtain

Ay, 0)T A0, ,02)

M B(61,62) B(61,03) --- B(61,64)

B* (91/ 92) M B (92/ 93) -+ B (92/ ed) (12)
— | B*(61,63) B*(62,03) M <+ B(63,04) |,
B* (61,6;) B*(62,64) B*(03,6;) --- M
where, from (1), B(6y, ;) is defined as
M 27 : .
B(6u,6) = Y exp [])\ (m—1)A (sin6; — sin 6y)
m=1

_ l-exp [i2ZA (sin ) — sin ) M] 13)

1—exp [j&A (sin 6, — sin6y)]

-1
Using (12), <(A (61, ,0) " A6y, ,Hd)> ) can be written as
k1
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((A (61, ,65)" A6y, ,9d>)1)krl
1
" det (A (61, ,0) T A61,--,6,)

(14)

Kkl

) (adi (A 01+, 00" A (81, ,600)))

adj (-) denotes adjoint of a matrix. k, I-th element of the adjoint of A (61, - - - ,60,)" A (6y,---,6,) can
be expressed as

(adj (A 6y, ,Qd)HA (61, zed)))

3
[ M oo B*(01,6k1)  B*(01,6k11) -+ B*(01,04) |
. .. . . . : ) . , 5
= (-1 det B(61,6—1) -+ B*(6i—1,6k-1) B*(0-1,641) -+ B*(6,-1,04) (15)
B(61,0141) -+ B*(0141,0k-1) B (041,6k41) B* (6141,64)
B(61,04) -+ B(6_1,600)  B(6kp1,00) - Mo

where the determinant can be obtained in many ways, one of which is a cofactor expansion.

Generally, the number of incident signals is d. From (14) and (15), an explicit expression of
-1

the entry at the k-th row and I-th column of (A (01, ,0)" A6y, ,()d)) can be obtained.

However, it is very complicated to express the determinant in (15) in terms of the entries of

A6y, ,Gd)H A(6y,---,0) forallk=1,...,dand ! =1,...,d. Inaddition, due to very complicated

-1
expression, expressing each entry of (A (01, - ,Gd)H A (b, ,Gd)> in terms of the entries of

A6y, ,0)T A0, ,6,) may impair the readability of this paper. Therefore, the number of
signals in this paper is set to two.
Using (12) in (3), the entries of P A(61,6,) €an be written as

Pa (81,82) = gy (06 (00) M= (82) B (01,02)) a7 61
+det(;1,92) [(ax (02) M — ay (61) B (61,62)) af (62)] (16)

where det (61, 6;) is given in Appendix B.
The numerator of Py; (61, 6,) is defined as Qy; (61, 62):

Qu (61,602) = (a (61) M — a (62) B (61,02)) aj (61)
+ (ak (92) M — aj (91) B (91,92)) {17 (92) . (17)

Let 9%0) and 950) denote the true incident angles of two incident signals and let §; and 6, denote
the estimates of two incident signals. From (9) and (10), fi (61,62) and gy (61,602) in Appendix I,
the estimates, [91, 92] , satisfy
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2 N
T&tr (PA(QLGZ)R ) ‘ 91:(21 -

%tr (PA(GLGZ)R/)

9Py (01,02)
— =R}

Mz
Mz

0,=0;
0r=0,

)

—_

I

—
o8]
>
Sy

=0,

frr (61,0) R, =0

I
&
S

k=11=1

M M
A _ Z Z aPkl (91/92) R’ .
61=01 Pt a6, lk| =6,
02=0, T 02=0>

git (01,02) Ry = 0.

Il
RS
S

\T
A
Il

_

7 of 37

(18)

(19)

The derivatives of ML cost function with respect to 8; and 6, should be zero at the true incident

angles for the noiseless sample covariance matrix:

3 (Pa, o R)

M M 9Py (61,6,) 4

0
I P A o %o;
6, = 6" =5
M M
- 0 9O, —
_ k;;fkl (91 1) )le_o
0 (PA(91,92)R> — AZA: % 9P (61,62) K (0)
== "
0 = EO) 0
M M
B

(20)

(21)

Substituting fy; (61,62) and gy (61,62) with the Tayler series approximation in Appendix J,

and, using

we have

M=
M=

»
Il
—_
-
Il
—_

+
S
&

56,

x-
I
—
—
I
—

+
™=
=z
$

»
Il
-
—
Il
-

9fkt (61,62)

dfu (01,62)

R’ = Ry + 6Ry,

fu <9§0),9§O)> [Ri + Ry

[le + (Sle]

891 91 = 9§O)

0, = 0"

96, _ 90 [Rix + 6Ry ] =0

(22)

(23)
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Mz
1z

Skl (9§0),9§0)> [Ryx + 6Ry]

k=1i1=1
M M
gk (61,62) 5
+k—21 ;(591 00 | 6 =60 [Ry + Ry
6, = 6\
M M
g (61, 62) 5
+Y ) 46, 6, |6 = 0%0) [Rix + 6Ry] =0, (24)
6, = 6\

where the first order derivatives of fi; (61,6,) and gy (61,62) with respect to 61 and 6, are given in
Appendix A.
Using (20) and (21) in (23) and (24), and rearranging terms yields

M M 9h(61,6,) MM 9fw (61,02)
/ R + (sR kI\Y1,Y2
kgl 1§1 ( W lo=6) (Rie ) kgl 1§1 902

by 9<>

0 6 )(le-f—(sle)

0y 9< ) (59§u:1)
s6{"=

MM ey (81,6 MM 5 (816
kgl lgl ( gk%ﬂ% 2) 6 9 ) (R1k+{5R1k) kgl l§1 (gldée;Z) 6 G ) (le+5le) (25)
9 9(°> 9 9<0)
- BT (0) 4(0)
Y Y fu (91 /0, >5Rzk
- _ k]\71 11\71
Y Y 8u (950),99) ORyk
k=11=1

We define C(*=1) and b as follows:

M M M M
hEp (Wi . ) Ruora) 2 L (”“5329” - ) (Re -+ Ry
ctw=D) = ou? (26)
M M M M
hop (< - ) Rutor) LY, (ag“ézf” e | (Bt o)
M M 0 (0
Y X fu ( 0\", 6} )) SRk
b=— k=11=1 (27)
B g a 0, 9l0)
)y Z 8kl ( ,0 ) ORk
k=11=
Using (26) and (27) in (25), (25) can be written as
o [ stV
c=b [ / =b. (28)
(u=1)
605"

The solution of (28) and the associated estimates are given by

(u=1) _

0 ) !

[ Mb_l)]—(d ) b 29)
2
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+ 06, (30)
_|_

where the superscript (1 = 1) indicates that the first order Taylor expansion is used. This approximation

is called U approximation.
At high SNR, it is true that Ry, is much larger than SRy

Rix + 0Ry ~= Ry (31)

This approximation is called V approximation.
Using (31) in (25) yields

M M M M
3fu (61,0 5 f (61,0 5
Y Y fklé{; 2) o lRe T T fk1§91 2) o | R
k=11=1 1o 16=6 k=11=1 2 16=6 (u=1,0) T
e o=t} { i)
505
M M M M )
981 (61,62) D 981 (01,62) p -
kgl 151 B fo=0,” Ko kgl El B |o=6l" Rk (32)
0, =0 0,=6L"
M M .
0) (0
121 1;1 fu (95 ),95 )) ORyk
=~ | MM
0) (0
kgl l; Skl (9§ >/9§ )) ORy

where the superscript (1 = 1, v) indicates that both U approximation and V approximation are used

to get the estimates.
Let C(=1?) be defined by

M M M M
9fi1(01,62) o 9fu(01,02) >
LY 5 g g | Rik o | Rk
k=11=1 o 61:9%0) k=11=1 E 91:9%0)
C(u:l,v) = 6,=0, 6,=0, . (33)
M M M M
981 (61,62) p 98k (61,62) b
kgl 1§1 W o=, Ko kgl El W% fo=0)" K
L 6,=6.") 0,=65") |
The solution of (32) and the associated estimates are given by
59(1121,0) B 1
1 _ u=1,0
l sl | = (€07) e (54)
2

(35)

4. Closed-Form Expression of Mean Square Error of 9?’0) and égu’v)

From (34), analytic mean square errors (MSEs) of (565”:1’0) and 565”:1’0) are given by
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E[((Segu—m))z} EU (u=1,0) 2} 59u 1,0) (59u 1v) }

_ ((du 1)k [bb] (( =10)) ) 36)
o] e[l e w) |

_ ((du 1) E b (( =10)) ) )

where the subscript 11 represents the entry at the first row and at the first column. The subscript 22 is

[E—1

similarly defined. From (27), E [bb'!| can be expressed as

LpH])y M MMM (0) 60 £+ (0 o0
(E [bb ->11_k§11§1k§11’§1 fia (617,62) feur (61°,637) E [6RnoR} |
(E[pp"]) =X £ & % fu (6,7,6)) gt (61,63 ) E [RyoR;, ]
- 1712 kl\:/lllf/[lk/]\jll’]\:/ll (38)
noHT) 0) 9O px (90 g0
(E [bb _)21_%11;1%“%1 gu (67,6 fry (6, 0) E [RyoR}, ]
noHT) ©) g o (90 o0
(E [bb ->22_k§1l§1k/§11’§18kl (01,08 gty (61, 68) E [6RyoR7

where E [6R;6R};,,] is given in Appendix G.

5. Numerical Results

In Section 3, U approximation and V approximation have been described and analytic mean
square error(MSE) have been derived in Section 4. Empirical MSEs of the azimuths are defined as

. . s 20N 1 s a0)\2
Simulation E {(91 0, ) } = ngl (Gl(w) 6, ) (39)
Simulation E (é(u:1) - 9(0))2 = i ﬁ (9(”21) - 6(0))2 (40)
1 10 1 1 W = V) 1
. . Au=10)  LO0N2] 1 & fau=10) 4002
Simulation E {(91 —0; ) ] = ngl (91(w) -0, > (41)
N v a0V 1 s (02
Simulation E [(92 -0, ) } = Wu;l (92(w) -0, ) (42)
. . A(u=1 0))2 1 & au=t 0))2
Simulation E [( 5 ) _ Gé )) ] =W WZ::l <0§ ) ) _ Bé )) (43)
. . su=10)  AONZ] 1 & fau=10)  ,(0)\2
Simulation E [(92 — 6, ) ] Wk (92(20) -0, ) (44)

where W denotes the number of repetitions. The subscript (w) denotes the estimate associated with
the w-th repetition out of W repetitions.

6, and 6, in (39) and (42) are given by (9). Similarly, é{uzl) and éé”zl) in (40) and (43) are given by
(29) and (30). 0 u Lo=1) and 9(u Lo=1) i (41) and (44) are obtained from (34) and (35).

In F1gures 1-4, we illustrate the accuracy of estimation of azimuths. In the simulation, an
additive noise is assumed to be zero-mean Gaussian-distributed. In Figures 14, the results with
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A 2 A
‘Simulation E [(91 — 9@) ] ”,‘Simulation E {(9

and ‘Analytic E {(GAiu_l’v)

(u

1

11 of 37

_ 2 e )
= 950)) }’, ‘Simulation E {(9%“1'1’) _ 9%0)) ]',

2
— 9%0)) } " are obtained from (39), (40), (41), and (36), respectively.

L = 256, W = 10000

10t

MS error

—— Simulation E(]|¢" 1-9(10)”2)
simulation E(llo “=9-691?)
simulation E(llo* =Y)-69)1%)

—— Analytic E(||¢" (1u:1,v)_0(10)”2)

10

10

SNR (dB)
(a) MSE of 6;

L =256, W = 10000

15

107 [

102 [

MS error

o~ Simulation E(l9" ,-6|1?)

simulation E(|lo -692)

—— Analytic E(|l¢* “=+-6O)12)

Simulation E(|lo #=2¥)-69)|1?) |

10

5 10

SNR (dB)

(b) MSE of 6,

15

Figure 1. Analytic and simulated MSEs (Mean Square Errors) of 6; and 6, with respect to SNR (Signal

to Noise Ratio).
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SNR=0 dB, W = 10000

107

~+ Simulation (16" ,-0¥|1?)
simulation E(j6' U=2-6%)

simulation E(|l6* “"1V-69)2)

— Analytic E(0'“"-601?)

S

S
a_) 102 ]
n
=

107350 12)0 1;0 2(;0 300 350 400 450 500 550

The number of snapshots
(a) MSE of 0¢
SNR=0 dB, W = 10000

10T \ w \ ‘ ‘ ‘

-+ Simulation E(||6* ,-0$]|%)
simulation E(ljo* U=2-60 %)
simulation E(|l6*“=1V-6)1?) |

S~ - Analytic E(llo' -0
5
CT-) 102
n
=
10° ‘ : 2(;0 2‘50 300 350 400 450 500

550

100

150

The number of snapshots

(b) MSE of 8,

12 of 37

Figure 2. Analytic and simulated MSEs 61 and 6, with respect to the number of snapshots (SNR = 0 dB).
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SNR=5 dB, W = 10000
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MS error
-
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The number of snapshots
(a) MSE of 6;
SNR=5 dB, W = 10000
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“o- Simulation E(||6" -6||?)
simulation E(|[6*“"-69))

Simulation E(||0‘(2“:1’V)-9(20)||2)

~ Analytic E(l¢' 1V-60)2)

MS error

I I I I
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10°
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Figure 3. Analytic and simulated MSEs 61 and 6, with respect to the number of snapshots (SNR = 5 dB).
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SNR=10 dB, W = 10000

1077

—— Simulation E(||0‘1-9(10)||2)

simulation E(l9' =D-61%)

simulation E(ll' “*V-60)2)

~ Analytic E(le*“=)-0O1?)

MS error
T

1 1 1
500 550

350 400 450

10
50 100 150 200 250 300

The number of snapshots

(a) MSE of 6,
SNR=10 dB, W = 10000

—— Simulation E(||0‘2-9(20)||2)

simutation E(l' *D-6)1%)

simulation E(|[6*V"Y-00)2)

- Analytic E(lo* =)0 0%

MS error
T

1 1 1
350 400 450 500 550

10% I I I I
50 100 150 200 250 300

The number of snapshots
(b) MSE of 6,
Figure 4. Analytic and simulated MSEs 6 and 6, with respect to the number of snapshots (SNR = 10 dB).

A 2 A= 2
Similarly, the results with ‘Simulation E {(62 - 050)> }’, ‘Simulation E RBS‘_U - Géo)) }’,

Ay — 2 Al — 2
‘Simulation E RGS’M) — 9&0)) ] ', and “Analytic E [(9&”1’0) — 9£O)) } " are obtained from (42), (43),

(44) and (36), respectively.
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~ 2
For all the results in Figures 1-4, the difference between Simulation E {(91 - 950)) }, and
A 2 Ay 2
‘Simulation E [(9%“1) - 950)) ] " is much larger than that between ‘Simulation E [(9§u1) - 9§O)> } !

Al 2
and ‘Simulation E [(6;”_1’0) - 9§0>) } ’, which implies that U approximation results in much greater

error than V approximation. Therefore, to improve DOA estimation performance, second-order Taylor
expansion, which corresponds to u = 2, can be used.

Al 2
Actually, in all the results in Figures 1-4, ‘Simulation E [<9§u_1> - 9%0)) }’ and ‘Simulation

A= 2
E {(GY’M) — 9%0)) ] " are approximately equal.

Instead, to quantify how computationally efficient the proposed algorithm is, execution time is
obtained both for analytically derived MSE and for the Monte Carlo simulation-based MSE.

The number of incident signals is two, where two signals are incident from 20° and 40°.
The number of antenna elements is 10, and the number of snapshots is 1000. In getting the Monte
Carlo simulation-based MSE, since the computational complexity is nearly proportional to the number
of repetitions, the number of repetitions varies from 100 to 1000 in increments of 100.

Figure 5 shows how computationally efficient the proposed algorithm is. The execution times of
the simulation-based MSEs and analytic MSEs are illustrated with respect to the number of repetitions.
Note that the execution time for analytically derived MSE is essentially independent of the number
of repetitions.

3Execution times of Monte-Carlo simulation and the proposed scheme
10 T T T T T T T T

—O— Analytic
—&— Monte-Carlo

Execution time [sec]
=
o
2
1

10— o—e—o— o o —o6—6—6—dA

10_1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000

The number of repetitions

Figure 5. Comparing the execution times between Monte Carlo simulation-based MSEs and Analytic MSEs.

It is clearly shown in Figure 5 that execution time for the Monte Carlo simulation-based MSE
is much greater than that for the analytically derived MSE even for the number of repetitions of 100.
Figure 5 illustrates that getting analytically derived MSE is much less computationally intensive than
getting Monte Carlo simulation based MSE, which justifies why the analytically derived MSEs should
be employed for performance analysis.
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6. Conclusions and Summary

In Figure 6, the proposed algorithm is outlined. Note that Equations (A)—(D) in this section refer
to Equations (A)—(D) in Figure 6, respectively. The constraints used for derivation of estimation errors
are equations (A) and (B): equation (A) is valid since, in a noiseless environment, no estimation error
occurs in the azimuth estimates. The estimation error due to an additive noise in noisy environment is
formulated as equation (B).

ML-based DOA estimation

i i
1 - - \
1 | & - ] i
i 0 _ (40 ) i g ul(BEeIR] )=o) |4
DOA estimation by maximizing the |, ..., ! 0 =(g",.6) N true incident angles e s E
defined likelihood function i _ H
i 0=(6.-.6) B . :
i ’ . . ) . ) | t(P(@..00)R| . )=0 H
ML t f ti iated 'R : The ML algorithm using Covariance matrix obtained from time- c6y o (L VO | 1
3 LB .unc (ELy) EESHEEE 1 average of noiseless incident signals results in no estimation error {
with noisy array response [ e s N o—
DOA estimation by maximizing the ML ézargmgxtr(P(E))R')
cost function from noise array response] sesess | . . 3 ) . )
- @:(91,7 —,H\,) : Estimates of N incident signals
P) 2
o). & o i — u(P(8.--6,)R] =0
DOA estimation =(6" + 00,68 + o6, o ORI )
from the ML cost function o . (B)
DOA estimation from the angles for R'=R+sR itﬂP(ﬂ, IR, _)=0
which the derivatives with respect to : SR : The ML algorithm using covariance matrix obtained from - d
each incident signal are time-average of noisy incident signals results in estimation error !
imult I | t (perturbation of estimates of incident angles due to perturbation
e in the entries of the covariance matrix resulting from the noise
900000 . x
: induced in the array response)
—' I ——— ——— ———
Taylor series approximation !
l|J1 apgrm_(l!mftlon : 56,
u-th order aylor series o= ‘V(uzl)e( u=1) =
—I 50,
Approxmlatlon !
based on R > 6R N o o o o o o o o o o o e e o e e o e e

V approximation : U approximation and
V approximation results in a closed-form
expression of estimation errors 1

Approximation used for derivation of analytic expression of MSE of estimate
(u=i ) [ (u=ta) \B Hu=t)\ 7! H Aumrv) 7! 1
E[e (e“) }:(“ ) E[bb ]((\\ ) ) (D)

b
‘ o=1) =(“,(u:1.\-))’1b (C) i
1

U approximation

> V approximation
R >» SR

u-th order Taylor approximation

Figure 6. Outline of the proposed performance analysis scheme.

To quantify the estimation error due to an additive noise, equations (A) and (B) and two
approximations of U approximation and V approximation are used. Note that the covariance matrix
in equation (A) and that in equation (B) are associated with noiseless response and noisy response,
respectively. Applying the Taylor series approximation in equation (B) and using equation (A) in
the approximated expression, the azimuth estimation error in equation (C) can be derived. To get
an explicit expression of the MSE of the azimuth estimate, V approximation is applied, and the
closed-form expression of the MSE of the estimate is obtained from equation (D).

To the best of our knowledge, no previous study used explicit equations (A) and (B) to derive the
azimuth error in equation (C). One of the novelties of this paper is that the derivation is based on the
observation that the azimuth error in the subscript in equation (B) can be analytically derived since
equation (A) is true for noiseless covariance matrix.

In summary, applying U approximation to equation (B) and using the constraint in equation (A),
the estimation error in equation (C) can be obtained. The MSE of the azimuth estimation error in
equation (D) is obtained from equation (C) and V approximation. Note that, to get equation (D) from
equation (C), the statistics of an additive noise should also be exploited.

Quantitative study on the estimation error for direction-of-arrival estimation in terms of standard
deviation of an additive noise has been addressed in this paper.

In this paper, in case of estimating azimuths of multiple incident signals, the closed-form
expression of the MSE of the DOA estimate for the ML algorithm has been derived by stepwise
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approximations. The type of antenna array is assumed as ULA. The closed-form of the MSE has been
derived by using the Taylor series approximation which linearizes the nonlinear parts of the array
vector and additional approximation based on the assumption that the estimation error is very small at
high SNR. The closed-form of the MSE has been verified through numerical results. The closed-form
of the MSE has been verified through numerical results. All of the stepwise approximated simulation
results and the results obtained from the closed-form of the MSE show good agreement.

Although the formulation and the numerical results for two incident signals are presented in this
paper, an extension to multiple incident signals is quite intuitively clear and straightforward.

In this paper, we rigorously derive how the MSE of the ML algorithm for direction-of-arrival
can be expressed in terms of various parameters, which include the number of sensor elements, the
number of incident signals, the number of snapshots, and the variance of additive noises on the antenna
elements. Although, for convenience, the statistics of additive noise is assumed to be non-zero-mean
Gaussian distributed, the derivation in the Appendices can be extended to the case where noise can be
modeled as any other random variable as long as the moments of the random variable are analytically
available.
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Notation

Ok Hermitian matrix transpose

) Noisy quantity

J(+) Difference between noisy quantity and the corresponding noiseless quantity
A (01,6,) Matrix whose columns are array vector for 6, and 6,

B, Estimate of the c-th incident signal ¢ =1,2

GC(()) True azimuth of c-th incident signal ¢ =1,2

x' () Noisy signals on the antenna array at t — fi

R Sample covariance matrix of the noiseless signal

Ry The entry at the k-th row and the I-th column of R

R/ Sample covariance matrix of the noisy signal

R, The entry at the k-th row and the I-th column of the R’

SR Difference between R’ and R

SRy Difference between R}, and Ry

) (u=1) First, order U approximation of (-) based on Taylor expansion

éé”zl) First, order U approximation of 6, c=1,2

59§u:1) Difference between éé”:l) and 950) c=1,2

gl=1) V approximation of o=y =12

§9£”=1’v) Difference between éé“zl'” and 9£0> c=1,2

éc<w) 0. associated with w-th repetition out of W repetitions. ¢ = 1,2
AEE‘;)D éﬁ”:” associated with w-th repetition out of W repetitions. ¢ =1,2
éc(zlj)l’v) 95”21’0) associated with w-th repetition out of W repetitions. ¢ =1,2
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Abbreviations

The following abbreviations are used in this manuscript:
DOA  Direction-of-Arrival

ML Maximum Likelihood

MSE  Mean Square Error

SNR  Signal to Noise Ratio
ULA  Uniform Linear array

Appendix A. First Order Derivative of fi; (61,02) and gi; (61, 62)

0Qu (01,02) _ [(dag(61), dB* (61,62) ) .
3, = Tae, M@ g )i (B
daj (61)

6, (ax (61) M — ay (62) B* (61,62))

- (dag(glgl)B (61,02) + ax (61) 813(8991%92)> ay (62)

dB* (01,6,)

0Qy (64,0 da (02) . :
Qui (61,62) _ ( “";6(22)8 (61,602) + ay (62) 8(92> aj (61)

06,
N day (6 dB (64,0 da; (0
+ﬂl (92) k( Z)M*le (Ql)M +(le (92)M*le (91)3(91,92)) ! ( 2)
d92 892 d62
9*Qy (61,62) d*a (61) 9%B* (61,6,)
T\ F2) (LB hr g, (9,) T2 2) ) e
202 02 7 (62) 02 ai (61)
dak (91) . JdB* (91,92) dlll* (91)
+ ( do, M~k (02) =5 6,
d%a* (0
+ (Elk (91) M — ay (92) B* (91, 92)) %
1
dag (61) 0B* (61,6,) \ da; (61)
+ ( da, M (02) =0 a6

B (dzak (61) B (01,0,) + 2d’1k (61) 0B (61, 6>) +ai (61) 823(91,92)> a?‘ (62

d@% d91 891 89%

02Qu (61,6)

063
d*ai (62) . day (62) 0B* (61,62) 9’B* (61,6,) \ .
_ <d9%B (9]/92)+2 d92 892 “+a (Qz)T al (91)
day (62) 92B* (01,02) \ day (62) 0B (01,6) da; (62)
( 462 M —a; (61) T ay (02) + <d792M_ak (61) 20, ) 0,

d%ay (62) ([ day (62) 3B (61,6,)\ da’ (62)
(o () M (B0) B 0y 0) 2 (T M o) P ) T

18 of 37

(A1)

(A2)

) (A3)

(A4)



Appl. Sci. 2020, 10, 2415 19 of 37

9*Qu (61,62) _ dag (62) 9B* (64,62) 92B* (61,02)\ .
90106, do, 06, 2% (02) —55 55, ) @ (O1)
day (02) . 0B* (64,6 daj (0
(B T
ai (61) 9B ( 91,92) 9%B (61,67)\ .
(1 o o) 5000, ) %)
0B (64,0 dat (6
< B (61,62) + ax (61) (8911 2)> ;9(22) (A5)
9*Qu (61,62) 9% det(61,6,) 2
3fu (61,6) _ { 262 det (61,0,) — 262 Ql(91,92)] (det (64,6))
061 (det (91, 92))4
2
[3ka(_)(gllr92) det (61, 6,) — adeg(:ll'QZ)le (91’92)} W 6
(det (67,6,))*
9204 (61,0 9041(61,6,) ddet(6;,0 2
3 (61,6) _ [ a@l(aé 2) det (61,62) + kla(ell 2) ea(ezl 2)} (det (61, 6,))
06, (det (91, 92))4
{ acglfétliaeglzeszl (01,62) — adeg(gl f2) an’a(gl 92)} (det (61,6,))>
(det (91,92))
2
| PG det (6, 62) — S5 Qu (61, 62)| M (A7)
(det (61, 6,))*
20,(61,6 L 9Qu(0,,82) ddet(01,0 2
9gu (61,62) [ a’él(ae} 2) det (61, 0) + k’a(ez1 2 ea(el 2)](det(91,92))
90 (det (81,6,))*
9 d adet(61,0,) Q4 (61,
[ %ka (61,62) — eta(ﬁ; b2) Q"la(gll 92)} (det (67,0,))?
(det (67,6,))*
2
[73(2”9(9921 52) det (6y,0,) — 29et0ul2) deta(ﬁ; 52) Oy (91,92)} W (A8)
(det (67,6,))*
& ka(91 02) 9% det(61,67) 2
ogu (1,62) [ 967 det (61,602) — 262 Qui (91,92)} (det (64,62))
96, (det (81,6,))*
2
[P det (01, 0) — PRy (61, 0) | MG (A9)
(det (91,92))4

Note that the first and the second order derivatives of det (61, 6,) are given in Appendix B and
first and second order derivatives of B (61, 6,) are given in Appendix C.
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Appendix B. First and Second Order Derivatives of det (61, 62)

» 1 —cos (3A (sin6; —sinfy) M) »  H(61,6,)

det (91,92) =M =M

oH (91, 92) 27
A

2
—A(cosby) M | sin A (sinf; —sin6y) M
20, A

0H (61,02) 27 . |2 . .
0, TA (cosBr) M | sin TA (sinf —sinf) M
oG (01,60,) [2m . [2m . .
0 7A (cosfy) | sin TA (sinf; —sin6;)
oG (91, 92) . 27 . 2r . .
o6, _TA (cos6y) | sin TA (sinf —sin6y)
9’H (91,92) 2r . . |2 . .
T = (—/\A (sin6,) M> sin {/\A (sinfy —sin6y) M}
2
+ <2/<TAM (cos 61)) cos (ZIA (sinf; — sin6y) M>
02H (64,0 21 . [2m, . .
259%12) = (AA (sin6y) M> sin {AA (sin6; — sin6;) M]

2 (2
+ (;AM (cos 92)) cos (;A (sinf; —sin6;) M>

92H (61, 6,) 27 2 27
———=— | —A 0 0 —A(sinf; —sinfy) M
20,96, (A M> cos 0 cos B, cos { 3 (sin6; —sin6;) ]

92G (6,0 P o |
;9%2) = <—)\A (smGl)) sin {)\A (sinf; — sm92)]

2 2 2
+ (;A (cos 91)> cos <)7\TA (sinf, — sin92)>

PG (61,6) 27T _fom, . .
T (/\A (51n92)) sin [AA (sinf; —sin 92)}

2 2 (2
+ (;A (cos 92)> cos <)7\TA (sinfy — sin()2)>

PG (61,6,  [2m
B A

2
2r . )
96,00, A> cos 61 cos 0 cos [)\A (sinfy — sin 92)}

AH (61,0 3G (6,0
ddet (61,6,) —#G (61,02) + %H (61,02)

061 G (61,6,)°

JH (64,6 dG (64,6
ddet (61,6,) _ — i G (B1,62) + "V H (61, 62)

30, G (61, 02)

1 — cos (ZT”A (sin6; — sin6,)) G (01,62)
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{ 92H(01,6,) G (61,6) + MH (61, 92)} {(G (91’92»2}

02 det (61, 6,) 207 907
69% (G (911 92))4
[RG (01,02) + PG H (601, 602)] [2(G (61, 02)) )] .
(G(eerZ))
__0*H(61,6,) 92G(61,67) 2
Rdet(0,0) - EEORG (61,02) + L (81,62)| (6 (01,00)]
963 (G (61,62))*
[FPEG (0, 02) + P H (600,62)] [2(G (6, 62)) o
(G (61,62))*
92H (64,0 9H(61,6,) 9G(6,,0 2
Pdet(0,6,) | oG (01,0y) — LI QTG (6),6,))]
96196, (G (61,6))*
2
[ ZSh S H (01, 62) + 2 QI [(G (61, 62))°]
(G (61,62))"*
[‘78}15%1{92)@(91/92) L(MZ) (91192)} {2(G(91r92))7ac(a%2'92)}
_ (A25)
(G(91,92))

Appendix C. First and Second Order Derivatives of B (01, 62)

B (01, 0,) = 1—exp [jzfA (sin6, — sin6;) M| _ N(61,6,) (A26)
v 1—exp [j3A (sin6, —sinfy)] — D (61,62)

N (61,02) — ]‘2£A (cosf) M | exp jz—ﬂA (sinf, —sin6) M (A27)
d6; A A
ON (61,02) — _]'ZEA (cosfp) M | exp jz—nA (sinf, —sin6;) M (A28)
96, A A
N (61, 65) 2 27 .
T (—])\A (51n91)M) exp <]/\A (sinfy —sin6y) M)
2
+ <2)7\TA (cos ) M) exp <]2)7\TA (sin6y — sin6y) M) (A29)
M 'Z—NA(sinQ )M | ex 'Z—NA(sinG —sinf6;) M
262 X 2 PR P
2
+ <2;A (cos,) M) exp (jZ)iTA (sin; —sin ;) M) (A30)
92N (61, 6,) 27t 2 27, . .
—S0.d6, ( 5 AM) (cos601) (cos6,) exp <]AA (sinf, —sin6;) M) (A31)

21 2, .
T (;/\A (cos 61)) exp {]/\A (sinf, — sin 91)} (A32)
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aD (61,6,) [ 2n 2m

o, = i A (cosB,) | exp i3 A (sin, —sin ;)
9’D (91,92) 27T . 27 . .
879% (—]/\A (sm61)> exp <]/\A (sinf, — s1n91)>

2
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781) (01,02) = 2(1—exp j—znA(sinQZ—sinm)
)
27 . .
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<82N(91,92) D (91/9 ) MN (91,92)> D2 (91,92)

963 [1—exp (]z/fA(smGz—smGl )]4
(31\7%91 82) p D (61,0,) — aD(91 02) Ny N (61,6,) ) oD ag; 62) s
[1—exp (73 (sm 6 — sin ) )]
*N (6,0 ON(61,62) 9D (64,0
2B(0,6,)  (angiiiD (01,60) + N 2GR ) D2 0y, 05)
96,06, [1—exp (j&A (sin6, —sin 6, )}
9*D (61,0 dD(61,6,) ON(6
(W (61,6,) — (1 2) (()912 2)) D2 (61, 6,)
[1—exp (j&A (sm@z — sm@l)ﬂ
(aN(f)] 92) (9 0 ) aD(%]/QZ)N (91, 2)) aDzag; 02) (A44)
[1—exp (j&A (sin 6, — sin 91))}

The first order and the second order derivatives of a; (61) and ay (6,) are given in Appendix D.

Appendix D. First and Second Order Derivatives of ay (61) and ay (62)

dagg(lel) = <]2; (k—1) Acos@l) exp (]2; (k—1) ASin@l) (A45)
d“;g(z%) - <]2; (k—1) Acos 92) exp (]2; (k—1) Asin92> (Ad6)
2
d‘;kig(zel) = <—]'2)7\T k—1) Asm()l) exp < — —1)ASIH91)
1
271 2 :
_ ()\ —1) AcosGl) exp ( — (k- 1)As1n91> (A47)
2
d‘;kig(zeﬁ — ( ]2)7\1 —1) Asm@z) exp( 1)A51n92)
2
271? .
— <)\ k—1) Acos()z) exp (] —1)ASH192> (A48)

Appendix E. Derivations of fi; (61, 02) and gy; (61, 62)

Let fi; (61,62) and gy (61, 62) denote the partial derivatives of Py (01, 6,) with respect to 61 and 65,
respectively:

9Py (61,62)

fr1 (61,62) = %,
1 9Qx (61,62) ddet (01, 6;)
- det (61,60,) — ———"=2Q (61,0 A49
[det (61, 6,)] 90, (61, 62) 26, Qu (61, 62) (A49)
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dP (01,0
2 (0,60,) = kit (01,602)

06,
1 9Qy (61,62) ddet (01, 6;)
= det (61,60,) — ——=—"=2Qy (61,62)| . (A50
[det(@l,ez)]z{ 00, (61,62) 26, Qxr (61, 62) (A50)

Appendix E Derivations of fi; (61,02) and gi; (01, 02) with the Tayler Series Approximation
Applying the Taylor series expansion in (A49) and (A50) yields

j,,0 —1) [ fi (61,0
Fa o) = s (6,00 4 e | {8

e 891 91:9§0)
6,=6.")
(u=1) | 9fu (61,02)
+46, 20, - (A51)
0,=0")
01,0,) = (0) g(0) (u=1) [ 98k (61,62)
g (0,0) = gu (01”,07) + 0} 90, |oi=o0
6,—6.")
(u=1) [ 98K (61,62)
+06; 8, | oo (A52)
0,=0")

where (595”:1) and (59&“11) denote estimation errors for the first incident signal and the second incident
signal, respectively.

Appendix G. Derivation of E [§R;6R};,./]

L

Ry = % Y Cer(t) o () + xp (k) m (8) + my (8 xg (8) + my (k) g (). (A53)
i=1
. 1 &
Ry =7 ). (u(t)xg (). (A54)
i1
L
ORj = % Y (o () mg () 4 g (4) g (8) + my (8)nf (£)). (A55)
i-1
From (A55), E [6R0R},, ] is given by
E [6R;0R?,]
xp () (k) E (ng (t)mpe (t9)) + xp(£) X (£ ) E (nfs ()5 (Er))
1l A1 (4) E (g () ng, (ke )mge (£30) ) + xg (), (8 ) E (g (£) e (£7))
=12 Z /Z +xp () xp (8 ) E (ny (k)3 (80)) + x5 (8) E (g ()55 (£ ) (£30)) (A56)
UL g (t0) E (g (8 nig (B)mge (87)) + g (80 ) E (g (83) g (8) 5 (£r))
+E (ny(t)ng (k) (b ) mge (£r))

where the second moments, third moments, and the fourth moments in (A56) are derived in
Appendices H-J, respectively.
Finally, when i = i, E [(6R); (0R) /] is given by
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E[(0R)yy (6R) 1]

2 (k) xjy (t) (0% +20%) + 31 (8) g (t) (=2ip%)

+x (1) ((%UZM >u+<10 + )ﬂﬂ( o+ )F"H( o+ )#)er;(fz)x,*/ (tr) (2j1?)
x5 (1) x (b)) (02 +2p%) + x5 (¢ )(( 02+]4> +<702+y2)y+j<%02+;4 >y+]< > +u )14) (A57)
x5 (t) ((%olﬂﬂ)w<Eaz+;ﬂ)y+j<—oz+y )14+1< Ly >V)
+x (t1) ((%UZ+142>14+ (%024—;1 );H—j( > +p )y+j<%02+y2> y)
+ (2 (y‘* + 30 + Zv‘*) +2 (%2 +;42>2>

forl=kandk=1!"and!' =K.

I

N
-
MP‘

)
I
L

E [(6R)y (OR) ]

x1 (4) x5 () (202) 42 () xp (80 (—24%)
a0 (1) (200 +2j0°) + 37 (1) x5 (8) (202
X . o2
e i (8) xp (t 'f)2(02+214 )+ (t;) (2 (7 +u2)u+21( + >Pl) A58)
gca P2 Y e <2 (% +u2> n+2j (% +;42) ;4>
+xp (t) ((;U“ruz) Ht (%2 +#2) Bt (%2 +H2) ot ( o? +p )ﬂ)
- (2 (;(72 +y2) p+2 (%2 +y2> yz)
forl=kandk=10"and ' #Kk'.
E[(0R) (6R) ]
x1 (t) x5 () (2 +262) + 3 () x5 (t) (—2704%)
+x; (t) <2 (%Zﬂlz) n+2j <%2+;4 ) u) +xf ()37 (1) (2in?)
e +xp (8) xp0 (£1) 2;42) +xf (t1)2<2;43 +2jy3) (A59)
o

forl=kandk =k and I’ #k'.
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E [(6R) (OR)pye]

31 (1) x5 (k) (202) + 31 (6) x5 (t) (=270

+xp (1) (2 <7 +p )u+21 (* +u )H) +xi (1) ) (1) (2i8?)
+xi (1) xp () (2 4+26%) 4+ x5 (1) <<gvz+u2>u+ (%zﬂl )uﬂ( +p )uﬂ(?’v + )u) (A60)
+xps (6 )(214 +2jp )
+Xkr(tw><2<7+u>ﬂ+21< u)u)
() (o))

forl=10and !’ =k and kK’ # k.

I
N
-

lagly

I
_

E [(6R)y (OR)j1y]

() ) (t0) (o 26 ) 0 (1) (1) (~232)

+x1(t)<<3(7 +y>y+<‘7—2 y>y+;(‘72 pt)y+j<§02+y2>y)+x,f(t,»)xl*,(t,~/)(2jy2)
im0 o) 050 (2 (5 ) (5 ) o
BENCIERNENY
ot (5 )43 (5 )
e(3ron)n(50)e)

for!’ =kand!' =k and | # k'.

I
=
-

1=

Il
_

E [(6R) . (6R) ]

HER (A62)
- 2
B EE s o (5 o) (o)1)
(7'2 2 (72 2
+xp () (2 7—&-]4 u+2j ?4—;1 U
2

forl=kand k #l'and I’ =K.
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E [(8R) . (6R)jp]

M=

[uy

-

muwm-ma+w)+m<>wa»(m#)
+Xz(ti)(2(%+u2)u+2]< +u2)u)+x 0% (k) (2j1)
+xk()xk’(ti’)(gz+271 +g (t (2(%2+u2)u+21(az+u>u)
st (5 ) (20 )

e ({5 0)rea( o))
(o5

2

N\Q

N\Q

forl =1"andk #1"and k = K'.

E[(OR) (9R) 1y ]

x1 (t) x5 () (202) + 31 (1) % (1) (=2j0)
+x; (£) (ZH +2ju )+xi( i) xp (tr) (2]# )
+xi (1) e () (262) + ¢ (1) (2% + 2%
+x, (t) (2 + 2j11%)

+xp (ti) <2ﬂ3 +2fP‘3>

+ (4nt)

I
N
™~

=

Il
—_
Il
—_

forl =k and k' #kandk="1.

E[(0R)yy (6R) 1]
i () x5 () (202) (1) % (t0) (=270
+x (¢ )(ZP‘ +2jp )+xk ) xp (b (]142)
I R 03 () (202) + 31 (1) (20 + 2118
“plLk +xﬁ(ti/)(2(%+ﬂ)ﬂ+21(022+ﬂ2)u)

+xp (t) (2 (‘%2 +u )y+2] (‘7

(5 )0)

forl =kandk #!'"and I’ # k' and k" # 1.
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E [(6R) (6R) ]
xi (8) x5 (t) (202) + 0 () x5 (1) (=2i82)
+x (1) (200 4270 ) + 2 (1) x (1) (2j02)

[

N
-
Nl

Il
—

2| ) (20 28
2 2
+xpe () (2 (%ﬂi )#+21 (0 tu )V)
2
(a5 #)w)

forl=101and!l' #kandk # k' and kK’ # L.

E [(6R) . (6R) ]

Il
-
1=

I
—_
Il
—_

+xp (t ')(ZV +2ju )
= (1)

for! =k and k' # kand k £ I' and I' # 1.

E [(6R) (6R)jp]

(1) (26 +27%) + xf (¢
+xf () 0 (1) (207) 4+ (¢
i () (20 + 273

+xp (t) (200 +2j1°)
+(4)

fork=1and!l' #land ! # k' and k' # k.

I

=
-
D=

Il
—
Il
—_

x1 (1) x5 (1) (202) + 31 (1) % (1) (—2j0)

+xg (6) xp (¢ v)(ffz+2ﬂ )+xi (t) (2 (%ZW )u+2J(U2 +u >u)

y o? (0
2, (t) (2 (f + #2) 2 (7 +p P’)

i) xp (br) (2]Pl )
)(2Pl +2ju )
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E [(6R)y (6R)jp]
(1) (02 +202) 1 (8) 3 (1) (—2j02)

+Xz(t)(2(%2+u)u+21<02+ﬂ)ﬂ>+x2‘(t)xl/( ) (22)
Lo e () (22) 5 () (26° +205°) (A69)
B e (z-pea(z o))
+xpe (¢ ")(ZV +2114)
()

fork=k andk’ #land! # 1" and I’ # k.

E [(0R) (5R)f/k']
DESAG (2;42) +xp () xpo (ty ( 2ju )
I

+x; (¢ < (%2+ ? H+2]( )V>+Xié( )xw(")<2]li)

+xy (8) xp (1 (2;1 +xf (( +y>y+2]( +;4>;4> (A70)

2

Il
N
-

M=

Il
_
Il
—_

)
+xp; (ty (2;4 +2ju )
+xp (ty (2;1 +2ju >

(4 (T o))

for!’ =k and k' #land! # kand k # I'.

E [(6R)y (6R) ]

x1 (t) x5 () (202) + 31 (1) %3 (1) (=2j02)
+x (1) (26 + 2i0%) + i (1) ¥ (1) (270
i (0) e () (262) + ¢ (1) (2% + 2% (A71)
+xi () (20 4271
g () (267 +2j)
+(on)

otherwise. When i # ', E [(6R) (6R)] is given by

I

=
-
-

Il
—_
Il
—_
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Ly
=72 " o .
> 54 +xp (t) (2 (7 + ﬂ2> HA2j (
0'2 2 .
+xk/ (ti/) 2 7 + ]/l ]/l + 2]

forl=kandk=1!"and ! =K.

E [(6R) (6R)jp]

i (k) 3 (1) (202) 4+ x
+xi () (20 42718

+xp (ti) <2ﬂ3 + ZfP‘3>

(549))

E [(6R) (6R)jp]

I

=
>R
-

Il
—_
Il
—_

forl=kandk #!"and l' = k'.

i () 3 (1) (202) +x
+x (1) (26 +2n)

g () (267 +2j0)

(549)

I

=
>R
-

Il
—_
Il
—_

forl="0and! #kandk =k'.

x1 (t) x5 () (202) + 31 (1) % (1) (=2j0)
+x; (1) (2% + 28 ) + ¢ (1) x5 (80 (2j0)

x1 (t) x5 () (202) + 31 (1) % (1) (=2j0)
+x; (£) (ZH +21#3> g (k) xp (k) (2]# )

k (t) (2Pl +2ju )

k (t) (2Pl +2ju )
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E [(6R) (6R)j]

xi (t) xf (k) (202) + 31 (1) %, (1) (=2j0)
+x; (1) (21° +2ju )+XZ( i) xp () (2114 )
i () xe (1) (20) + 5k (1) (20 +2j0°) (AT5)
+x (t) (2 + 2112

+xp (tr) <2Pl3 +2fﬂ3>
2 2
[ 2
+ <4 ( 2 +u ) )

E[(6R)y (6R)p ]

xi (t) xf (k) (202) + 31 (1) %, (1) (=2j0)
+x; (1) (21° +2ju )+XZ( )7 (k) (272 )
+xt () 3 (k) (207) + ¢ (1) (20 + 240%) (A76)
+x (1) (2 + 2112
+xp (br) <2Pl3 +2fﬂ3>

+ (an)

|

N
™=
gl

Il
—_
Il
—_

forl =k and k' #1'and ' = k.

Il
Ny
-

M=

Il
—_
Il
—_

forl £1' £k £k

E [(0R) ¢ (6R)7]
i (0) i (t) (202) + 3 (1) 3 (1) (=270
1 (1) (20 +270%) + x5 (1) 3 (1) (24%)
i (1) xp (i) (2P‘ )+xk( )(2!4 +2jp ) (A77)
x5 (1) (20 + 2118
+xp (br) (2;1 +2ju )

(3

Appendix H. Fourth Order Non-Central Moment of Non-Zero-Mean Complex Gaussian Random
Variables with Variance o2

I

=
-
D=

Il
-
Il
—_

otherwise.

E [y (t) my (8) np (t) e ()]

_ (Re [y (£)] + jIm [ny (£;)]) (Re [nc (#;)] — jIm [ (t)])
=] % Relmy ()] — jIm [y (1) (Re [me ()] + fim g (1)) |- (A78)

@)i=i

For i = i, (A78) can be written as
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E [ny (t:) nf (t) m () mpe (4)]

= E[Re[m (t;)] Re [y ()] Re [y (t;)] Re [mp ()]

1
+E[Re [y (+)] Re [y (#)]] E [Im [y (£)] Im [y ()]
—E [Re [n (t;)] Re [np (£;)]] E [Im [ny (¢;)] Im [nyr (8;)]]
+E [Im [n; (;)] Im [ (¢;)]] E [Re [y (t;)] Re [y (t;)]]
+E [Re [y (£)] Re [np (£;)]] E [Im [n; ;)] Im [y (£;)]]
—E [Re [ (t;)] Re [my (£)]] E [Tm [n; (£;)] I [0 (8)]]
+E [Re [n (t;)] Re [ny (;)]] E [Im [y (£;)] Im [y (8;)]]
+E [Im [n; (¢;)] I [ (#;)] I [y (8;)] I [ (£)]] - (A79)
The first term of (A79) is given by
E [Re [n; (t;)] Re [y (£;)] Re [myr (£)] Re [ (£)]]
E [Re [m (t:)] Re [ng (;)] Re [y ()] Re [my (t:)] = p* + 3pu0? + 3ot I=kandk=1!and l' =k
E [Re [m (t;)] Re [ny (t;)] Re [ny (+:)]] E [Re [mye (8)])] = p (302 + 1?) I=kandk=1and ' # K
E [Re [ (t;)] Re [ng (;)] Re [ns ()] E [Re [ny (£:)]] = p (302 + p2) I=kand k=K and k' £ 1'
E[Re [n; ()] Re [y (t)] Re [ (£)]] E [Re [y ()] = p (302 + p2) I=0and ' =K and K # k
E [Re [y (t;)] Re [ny (t;)] Re [nps (£:)]) E [Re [my ()] = p (302 + p?) k=1 and ' =k and k' # 1
E[Re [y ()] Re [ (1)]) E [Re [y (1)) Re [my (1] = (% + ;ﬂ)z I=kandk#1 and I' = K
E[Re [y ()] Re [y (1)]) E [Re [ (1)) Re [my (1] = (% + ;ﬂ)z I=0and! £kand k=K
=1 E[Re [ ()] Re [y ()] E [Re [mg (t)] Re [y (1] = (% + ;ﬂ)z I=Kand kK #£kand k=1 (A80)
E[Re [ ()] Re [ (t)]) E [Re [y (1)) E [Re [me (13)]) = (% +42) 42 I=kandk#! and I' £k and k' #1
E[Re [y ()] Re [y (1)]) E [Re [ (1] E [Re [me (13)]) = (% +42) 42 I=Uand!' #kand k# K and k' #1
E[Re [y ()] Re [y (1)]] E [Re [mi ()] E [Re [my (13)]) = (% +#2) 12 I=Kand K #£kand k£ and I' £1
E [Re [ (1)) Re [y ()] E [Re [mys (1))) E [Re [ (t)]) = (% +#2) 12 k=1andl' #land ! £k and kK £k
E [Re [ (1)) Re [y ()] E [Re [mys (1)) E [Re [ (1)]) = (% +#2) 42 k=K and K #landl#1 and I' £k
E[Re [y (t)] Re [mye (1)]) E [Re [m (1)]] E[Re e (t)]) = (% +#2) 12 V=K andK #land ! #kand I' £k
E [Re [m (t;)]) E [Re [ ()] E [Re [y (t:)]) E [Re [me (8)]] = p* otherwise,
Using the same scheme in getting (A80), the other terms of (A79) are given by
E [Re [n; (t;)] Re [ (£)]) E [1m [y (t)] Im [ (&)
E [Re [m; (t;)] Re [y (t;)]] E [Im [my (£)] I [ (£7)]] = ('772 + ﬂ2>2 I=kandk=1"and I' =K
_ J E[Re[n (t;)]Re [my (t;)]] E [Im [ny (£;)] Im [ (£;)]] = (”72 + #2)2 I=kand k#1"and I' = k' (A81)
E [Re [n; (;)] Re [ (;)]] E [Im [y ()] Im [y ()] = pt* I#kand k' #1'
E [Re [ns (t)] Re [ng (t)]] E [m [y (t)] I [mye (1)]] = (% + 122 32 otherwise.
E [Re [ (1)] Re g (1)) E [Im . (£)] T [y (1))
E [Re [n (t;)] Re [y ()] E [Im [nyc (;)] Im [npr (8;)]] = (% + ]42)2 I=kand k=10 andl' =k
_ J ERe[m (t)] Re [mys (t)]] E [tm [ (1)) I [y (8)]] = (% + yz)z I=Kand K #kand k=1 (pg)
E [Re [n; (t;)] Re [ (£;)]] E [Im [my (£)] T [y ()] = pt* I#K and k #1'
E [Re[n; (t;)] Re [ny (£;)]] E [Im [ng ()] Im [y (1)]] = ‘772 + y2> y? otherwise.
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E [Im [ (£;)] I [ (¢;)]]E[Re [nyr (t;)] Re [nps (t;)]]

I=kand k#1!'and l' =K (A83)

I=kandk=!and l' =k
l#kand I' #K

E [Im [ (;)] Im [ (;)]] E [Re [y (t;)] Re [ (#)]]
E [Im [y (#))] T [ (8)]] E [Re [ (8] Re [ (8)]] = (% + %) 12 otherwise.

|
|

E [Re [y (£;)] Re [y (£)]] E [Im [ (£;)] T [y (8]

I"and k #1' and k = K’ (A84)

I1#1"and k £k

otherwise.

I=kandk=!"and ' =k

l

E [Re [mg (t)] Re [y (#)]] E [1m [y (8] T [ ()] = (& + i2) o2

|E
E [Re [ny (t;)] Re [ (t:)]] E [Im [y (£)] Im [y (£;)]] = pe*

E [Re [y (£;)] Re [y (£)]] E [T [ (#;)] T [mpe (£)]]

I=kandk=1!and =k

)

K and k' #kand k=1 (AS85)

k#1'"and | #K

otherwise.

E [Re [ (£)] Re [y (£)]] E [Tm [y (£;)] Im [ (15)]] = p*

+ ]42) 12

liad
2

E [Re [ny (t;)] Re [y (¢;)]) E [Im [y (£;)] Ton [ (4)]]

E[Re [n; (#;)] Re [np (;)]) E [Im [my (;)] Tm [mpe (8)]]

I=kandk=1!and l' =k

K (A86)

I"and I' # k and k
I1#1"and k £k
otherwise.

l

+ }tz) u?

i
2

E [T [y (£;)] T [y (£5)] T [y (8)] T e (2)]]

E[Re[n; (t;)] Re [np (;)]] E [T [n (£;)] Im [y ()]

(A87)

otherwise.
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From (A80)~(A87), E [y (t;) ni (t;) nj, (t;) ny (t;)] in (A79) is given by

(b)i # i

E [y (t;) ng (t) s (t:) nge (4)]

2 (4 +3p20% + §ot) +

2(32+p2)u+2
302+ u+2

NN

N

% % M

2
2(32+p2)u+2
2(32+p2)u+2

NN

2
24

4< u?
4(5+ ’
4

N—— N———

4p

E [ny (t;) m () mfy (tr) me (£)]

Using a similar way to get (A88), for i # i/, E [n; (t;) nj (t;) n}; (ty) np ()] is given by

(7 +n

+y2)2+ (72+y2)2+(

2 2 2
N+ (g +w2) + (g +m2) +(T+
2 7 a2
2 2

I=kandk=1and!' =k
I=kandk=1"and!l' #K
I=kandk =k and I’ # K’
I=Iand! =k and k' # k
I'=kand!' =k and ! # K’
I=kandk #1!'andl' =K
I=10'"and! # kand k =k’
I=Kandk #kandk =1
I=kandk #!'and !’ # k' and k' #1
I=Iand! #kandk # k' and k' #1
I=Kandk #kandk #1"and !’ #1
k=10'and!l’ #land! # K and k' # k
k=K andk' #land! #1'andl’ #k
I'=Kandk #1land! #kand!' #k

otherwise.

E [Re[n; (t;)] Re [y (t;)] Re [y (t7)] Re [mps (t)]] + E [Re [ ()] Re [ (;)] Im [mr (t;)] I [y (£1)]]

+E [Im [y (t;)] Tm [y (£)] Re [y (t)] Re [mpe ()] + E [Im [y (£)] X g (£)] Im [y (8)] Im [ (27)]] - (A89)

I£k£1 £K

otherwise.

I=kandk=1!and! =K
2
+12) I=kandk#I'and !’ =K
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(A90)

Appendix I. Third Order Non-Central Moment of Non-Zero-Mean Complex Gaussian Random
Variable with Variance ¢

We define ten cases depending on how 4, b, c,d, and e are related:

Case |
Case II
Case III
Case IV
Case V
Case VI
Case VII
Case VIII
Case IX
Case X

a=bandb=cande=4d
a=bandb#cande=4d
a#bandb=cande=4d
a=candc#bande=d
a#bandb#cande=4d
a=bandb=cande #d
a=bandb#cande #d
a#bandb=cande #d
a=candc#bande #d
a#bandb #cande #d
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1. E [Tlu(td)nZ(te)nc(te)]

E [na(ta)ny (te)nc(te)]
= E[(Re[na(tg)] + jIm [na(tg)]) (Re [y (te)] — jIm [np(£c)]) (Re [ne(te)] + jIm [nc(te)])]
= E[Re[ng(tg)] Re [ny(te)] Re [nc(te)]] + JE [Re [na(fg)] Re [y (te)] Im [nc(te )]

—JE [Re [nq(t4)] Im [np(£)] Re [nc(te)]] + JE [Im [ (ts)] Re [mp(te )] Re [nc(te)]]
+E [Re [n4(t)] Im [, (te)] Im [ (te
+E [Im [n4(t4)] Im [ny,(t.)] Re [nc(te

)] = E [Im [n(£q)] Re [y (te)] T [nc (£ )]]
)]+ JE [Im [na(tg)] Im [y (£ )] Im [nc(£e)]] . (A91)
E [na(tq)n; (te)nc(te)] for Case I can be written as:

E [na(ta)my (te)ne(te)] = E [na(ta)ng (ta)na(ta])
= E[Re[nq(tg)| Re [na(tg)] Re [a(tg)]] + JE [Re [11a(tg)] Re [a(tq)]] E [Im [124(£4)]]
—JE [Re [a(t4)] Re [na(tq)]] E [Im [na(tg)]] + JE [Im [ (£4)]] E [Re [na(ta)] Re [a(t4)]]
+E [Re [n4(tq)]] E [Im [14(£4)] Im [0 (t)]] — E [Im [114(t4)] I [14(4)]] E [Re [14(t4)]]
+E [Im [nq(t4)] I [14(t4)]] E [Re [1n4(t4)]] + JE [Im [n4(tg)] Im [ (£4)] Tm [14(£4)]]
(302 +12) 4 (5 +12) xu—i (5 +1) XM+J‘(%2+#2) <t (5 m2) xp
—(F+12) xu+ (F+12) xu+jxn(3o?+2)

3 o? o?
= V(fozﬂi) V( V)+]V( H)+]ﬂ(‘7+ﬂ) (A92)
Note that, in deriving (A91) and (A92), we used the fact that the real part and the imaginary part

of noise are independent and identically distributed with N ( U, ‘77) .

Using the same manipulation used in obtaining (A92), for Case II-Case X,
E [na(tg)ny (te)nc(te)] can be shown as

2 2
E [na(tg)ny (te)ne(te)] =2 <% +u ) u+2j (U [ ) u  for Case II, Case III, Case VI

(A93)
E [na(td)n;(te)nc(te)] =2p% + 2ju° for Case IV,Case V,Case VII-Case X
From (A92) and (A93), in Case I-Case X, E [n,(t;)n; (te)nc(te)| can be defined as
* 3 2, 2 o o
E [na(tg)ng(te)ne(te)] = (EU +u > B+ (—+y >y+]( +u >y+]< e )y for Case I
2
E [ (ta)nf (ke )ne (£)] = 2 (‘% T ) 2 < Y ) i for Case II,Case III, Case VI - (A%

E {na(td)n;(te)nc(te)] =243 + 2ju® for Case IV, Case V,Case VII-Case X.
2. E[nj(tg)n;(te)nc(te)]

E [ng (ta)ny (te)ne(te)]
= E[(Re[na(ts)] — jIm [na(ts)]) (Re [np(te)] — jIm [n,(te)]) (Re [nc(te)] + jIm [nc(te)])]
= E[Re[ng(tg)] Re [ny(te)] Re [nc(te)]] + JE [Re [1na(£g)] Re [y (te)] Im [nc(te)]]

—JE [Re [n4(tg)] Im [n(te)] Re [nc(te)]] — jE [Im [n4(tg)] Re [ (te)] Re [nc (£ )]]
+E [Re [na(tg)] Im [np (te)] Im [nc (te
—E [Im [n,(t;)] Im [1, (¢, )] Re [nc(te

I+ E [Im [ (tg)] Re [y (£)] Tm [mnc (£ )]]

)
)]] = JE [Im [ (£4)] T [y (£e) Im [ne (£e)]] . (A95)
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In a similar way to get (A94), we get

Bl o tneeo] = (307412 (G +02 )i (G 41 e (30202 ) o for Caser
E [} (ta)n} (te)ne(te)] _2< ) < o ) for Case III, Case IV, Case VI (A96)

E [nz (td)n;(te)nc(te)] = 2V3 + 2]]4 for Case II, Case V, Case VII-Case X.

Appendix J. Second Order Non-Central Moment of Non-Zero-Mean Complex Gaussian Random
Variable with Variance o

Depending on how g, b, d and ¢ are related, we define four cases:

Case I a=bandd=c¢
Case II a#bandd=e
Case III a=bandd #e
Case IV a#bandd #e

1. E[ng(ts) nj (t)]
Elng (tg)ny (te)] = E[(Re[nq (tg)] + jIm [n, (t1)]) (Re [1p (te)] — jIm [np, (te)])]
Re [ng (t1)] Re [ny (te)] — jRe [nq (tz)] Im [y (tc)]

= B im [ng ()] Re [y (te)] + Im [ng ()] Im [y ()] | 7

For Case I, E [n, (tg) nj; (t.)] is given by

Efna (ta) ny (te)] = E[na (t) ng (£4)]
= E[Re [nq (t4)] Re [nq (£4)]] + E [Im [ng (£4)] Im [14 (£4)]]
—JE [Re [nq (ta)]]E[Im [124 (£4)]] + JE [Im [n4 (ta)]} E[Re [11a (£4)]]

a2, a2,
_(2+y)+(2+y>+m ju? = o 4+ 2p2. (A98)

Similarly, it can be shown that E [n, (t4) n}; (t.)] is identically 2u? for Case II-Case IV:

E [nq (tg) nj (te)] = 2u> for Case II ~ Case IV. (A99)

Note that, in deriving (A97)-(A99), we used the fact that the real part and the imaginary part of
noise are independent and identically distributed with N ( U, ”72) .

2. E[n}(ty) n (t)]

Using the same algebraic manipulation used in evaluating E [n, (t4) 1}, (t)], it can be shown
that E [n} (t7) n}; ()] is equal to —2ju? for Case I-Case IV:

E [n} (tg) nj (te)] = —2ju? for Case I ~ Case IV. (A100)

3. Elng(tg)ny (te)]

Using the same algebraic manipulation used in evaluating E [n, (t7) nj; (t)], it can be shown
that E [n, (t3) np (t)] is equal to 2ju? for Case I-Case IV:

E [ng (tg) my (te)] = 2ju? for Case I~ Case V. (A101)
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