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Abstract: In emerging nanotechnologies, due to the manufacturing process, a significant percentage
of components may be faulty. In order to make systems based on unreliable nano-scale components
reliable, it is necessary to design fault-tolerant architectures. This paper presents a novel fault-tolerant
technique for nanocomputers, namely the XOR multiplexing technique. This hardware redundancy
technique is based on a numerous duplication of faulty components. We analyze the error distributions
of the XOR multiplexing unit and the error distributions of multiple stages of the XOR multiplexing
system, then compare them to the NAND multiplexing unit and the NAND multiplexing multiple
stages system, respectively. The simulation results show that XOR multiplexing is more reliable than
NAND multiplexing. Bifurcation theory is used to analyze the fault-tolerant ability of the system and
the results show that XOR multiplexing technique has a high fault-tolerant ability. Similarly to the
NAND multiplexing technique, this fault-tolerant technique is a potentially effective fault tolerant
technique for future nanoelectronics.
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1. Introduction

System reliability has always been an issue of widespread concern, and reliable systems have been
widely required by various applications [1–8]. If the reliability of the system is not guaranteed, it will
most likely cause serious consequences and even threaten human life. However, with silicon technology
scaling, the reliability of nano-components is generally not very good. Hence, how to build reliable
systems out of unreliable components is an inevitable problem. In order to solve this problem, scholars
have investigated several redundant fault-tolerant techniques, such as N-tuple modular redundancy
(e.g., triple modular redundancy) [9,10] and reconfiguration [11–13]. However, these techniques do
not yield high fault tolerance for nanocomputers due to the extreme high devices’ density and the
high percentage of faulty components. Since faulty components are the building blocks of the von
Neumann’s multiplexing technique, faulty components are an integral part of the system. As a result,
von Neumann’s multiplexing technique has received attention again [14]. A wealth of papers that
reported the performance analysis of multiplexing technique have been published and, among them,
the most attention was paid to NAND multiplexing [15–18] and majority multiplexing [19–21], first
proposed by von Neumann. The multiplexing technique has been studied as an effective fault-tolerant
technique for protection against the increasing transient faults in nanoelectronic circuits [22–25]. Hence,
in addition to the two multiplexing techniques, scholars paid attention to other types of multiplexing
technique, e.g., NOR-2multiplexing [26].

None of those multiplexing schemes mentioned how to realize the function of XOR or XNOR.
In fact, they are unable to achieve it. As a universal logic gate, XOR and XNOR are widely used in
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integrated circuits, therefore it is necessary to study XOR multiplexing or XNOR multiplexing. In this
paper, we present the XOR multiplexing technique for nanocomputers. This will make the research
of multiplexing technique more comprehensive. The newly designed architecture is composed of
XOR gates and NAND gates, where the XOR gates constitute the executive unit and the NAND gates
constitute the restoring organs. The executive unit performs the desired logic function and the restoring
organs perform the error correction function. First, we analyzed the error distributions in the XOR
multiplexing unit and compared it with von Neumann’s NAND multiplexing unit. Then, the error
distributions of the multiple stages system and the comparison are presented. Last, we analyzed the
system performance of the architecture, i.e., its fault-tolerant ability. The system performance of the
architecture is evaluated by studying its fault-tolerant ability, which can be defined by the gate error
threshold and the input signal error threshold, where the gate error threshold is the maximum gate
error probability in which the system can still work properly, and the input signal error threshold is the
maximum input signal error probability that the system can tolerate. The experiment’s results show
that the XOR multiplexing unit is more reliable than the NAND multiplexing unit and this technique
has a high fault-tolerant ability and a unique feature; we name this as the critical point property, which
can indicate the fault tolerant ability of the system.

The rest of paper is arranged as follows. In Section 2, we present the error distributions in the
XOR executive unit and the XOR multiple stages multiplexing system, then compare them to the
NAND executive unit and the NAND multiple stages multiplexing system. In Section 3, we discuss
the bifurcation analysis, which is followed by Section 4: the fault-tolerant ability analysis of the XOR
multiplexing system. Section 5 concludes the paper.

2. Error Distributions in the XOR Multiplexing System

2.1. An XOR Multiplexing Unit

As shown in Figure 1, the XOR multiplexing unit has the same structure as the NAND multiplexing
unit: duplicate an XOR gate N times, and replace two inputs and output of the XOR gate by a bundle
of N lines [14,22], where the XOR gate has an error probability ε.
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Figure 1. The XOR and the NAND multiplexing unit: (a) The XOR multiplexing unit; (b) The NAND 
multiplexing unit. 

The randomizing unit U is supposed to perform a random permutation of input signals; it has 
randomized interconnections, namely, each signal from the first input bundle and the second input 
bundle are randomly paired to connect to the next stage. Through this operation, inputs from the first 
bundle will be randomly paired with inputs from the second bundle to form the input pairs of the 
duplicated XOR gates [22]. Generally, there are three types of output error, von Neumann fault, 
Stuck-at-1 error and Stuck-at-0 error. However, based on the analysis results, we found that the 
(cumulative) probability distributions of these three types of error are quite similar; they only have a 
slightly different appearance. Hence, in this article, we only consider the von Neumann fault (i.e., it 
inverts its output).  

2.2. Error Distributions in the XOR Multiplexing Unit and the NAND Multiplexing Unit 

Figure 1. The XOR and the NAND multiplexing unit: (a) The XOR multiplexing unit; (b) The NAND
multiplexing unit.

The randomizing unit U is supposed to perform a random permutation of input signals; it has
randomized interconnections, namely, each signal from the first input bundle and the second input
bundle are randomly paired to connect to the next stage. Through this operation, inputs from the
first bundle will be randomly paired with inputs from the second bundle to form the input pairs
of the duplicated XOR gates [22]. Generally, there are three types of output error, von Neumann
fault, Stuck-at-1 error and Stuck-at-0 error. However, based on the analysis results, we found that the
(cumulative) probability distributions of these three types of error are quite similar; they only have
a slightly different appearance. Hence, in this article, we only consider the von Neumann fault (i.e.,
it inverts its output).
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2.2. Error Distributions in the XOR Multiplexing Unit and the NAND Multiplexing Unit

The XOR multiplexing unit is shown in Figure 1. Assume that (x, y, z) are the probabilities of two
input lines and output lines being stimulated, respectively. Assuming that the error probability ε of the
XOR gate is zero and the error probabilities in the two input lines are independent, then the probability
of the output of the XOR gate if stimulated will be z = x(1 − y) + y(1 − x) [22]. If the XOR gate is not
fault-free, namely, the gate has a probability ε(ε is not equal to zero) of making a von Neumann error,
then the probability of its output being stimulated is

z = (1− ε)[x(1− y) + y(1− x)] + ε[xy + (1− x)(1− y)] (1)

For the given numbers of stimulated inputs, the probability that an output is stimulated or
not is actually not independent, but rather relevant to others. When N is relatively large, however,
this relevance has little significant effect and can be ignored. If the N XOR gates function independently,
then there is no doubt that the entire XOR multiplexing unit will constitute a Bernoulli sequence.
Therefore, the distribution of the probability of stimulated outputs will be the binomial distribution.
Correspondingly, the probability of exactly k outputs being stimulated is

P(k) =
(

N
k

)
zk(1− z)N−k (2)

When N is rather large (N > 1000), the probability density of k can be obtained as [22]

f (k) =
1

√
2π

√
Nz(1− z)

e−1/2 ((k−Nz)/
√

Nz(1−z))
2

(3)

Therefore, when N is extremely large, the probability of the number of stimulated outputs of the
XOR multiplexing unit could approximately obey the normal distribution.

Since the XOR multiplexing unit and the NAND multiplexing unit have the same structure,
assume the XOR gates and the NAND gates have the same error probability ε, therefore, the probability
of exactly k outputs of the NAND multiplexing unit being stimulated is [22]

PN(k) =
(

N
k

)
zN

k(1− zN)
N−k (4)

where zN = (1− ε)− (1− 2ε)xy is the probability that the output of the NAND gate is being stimulated.
Similarly to the XOR multiplexing unit, the probability of the number of stimulated outputs of the
NAND multiplexing unit also could be approximated to obey the normal distribution when N is
extremely large. Next, the error distributions of the XOR multiplexing unit and the NAND multiplexing
unit for different redundancy N and εwith certain value are considered. We take N = 1000 and N = 100.
Specifying x = y = 0.8 and ε = 0.01, for von Neumann error, the probability (density) of the binomial
distribution and normal distribution against the number of faulty outputs is plotted in Figure 2. As the
probability of possible errors below an acceptable threshold level P (k ≤ n) is an important feature to
evaluate the approximation, the cumulative probability distribution P (k ≤ n) for the binomial and
normal distribution is plotted in Figure 3.

As can be seen, when N is large (N = 1000), the normal distribution is in good accordance with
the binomial distribution. However, for modest N (N = 100), the probability density of the normal
distribution fits quite well with the binomial distribution, so the discrete binomial distribution is no
longer appropriately described by the normal distribution in terms of the cumulative distribution,
due to the declined bundle size N. This simulation result is consistent with the previous conclusions.
As can be seen, with the same gate error probability and same input error level, when N = 1000, the error
rates of the XOR multiplexing unit are distributed at the scale of approximately 270–360, while the
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scale of the NAND multiplexing unit is approximately at 310–400. Namely, the NAND multiplexing
unit outputs more errors than the XOR multiplexing unit. We can obtain the same result for modest N
(N = 100). Obviously, with the same redundancy N, same gate error probability ε and same input error
level, the XOR multiplexing unit has a smaller mean value of error outputs, which means the XOR
multiplexing unit produces fewer faulty outputs than the NAND multiplexing unit. In other words,
the XOR multiplexing unit is more reliable than von Neumann’s NAND multiplexing unit.
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2.3. Error Distributions in the XOR Multiplexing System and the NAND Multiplexing System

Considering the multiple stages of error distribution of this XOR multiplexing and von Neumann’s
NAND multiplexing with different restorative stages, i.e., n = 5, 7, 9, and specifying x = y = 0.8 (given
80% of the inputs are stimulated), N = 100 and ε = 0.01. For von Neumann error, the probability
distributions against the number of fault outputs are plotted in Figure 4.

Figure 4 shows that for both XOR multiplexing and NAND multiplexing, the output error
distributions move to the lower end as the number of multiplexing stages increases. Namely,
the reliability can be improved by using more restorative units. When XOR multiplexing consists
of seven stages, the probability that less than 10% of the output is faulty is approximately 0.9473,
while 0.7739 for seven stages NAND multiplexing. Since N = 100, the probability that less than
10% of the output is faulty refers to the probability that the number of faulty outputs below 10 is a
cumulative probability, which is the sum of the probability of the number of faulty outputs from 0 to 9.
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When the stages increase to nine stages, the probability that less than 10% of the output is faulty is
approximately 0.9971 for XOR multiplexing and 0.9927 for NAND multiplexing. Based on the above
analysis, Figure 4 demonstrates the conclusion that the XOR multiplexing unit is more reliable than the
NAND multiplexing unit.
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3. Bifurcation Analysis of the XOR Multiplexing System

Multiplexed systems contain two types of organs. The first type is the executive organ, which
performs the desired basic operations on the bundles. The second type of organ is the restoring
organ, which uses the redundant information available from the input bundle to provide more reliable
information on the output bundle. Any logic gates, like the NAND gate, NOR gate, AND gates and
OR gates, effectively alternate critical inputs (which produce critical errors) and subcritical inputs
(which produce subcritical errors), thereby performing error correction. Among them, the NAND gate
restoring organ is the first two-layer restoring organ with effective error correction ability. As shown in
Figure 5, the XOR multiplexing system is composed of the XOR executive unit and NAND restoring
organs. In order to make the system stable, multiple restoring organs would be necessary. Note that
the odd stage number is necessary to keep the XOR function.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 12 
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In order to derive the error threshold value for two-input XOR gates and two-input NAND gates,
the circuit schematic shown in Figure 6 is involved. As can be seen, the circuit schematic is a binary tree
of cascaded two-input unreliable XOR gates and NAND gates [14,23]. Assume that the XOR gates and
NAND gates have the same error probability ε of making a von Neumann error, and their input lines
and output lines function reliably. Let us denote the probabilities of the two inputs of the XOR gate
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being stimulated by X and Y. Since there are no feedback loops and fan-out in the circuit, the two inputs
can be treated as independent. Then, the probability of the output of XOR gate being stimulated is

Z1 = (1− ε)[X(1−Y) + Y(1−X)] + ε[XY + (1−X)(1−Y)] (5)
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In the following analysis, we shall first assume that this circuit is a discrete time system. Then,
further assume that all inputs to the XOR gates are independent and have the same probabilities, X
and Y, of being stimulated. This structure not only guarantees that the inputs to all NAND gates at
an arbitrary stage n are also independent but also guarantees that they have equal probabilities of
being stimulated, which we denote to them by Zn [14]. Thus, for the second stage, the first stage of the
NAND gates, the probability of the output being stimulated is

Z2 = εZ1
2 + (1− ε)

(
1−Z1

2
)
= (1− ε) + (2ε− 1)Z1

2 (6)

For such a construction, Equation (6) reduces to a simple nonlinear map

Zn+1 = (1− ε) + (2ε− 1)Zn
2 (7)

In order to discover the dynamic behavior of the map, bifurcation analysis is used to analyze
Equation (7) [23]. For any fixed 0 ≤ ε ≤ 1/2, we choose an arbitrary initial condition X, Y and then
iterate Equation (7) until, after a sufficient number of iterates. it converges to an attractor. Those
attractors are then plotted against each ε [14,23]. This leads to a nonlinear map called a bifurcation
diagram and the diagram is shown in Figure 7 (∆ε = 0.001). This nonlinear map contains two kinds
of attractors, fixed-point solution and periodic motion. The period-doubling bifurcation occurs at
bifurcation point ε∗. When ε∗ ≤ ε ≤ 1/2, the system has a stable fixed-point solution; by solving the
equation z0 = (1− ε) + (2ε− 1)z0

2, we get

z0 =
1−

√
1− 4(2ε− 1)(1− ε)

2(2ε− 1)
(8)

By stable, it means that for any arbitrary initial inputs condition X and Y, the output Zn will
converge to z0 when n is large. In other words, in this region, the system no longer functions as
XOR. When 0 ≤ ε < ε∗, the system exhibits periodic motion with period 2, namely z0, loses stability.
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We denote those two points by Z+ and Z−. At nth stage, when Z+ is input, then Z− would be output
and vice versa [14,23]. That means

Z+ = 1− ε+ (2ε− 1)Z−2 (9)

Z− = 1− ε+ (2ε− 1)Z+
2 (10)

From Equations (9) and (10), one obtains

Z± =
1±

√
4(1− ε)(1− 2ε) − 3

2(1− 2ε)
(11)

Clearly, when ε = ε∗, we have Z+ = Z− and it can be derived that the bifurcation point
ε∗ =

(
3−
√

7
)
/4 = 0.08856 · · · . Now, it is easy to see that the error probability interval where the

system functions is 0 ≤ ε < ε∗. When ε > ε∗, the outputs converge to the stable fixed point z0

regardless of what the initial inputs are. Hence, the gate error threshold is the bifurcation point
ε∗ =

(
3−
√

7
)
/4 = 0.08856 · · · .

Using fixed error probability ε from 0 to 0.1, and plotting the 3-D diagrams of X, Y and Z for the
XOR multiplexing system, leads to Figure 8. From Figure 8, we can clearly observe the transformation
of output from two distinct states to a fixed point when we fixed error probability ε from 0 to 0.1, with
ε∗ as the bifurcation point.
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4. Fault-Tolerant Ability Analysis

In the last section, we analyzed the tolerant ability of the gate error probability (gate error
threshold). Now let us analyze the tolerant ability of input signal error (input signal error threshold).
In order to map each output probability to a logic state, we need a threshold z∗. According to Figure 7,
it is notdifficult to find out that z0(ε∗) is a good choice for z∗. It is simple and effective. Substituting ε∗
into Equation (8), then we have

z0(ε∗) =
1−

√
1− 4(2ε∗ − 1)(1− ε∗)

2(2ε∗ − 1)
= 0.6076 (12)

Below, we shall interpret [0, z∗) as non-stimulated state and (z∗, 1] as a stimulated state. When we
have fixed the input Y = 1 and Y = 0, then we can get 3-D diagrams, as shown in Figure 9. Clearly,
the XOR multiplexing system has a higher fault-tolerant ability when inputs are both stimulated or
both non-stimulated. Seen in Figure 9, the effectiveness of this threshold is obvious.
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Note that for each different fixed Y, there is a different value of X (here we name it as critical
point and denote it by x0) that divides the output into two states when 0 ≤ ε < ε∗. Take Y = 0
as an example, in the interval 0 ≤ ε < ε∗, when X < x0, the output would be non-stimulated, and
when X > x0, the output would be stimulated. The calculation of the critical point can help us more
intuitively understand the fault tolerant ability of the system. Since when n is large enough and
0 ≤ ε < ε∗, the output only depends on the input condition: input X and Y have the same logic state
(both stimulated or both non-stimulated) or have a different logic state (one of the inputs is stimulated
and the other one is non-stimulated). Let us denote the probability that two inputs X and Y have a
different logic state by P1, and denote the probability that two inputs X and Y have the same logic state
by P2. Therefore, the ratio of P1 and P2 will be a key parameter to determining if the final output Zn is
larger than z∗ or not. X and Y are the probabilities of inputs being stimulated, and then 1−X and 1−Y
are the probabilities of inputs being non-stimulated. P1 and P2 are shown as follows

P1 = X(1−Y) + Y(1−X) (13)

P2 = XY + (1−Y)(1−X) (14)

If we need the output to be stimulated, then P1/P2 must be larger than a specific value that is
greater than one. Since the output logic state is associated with the output threshold z∗, the specific
value will be a function of z∗ and the mathematic relation between them is shown below.

P1

P2
=

X(1−Y) + Y(1−X)

XY + (1−X)(1−Y)
>

z∗
1− z∗

(15)
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Clearly, P1 + P2 = 1, hence Equation (15) is equivalent to

P1 = X(1−Y) + Y(1−X) > z∗ (16)

If P1 > z∗, the final output would be larger than threshold (stimulated). When the inequality
becomes

P1 = X(1−Y) + Y(1−X) < z∗ (17)

The final output would be smaller than threshold (non-stimulated). Hence, it is easy to obtain the
critical point x0 for each fixed Y by solving the following equality

x0(1−Y) + Y(1− x0) = z∗

Critical point x0 is a function of Y; these critical points are then plotted against each Y (∆Y =

0.01). This leads to Figure 10, which shows that the diagram has two regions and for each different
Y critical point x0 has a different value and there is a parameter interval that makes the system no
longer function, even though the system is fault-free, and the parameter interval is approximately
0.3924 < Y < 0.6076. If the value of one of the inputs is in this interval, then the output will always be
non-stimulated for XOR multiplexing.
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In order to demonstrate the tolerant ability of the input signal error probability of the system
more intuitively, we extracted several fixed Y and the corresponding x0 from Figure 10. These lead to
Table 1. Let us take Y = 0.7 as an example; when input Y has a probability of 70% of being stimulated
(means 30% error probability), any stimulated probability smaller than 23.1% of the other input X can
be accepted. That is to say, the system can tolerate error probabilities of 30% and 23.1% for the inputs Y
and X. Other situations are similar, so we omit them here. It also can be obtained that the maximum
input signal error probability that the system can tolerant is 0.3924 (39.24%); namely, the input signal
error threshold is 0.3924.

Table 1. Critical points for several fixed Y.

Fixed Y Critical Points

Y = 0 0.60760
Y = 0.1 0.63450
Y = 0.2 0.67933
Y = 0.3 0.76900
Y = 0.7 0.23100
Y = 0.8 0.32067
Y = 0.9 0.36550
Y = 1 0.39240
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5. Conclusions

In order to make systems based on unreliable nanoelectronics reliable, it is necessary to design
fault-tolerant architectures. This paper can be seen as a part of the endeavor devoted to this work.
In this paper, we have studied a new fault-tolerant architecture for nanocomputers: XOR multiplexing.
This fault-tolerant technique, based on a massive duplication of imperfect devices and randomized
interconnections, was comprehensively studied. We have analyzed the error distributions of the XOR
multiplexing unit and multiple stages of the XOR multiplexing system, then compared them with the
NAND multiplexing technique. Analysis results have shown that the XOR multiplexing system has
more stages to improve the fault tolerance. Comparison results have shown that the XOR multiplexing
unit is more reliable, since it produces fewer faulty outputs than the NAND multiplexing unit. The fault
tolerance ability analysis results have shown that the system has a high gate error tolerant ability
and is expected to work at an acceptable reliability level when inputs have different logic states, and
expected to work at a much higher reliability level when inputs have the same logic state. Although
the conceived fault-tolerant architecture requires a rather large number of redundant components,
which makes it inefficient for protection against permanent faults, it might be a system solution for the
ultra large integration of highly unreliable nanometer-scale devices affected by dominant transient
errors. Hence, this architecture is potentially effective in protection against transient faults for systems
based on unreliable nanometer-scale devices. In the future, we hope to be dedicated to improving this
technique so that it has a better fault-tolerant performance and a lower system redundancy.
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