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Abstract: The rate of software development has increased dramatically. Conventional compilers
cannot assess and detect all source code errors. Software may thus contain errors, negatively affecting
end-users. It is also difficult to assess and detect source code logic errors using traditional compilers,
resulting in software that contains errors. A method that utilizes artificial intelligence for assessing and
detecting errors and classifying source code as correct (error-free) or incorrect is thus required. Here,
we propose a sequential language model that uses an attention-mechanism-based long short-term
memory (LSTM) neural network to assess and classify source code based on the estimated error
probability. The attentive mechanism enhances the accuracy of the proposed language model for
error assessment and classification. We trained the proposed model using correct source code and
then evaluated its performance. The experimental results show that the proposed model has logic
and syntax error detection accuracies of 92.2% and 94.8%, respectively, outperforming state-of-the-art
models. We also applied the proposed model to the classification of source code with logic and syntax
errors. The average precision, recall, and F-measure values for such classification are much better
than those of benchmark models. To strengthen the proposed model, we combined the attention
mechanism with LSTM to enhance the results of error assessment and detection as well as source code
classification. Finally, our proposed model can be effective in programming education and software
engineering by improving code writing, debugging, error-correction, and reasoning.

Keywords: language modeling; classification; error probability; error assessment; logic error; neural
network; LSTM; attention mechanism; programming education

1. Introduction

A huge amount of software is written in educational institutions and industry, making software
reliability increasingly important. Source code usually contains multiple types of error, including
syntax, semantic, communication, calculation, and logic errors. A single error is often enough to cause
software failure. It is sometimes difficult for student or professional programmers to identify logic
errors in source code, even with the help of traditional compilers. Helping programmers, especially
novice programmers, properly assess and classify source code errors has become an important research
topic in software engineering and programming education [1,2]. In general, software is debugged
before it is released. Each software package must pass several testing phases. A crucial testing phase is
error debugging. Student and professional programmers spend a huge amount of time trying to find
source code errors. The entire source code must be searched to find even a single error, which is a
tedious, cumbersome, and time-consuming task. Student and professional programmers often make
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some common errors, such as missing semicolons, delimiters, or braces, and logic errors. These errors
may be caused by a lack of experience or attention to detail. Both novice and experienced programmers
make such errors, as reported in a study of programmers who build errors (Google) [3].

Machine learning (ML)-based classifiers can predict source code errors after being trained on a
correct source code corpus [4–6]. Source code classifiers can assist programmers in fixing potential
errors, thereby increasing source code correctness and reliability. Traditional source code error
prediction methods consist of two steps, namely the extraction of features from training datasets and
the development of an ML model (supervised or unsupervised) for classification. Previous research
has concentrated on the design of preferential metrics to obtain higher accuracy. Features can be
divided into Halstead [7] features depending on operators and operands, McCabe [8] features, and
CK [9] features extracted from object-oriented programs. Most supervised and unsupervised classifiers
are unable to properly classify source code using extracted features, inside the features logic, syntax,
and semantic errors may exist. Feature-based traditional classifiers consider only the current features
instead of checking all source code sequences.

Due to the sensitivity of source code, error assessment, detection, and classification is a challenging
task. Traditional compilers cannot accurately assess source code errors. Therefore, a method based on
artificial intelligence (AI) is required to assist programmers in the assessment and detection of such
errors. Artificial neural networks (ANNs) are attractive for this task.

Natural language processing (NLP) has recently produced a lot of remarkable results in applications
such as language processing, speech recognition, and machine translation. An n-gram model is an
example of a stochastic language model for predicting the next item or word based on a large text
corpus. N-gram models such as bi-gram, tri-gram, skip-gram [10], and GloVe [11] are statistical
language models that can be applied to language modeling. The availability of large text corpuses has
made NLP techniques effective. A language model is useful and intuitive for short repeated source
code sequences. However, for complex software engineering, the NLP language model is less useful.
Many researchers have focused on source code error assessment and classification using language
modeling. An ANN-based language model could be a replacement for error assessment and detection
as well as source code classification. Recurrent neural network (RNN)-based models have recently
achieved some success in language modeling. An RNN can hold a larger source code sequence context
compared with that for traditional n-gram and other language models [12]. RNNs have limitations
in terms of representing such large contexts due to gradient vanishing or exploding [13], making it
difficult to train RNN-based models using long source code sequences. RNNs are thus effective for
only short source code sequences. RNNs have been extended to long short-term memory (LSTM)
networks to avoid gradient vanishing or exploding. LSTM can remember both short and long source
code sequences using an internal gate structure.

In this paper, we present a language model for assessing and detecting various source code errors
(logic, syntax, semantic, runtime, etc.) as well as classifying the source code as correct (error-free) or
incorrect based on the estimated error probability. We developed the language model using LSTM
combined with the attention mechanism (hereafter referred to as LSTM-AttM). LSTM-AttM is more
powerful and effective than a basic RNN, standard LSTM, and other traditional baseline models.
We trained RNN, LSTM, and LSTM-AttM models with various numbers of hidden layers (50, 100,
200, 300, and 400) using a large correct source code corpus collected from an online judge system.
For the evaluation process, source code with and without errors were used as the input to the model.
The model then assessed and detected syntax and logic errors with locations in code and classified the
source code as either correct or incorrect based on the estimated error probability. The LSTM-AttM
model can detect many common errors in source code, including logic errors. The LSTM-AttM network
can use long source code sequences as the input to generate the optimal output. The proposed model
was tuned with various numbers of hyperparameters and hidden layers to optimize it in terms of
perplexity, accuracy, training time, and other performance measurement metrics. The output of the
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proposed model will be helpful for student and professional programmers as well as programming
education and software engineering. The contributions of our research are as follows:

• Our proposed model can provide a thorough evaluation of source code which includes error
detection, correct word prediction with line numbers, as well as classification. Thus, for learning
programming, the model can act as an intelligent compiler.

• The logic and syntax error detection accuracies are 92.2% and 94.8%, respectively, which are much
better than those for state-of-the-art models.

• The proposed model can classify source code as being either correct or incorrect based on the
estimated error probability. The average precision, recall, and F-measure values for source
code classification based on syntax and logic errors are much higher than those of reference
benchmark models.

• We combined the attention mechanism with the proposed neural network model to strengthen
the language model. Generally, in source codes, a single line can have a long dependency on the
previous line, in which case the attention mechanism uses all the hidden states of the past to make
accurate predictions.

• The proposed model can help novice and experienced programmers quickly fix their source code,
thus saving valuable time.

The rest of this paper is organized as follows. Section 2 presents the background and literature
review. Section 3 describes LSTM neural networks. Section 4 presents the proposed approach. Section 5
presents the data collection and normalization processes. Section 6 presents the experimental results
and evaluations. Section 7 discusses the results. Finally, Section 8 concludes this research and provides
suggestions for future work.

2. Background and Literature Review

In the source code, a single line may have reliance on the preceding lines, making it difficult to
evaluate complex source code by any conventional language model. The LSTM based language model
is a promising method for source code error assessment and classification.

Information and communication technology has become an influential economic catalyst. A huge
amount of source code is written and compiled globally. AI can be applied to assess source code
errors. AI-based language models are often used for source code assessment and classification to
obtain human-like responses. Many researchers have used AI-based models to detect source code
errors in software engineering and programming education.

Pu et al. [10] proposed a source code correction method based on LSTM using code segment
similarities. The study leveraged the sequence-to-sequence (seq2seq) neural network model with
natural language processing tasks for the code correction process. Another study [12] proposed a
deep software language model based on RNNs. The experimental results showed that the model
outperforms traditional language models such as n-gram and cache-based n-gram in a Java corpus.
The software language model shows great promise in the field of software engineering. Terada et al. [14]
proposed an LSTM-based model for programming education where the model predicts the next word
by analyzing incomplete source code. Novice programmers often struggle to write a complete program
from scratch. To help them, the model predicts the next word to complete a program. The LSTM-based
model achieved a high degree of prediction accuracy. Fault detection in source code has become
an important research topic [1]. In one study [15], source code defect prediction was performed
based on churn metrics combined with source code dependencies. In another [16], an extensive
analysis of metrics and static code attributes was conducted for error prediction. Arar et al. [17]
selected suitable features by employing a naive Bayes classifier. Jing et al. [18] introduced a vocabulary
learning model that calculates the incorrect classification cost for the prediction of source code defects.
Various ML approaches [19–21] have been proposed for classification, recommendation, and estimation
problems. Alreshedy et al. [22] presented an ML-based language model for classifying source code
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snippets based on the programming language. In their work, a multinomial naive Bayes classifier was
applied and code snippets from the website Stack Overflow were used as experimental data. Ram
and Nagappan [23] proposed a hierarchical model that uses convolutional neural networks (CNNs)
and LSTM for sentiment analysis in software engineering. This analysis model outperforms reference
state-of-the-art models. Reyes et al. [24] classified archived source code by type of programming
language using an LSTM network. Empirical results showed that the LSTM network outperformed
the naive Bayes classifier and linguist classifier.

Terada and Watanobe [25] presented a method for the automatic generation of fill-in-the-blank
problems for novice programmers using k-means clustering and the bidirectional LSTM model.
The k-means clustering method is used to select ideal source code from an online judge system
and the code to be made blank (to be filled with appropriate words using the bidirectional LSTM
model). Tai et al. [26] presented a model called Tree-LSTM where an LSTM network works like a
tree. The model evaluates the tasks of prediction of semantic relatedness based on sentence pairs and
sentiment classification. Pedroni and Meyer [27] presented a survey-based analysis that focused on
what type of compiler message helps novice programmers identify errors and what actions should be
taken regarding source code errors. They experimentally showed which type of message helps most.
Saito and Watanobe [28] proposed a learning path recommendation system for novice students based
on their desired learning ability chart. The students were clustered and an excellent student from each
cluster was selected. The model extracted features from the selected excellent students. Finally, the
model used the features as training input to the neural network. An LSTM network was used to predict
the learning path of the students. In another study [29], a source code bug detection technique that uses
LSTM was proposed. The hyperparameters of LSTM were adjusted to determine the optimal perplexity
and training time. The LSTM network produces a plausible outcome for source code bug detection.
Fan et al. [30] presented an attention-based RNN for source code defect prediction. F-measure score
and the area under the curve (AUC) were used as model evaluation metrics. The proposed model
improved the source code classification process. The F-measure score and AUC had 14% and 7% better
accuracy than those of state-of-the-art models, respectively. Ohashi et al. [31] proposed a source code
classification model that uses a CNN. The model classifies source code based on the type of algorithm
in the code. During CNN model training, all source code is converted into a simple structure of code
without any variables, functions, keywords, etc. The obtained classification accuracy of the CNN
model is very high.

In summary, many promising methods have proposed. Most researchers utilized traditional
supervised and unsupervised classifiers, RNNs, LSTM, or CNNs as language models for source code
classification and other applications. RNNs are much better than traditional language models such as
n-gram, but have limitations in terms of handling long input sequences. LSTM is a variant of RNNs
that overcomes the shortcomings of RNNs. The model proposed in the present study combines the
attention mechanism with LSTM (LSTM-AttM). The LSTM-AttM network is used as a language model
for source code assessment and classification based on the estimated error probability. The LSTM-AttM
network outperforms LSTM because the latter uses only the last hidden state outcome for prediction.
In contrast, LSTM-AttM considers all previous hidden state outcomes for prediction. Most of the
studies used different models for source code classification based on errors, programming language
detection, archive code classification, and simple error detection. On the other hand, our proposed
model specifically identifies logic, syntax and other errors in the source code. Furthermore, the model
can predict the correct words in place of the error location. Overall our proposed LSTM-ATM model
differs from other models in achieving unique goals.

3. Long Short-Term Memory Network

An LSTM network is a type of RNN. The LSTM network has been effectively used in the field of
deep learning. The main advantage of an LSTM network is ease of training because it does not face
problems such as gradient vanishing or exploding. LSTM can process entire input (source code, video,
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speech, image) sequences. An LSTM network memory unit consists of four attributes, namely a forget
gate, a cell state, an input gate, and an output gate. The cell state remembers the information of the
entire sequence and the three gates control the input and output of the cell, as shown in Figure 1.Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 21 
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Figure 1. Internal structure of a simple long short-term memory (LSTM) unit.

At the start of the process, the forget gate checks which information to throw away and which
information to keep in the cell state. Equation (1) is used for the forget gate. It is calculated at cell state
ct-1 using hidden state ht-1 and input xt. The output of the forget gate, between 0 and 1, is produced
by the sigmoid function. An output value of 1 (0) means keep (remove) all information in (from) the
cell state.

ft = σ
(
W f [ht−1, xt] + b f

)
(1)

To store a new piece of information in the cell state, the input gate decides which value will
be updated using the sigmoid function. The tanh function creates a new candidate value c̃t for the
cell state.

it = σ(wi . [ht−1, xt] + bi) (2)

c̃t = tanh(wc . [ht−1, xt] + bc) (3)

Then, the old cell state ct-1 is used to update ct.

ct = ft ∗ ct−1 + it ∗ c̃t (4)

We can now calculate the output of LSTM, which is based on a filtered version of the cell state.
The sigmoid function decides which part of the cell state is going to the output and then updates the
weight accordingly.

ot = σ(wo . [ht−1, xt] + bo) (5)

ht = ot ∗ tan h(ct) (6)

The combination of the attention mechanism with LSTM improves model performance for fault
assessment and detection and the classification of source code.

4. Proposed Approach

In the proposed model, an LSTM-AttM network is used as a seq2seq language model for error
assessment and detection as well as source code classification. We trained the proposed model using
correct source code. The model then generated the error probability through the softmax layer for
each error candidate word based on the context vector ct of all previous hidden states and the current
state output ht. The estimated error probability is also used to classify the source code as either correct
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(error-free) or incorrect. The proposed LSTM-AttM model can identify many kinds of error (logic,
syntax, semantic, etc.) in source code to increase source code reliability. The workflow of the proposed
model is shown in Figure 2.
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Proposed LSTM-AttM Model Architecture

The attention mechanism has been adapted for performing various tasks [32–35]. It is most
commonly used in seq2seq modeling. A neural network that utilizes the attention mechanism is
called an attentive neural network. The conventional seq2seq model cannot properly process a long
sequence of input because only the last hidden state of the input is used as a context vector for
output [36]. The attention mechanism maps the most relevant words from the input sequence and
then assigns a higher weight to these words to enhance the output accuracy. We incorporated the
attention mechanism with LSTM, as shown in Figure 3, to better predict short and long sequences of
source code. The proposed LSTM-AttM model creates a potential application domain in programming
education arena.
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Attention is a vector or dense output layer with a softmax function. It is used to enhance the
performance of machine translators and seq2seq models. Recently, the attention mechanism has
achieved great success in machine translation tasks. A machine translator sometimes compresses long
sequenced sentences into a fixed-length vector. Therefore, information may be lost. The attention
mechanism mitigates this problem. Although LSTM has outstanding performance in terms of capturing
long-range dependencies, a hidden state carries all the information into a fixed-length vector [36].
The attention mechanism has been applied to neural language models such as LSTM to overcome this
problem [37]. The attention mechanism allows a neural language model to retrieve and make use of
pertinent information in all previous hidden states, improving network retention. The mathematical
details of the attention mechanism are described in previous work [38]. For attention, we use external
memory M for previous hidden states, which is denoted as Mt = [ht−M . . . . . . . . . . . . ht−1] εRk∗M. At time
step t, the context vector ct and attention weight αt. Now, the model uses the attention layer between ht

and the hidden states in Mt. We defined our attention-based LSTM model by the following equations.

At = Mt.ht (7)

αt = so f tmax(At) (8)

ct = Mtα
T
t (9)

For predicting the next word at time step t, the calculation is based on current hidden states ht

and context vector ct. The vocabulary spaces are obtained using the softmax function to produce the
final probability ytε Rv. Gt is an output vector.

Gt = tan h
(
wg

[
wh(ht) + wm(ct)

])
(10)

yt = so f tmax(wvGt + bv) (11)

where wgε Rk∗2k and wvε Rv∗k are trainable projection matrices, bvε Rv is a trainable bias vector, and v
is the vocabulary size.

The attention mechanism facilitates the extraction of more accurate features from input sequences,
and thus the LSTM-AttM network increases the performance of the proposed model.

5. Data Collection and Normalization

In the present research, we collected all the datasets from the Aizu Online Judge (AOJ)
system [39,40]. The AOJ system has more than 2000 problems and 65,000 users as of February
2020. The problems and algorithms are divided into categories [28]. The AOJ system has more
than 4 million source code samples for various problems. A total of 18 programming languages,
including C++, C, Ruby, and Python, are supported by the AOJ system. The system keeps all statistical
information on programming and the submission logs of individual users. These resources can be used
to conduct research in programming education and software engineering. To train the proposed model,
we took correct solutions for Insertion Sort (IS), Greatest Common Divisor (GCD), Prime Numbers
(PN), Bubble Sort (BS), and Selection Sort (SS) problems from the AOJ system. All the source code was
written in the C language. The selected source code was archived on the AOJ system from August
2018 to September 2019. The total numbers of correct source code submissions for IS, GCD, PN, BS,
and SS are 2285, 1821, 1538, 2425, and 2294, respectively. The overall solution success rates for IS, GCD,
PN, BS, and SS are 35.16%, 49.86%, 30.8%, 47.74%, and 59.79%, respectively. A total of 10,362 correct
and incorrect source codes were used for model training where the number of correct and incorrect
codes was equal. Of the total source codes, we used 90% of the code for model training and 10% for
testing. To evaluate the error in the source code, we randomly selected 100 new source codes from
each category. A total of 500 source codes were examined by the model for logical, syntax, and others
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error evaluation. For classification, we selected approximately 1300 erroneous source codes from all
categories to evaluate the effectiveness of the classification.

Before model training, we refined all source code by removing unnecessary elements. We adopted
the source code conversion procedure applied in a previous study [29]. Initially, we removed all
comments, line breaks (\n), and tabs (\t) from the source code because they are not relevant for error
assessment and classification. The source code was converted to word sequences and then functions,
keywords, variables, and characters were considered as normal words. Each word was encoded
with an ID. The IDs for functions, variables, keywords, and characters are shown in Table 1. Any
user-defined functions and variables in the source code not defined in Table 1 were assigned unique
IDs from a defined range in the encoding process. The entire process, called word embedding and
encoding, is shown in Figure 4.

Table 1. Partial list of defined IDs for keywords, characters, and numbers.

ID Word ID Word ID Word ID Word

30 auto 46 int 62 78 .
31 break 47 long 63 ! 79 /
32 case 48 register 64 ? 80 0
33 char 49 return 65 _ 81 1
34 const 50 short 66 “ 82 2
35 continue 51 signed 67 # 83 3
36 default 52 sizeof 68 $ 84 4
37 do 53 static 69 % 85 5
38 double 54 struct 70 & 86 6
39 else 55 switch 71 ‘ 87 7
40 enum 56 typedef 72 ( 88 8
41 exturn 57 union 73 ) 89 9
42 float 58 unsigned 74 * 90 ;
43 for 59 void 75 + 91 :
44 goto 60 volatile 76 , 92 <
45 if 61 while 77 ~ 93 >
94 = 110 O 126 ‘ 142 p
95 @ 111 P 127 a 143 q
96 A 112 Q 128 b 144 r
97 B 113 R 129 c 145 s
98 C 114 S 130 d 146 t
99 D 115 T 131 e 147 u

100 E 116 U 132 f 148 v
101 F 117 V 133 g 149 w
102 G 118 W 134 h 150 x
103 H 119 X 135 i 151 y
104 I 120 Y 136 j 152 z
105 J 121 Z 137 k 153 {
106 K 122 [ 138 l 154 |
107 L 123 \ 139 m 155 }
108 M 124 ] 140 n
109 N 125 ˆ 141 o

After the training process, the performance of the model was evaluated in terms of source code
assessment and classification accuracy. To predict the next ID sequence, the model uses the prefix of all
ID sequences using the attention mechanism. The ID sequences are transformed in several phases
followed by a softmax layer to generate the probability for the next ID sequence or candidate word.
In the proposed model, a word is considered as an error candidate whose probability is less than
0.1 [29]. The difference between the predicted and actual results is called perplexity. The perplexity is
calculated at the softmax layer at each time step to observe the loss function.
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104 I 120 Y 136 j 152 z 

Figure 4. Word embedding and encoding process for source code.

The softmax layer receives the vector x = [x1, x2, . . . . . . . . . ., xn] and returns the probability vector
p = [ p1, p2, p3, . . . . . . .., pn], expressed as follows:

Pi =
exp(xi)∑k

j=1 exp
(
x j

) (12)

where i = 1, 2, 3, 4, . . . . . . ., k.
Perplexity, expressed below, is a standard performance measurement. It indicates how well a

probability model predicts a sample. A lower value indicates a better model.

Hp ≈ −
1
N

m∑
i

log2p (Wi|Wi−1
i−n+1) (13)

where |N| is the length of the sample, wi is an ID in a sample, and P(wi) is the probability of wi.

6. Experimental Results and Evaluations

We developed a general model that can be trained on any type of problem set. In the present
research, we selected the source code for IS, PN, GCD, BS, and SS for the experiments. We trained
an RNN, LSTM, and the LSTM-AttM network with various numbers of hidden layers (50, 100, 150,
and 200). We recorded the epoch-wise perplexity and training times during the training period.
The perplexity determines the efficacy of a language model. The evaluation and training processes
were performed on a computer with an Intel Core i7-5600U CPU (2.60 GHz) with 8 GB of RAM running
64-bit Windows 10.

6.1. Experimental Setup

In our study, we use Python’s chainer framework to create deep learning model architecture. Also,
we considered the large number, length, and complexity of the source code to develop our proposed
model. Before the start of training, we defined several hyperparameters for the experiment to obtain
better results. First, we determine the number of hidden layers and epochs. Then the number of
neurons was determined based on the number of hidden layers. Thus, the neurons were equal to the
defined number of hidden layers. For example, If hidden layers hl = 100, 200, 300, 400, and so on. Thus,
the neurons at each hidden layer will be equal to the number of hidden layers, such as n_units = h1
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where n_units = neurons at each layer and hl = number of hidden layers. Dropout was used to regularize
the LSTM network performance to avoid overfitting. To obtain better training accuracy dropout ratio
was set to 0.5 [41]. We optimized the LSTM network using the Adam optimization algorithm [42].
Particularly, optimizer smoothing the model learning by binding together loss function and model
parameters in order to produce better training accuracy. The learning rate or step size of our network
was l = 0.001. The network weights were updated based on the value of l during training. A higher
(lower) value of l makes initial learning faster (slower). The values of β1 and β2, the exponential decay
rates for the first- and second-moment estimates, were set to 0.001 and 0.999, respectively. It is often
effective to reduce the learning rate when training is running. Without exponential decay, the loss
function cannot start again to diverge after decreased a certain point. The value of ε (= 1e−8) was used
to prevent division by zero in the implementation. We trained our network with various numbers of
hidden layers (50, 100, 150, 200, 250, 300, and 400). The corresponding models are called the 50-layer
model, 100-layer model, and so on. We evaluated the performance of all models to determine the
optimal number of hidden layers.

6.2. Perplexity, Training, and Hidden Layer Selection

The performance of a language model strongly depends on training time and perplexity. Perplexity
also determines how good a model training process as well as calculates the model loss function.
During training with various numbers of hidden layers, we calculated the epoch-wise perplexity to
determine the optimal number of hidden layers. Correct source code samples were selected from the
AOJ system for training. The perplexity at the last epoch (30th) of training for each type of program is
shown in Figure 5.
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The figure shows that the 200-layer model had the lowest perplexity during the training period.
The epoch-wise perplexity for the 200-layer model for various problem sets is shown in Figure 6.
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various problems.

Based on these results, we selected 200 hidden layers for LSTM-AttM and the other state-of-the-art
models for all subsequent experiments. The training accuracies for the RNN, LSTM, and LSTM-AttM
models are listed in Table 2.

Table 2. Average training accuracy of models for various problem sets.

Problem
Training Accuracy (%)

Correct Source Codes Incorrect Source Codes

RNN LSTM LSTM-AttM RNN LSTM LSTM-AttM

Insertion Sort 70 81 94 68.3 82.4 93.6
Greatest Common Divisor 68 80 92 71.5 81 92.3
Prime Numbers 75 83 90 73.5 84.5 90
Bubble Sort 72 79 89 73.2 81.7 90
Selection Sort 65 78 87 66 80 89.6

After model training, we evaluated the performance of the proposed model in terms of the
detection of syntax, logic, and other errors as well as source code classification (correct or incorrect).
We selected source code with errors for model validation and testing. Our goal was to evaluate the
performance of the proposed model in terms of how accurately it assesses and detects errors in source
code. To evaluate model performance, we adopted three evaluation indices, namely error detection
accuracy (EDA), error prediction accuracy (EPA), and model accuracy (MA), respectively defined below.

EDA =
Actual Error Word (AEW)

Total Detected Errors (TDE)
× 100% (14)

EPA =
Actual Correct Word (ACW)

Total Predicted Words (TPW)
× 100% (15)

MA =
EDA + EPA

2
(16)

The proposed model detects errors in source code by utilizing the trained correct source code
corpus. Of the detected errors, there are some true errors, which are called actual error words (AEWs).
Of the predicted words, there are some true correct words, which are called actual correct words
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(ACWs). It is noted that the estimated probabilities of AEW and ACW should be more than 0.90.
We used the above-mentioned evaluation indices to measure the performance of the models in terms
of syntax and logic error assessment and detection.

6.3. Syntax Error Assessment and Detection

A syntax error is an error where the program violates a structural rule of a certain programming
language. To compile, source code must follow the structural rules of a programming language, if it
does not, the compiler will output syntax errors. Common examples of syntax error include misspelled
keywords, missing single or double quotes, missing matching brackets, and a missing semicolon at
the end of a statement. To assess and detect syntax errors in source code, the proposed LSTM-AttM
language model calculates the error probability of each error candidate word. The error probability
determines the possibility of syntax errors in source code. The proposed model assesses the source
code thoroughly and detects syntax error candidates, as shown in Figure 7.
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Figure 7. Syntax error assessment and detection for source code evaluated using LSTM-AttM.

In the figure, the proposed LSTM-AttM model assesses the source code and estimates the error
probability for each error candidate word. The corresponding location (line number) of each detected
word is listed in Table 3. The error probability determines the syntax error possibility for a particular
candidate word and location in the source code. Although the model detected all the potential locations
of syntax error, the detected error candidates might not have all been accurately identified. Words with
an error probability of more than 0.98 are outlined in blue in Figure 7. We considered these errors to be
confirmed syntax errors.

Table 3. Estimated error probability for source code in Figure 7.

Line Number Error Candidate
(Probability < 0.1) Suggested Word Estimated Error Probability

8 n & 0.9999918
13 1 0 0.60096426
17 n key 0.7747942
19 i n 0.4699676
20 ( & 0.98158526
22 0 1 0.9885606

To compare our model with baseline models, in addition to the above-mentioned example
(Figure 7) a large number of erroneous source code samples were used for the evaluation process.
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The obtained results are listed in Table 4. The syntax error assessment and detection accuracy results
for the proposed model for all problem sets are better than those for the state-of-the-art models.

Table 4. Assessment results of syntax error detection for erroneous source code.

Problem
Accuracy (%)

RNN LSTM LSTM-AttM

Insertion Sort 83 88 98
Greatest Common Divisor 81 90 95
Prime Numbers 74 85 93
Bubble Sort 80 80 96
Selection Sort 69 78 92
Average 77.4 84.2 94.8

6.4. Logic Error Assessment and Detection

A logic error in source code generates unexpected program output. The cause of logic error
is typically the incorrect application of mathematical logic in source code. Conventional compilers
cannot detect or assess logic error, and thus student and professional programmers must check the
entire source code line by line. This is a major problem, especially for novice programmers. A simple
program with logic error is shown in Figure 8. The program takes in an array of numbers and then
outputs it. In the example, four numbers are given for an array but because of incorrect logic, only
three of them are output.
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Logic error assessment and detection is a challenging task for traditional compilers. The proposed
attention-based language model identifies logic error candidate words in source code to reduce the
time required to check for such errors. To identify logic errors, the model should be able to calculate
long dependent sequences of source code. We thus designed the seq2seq language model by combining
the attention mechanism with LSTM. We compared its performance with other state-of-the-art models.
Source code with logic error (an example for BS) was evaluated by the LSTM-AttM model. The results
are shown in Figure 9. The source code assessment and detection results are listed in Table 5.
The results reveal the effectiveness of the proposed LSTM-AttM model. The proposed model assessed
and identified logic errors and their locations in source code. The estimated error probability ensures
the logic error possibility on a particular line (blue outline) of source code. The model detected two
logic errors on line 6 and generated the corresponding error probabilities (see Table 5). The estimated
error probabilities are both more than 0.90, indicating possible logic errors on line 6 of the source code.
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Table 5. Estimated error probability for erroneous source code in Figure 9.

Line Number Error Candidates
(Probability < 0.1) Suggested Word Estimated Error Probability

6 1 0 0.9727551
6 a = 0.92732173

To assess logic errors, we selected source code from the AOJ system that generated a runtime
error (i.e., failure during execution) judge verdict. Runtime errors can be caused by invalid pointer
references (segmentation fault), overflow, division by zero, memory access violations, and uninitialized
memory access. In the experiment, in addition to the above-mentioned example (Figure 9) a large
number of source code samples with logic errors were used. The evaluation results are listed in Table 6.
As shown, the proposed language model outperformed the reference benchmark models.

Table 6. Assessment results of logic error detection for erroneous source code.

Problem
Accuracy (%)

RNN LSTM LSTM-AttM

Insertion Sort 60 75 95
Greatest Common Divisor 57 81 96
Prime Numbers 63 77 90
Bubble Sort 65 80 91
Selection Sort 56 78 89
Average 60.2 78.2 92.2

6.5. Source Code Classification

In this section, we present the source code classification performance of the proposed LSTM-AttM
and existing state-of-the-art models. We considered various kinds of error in source code, including
semantic, syntax, logic, and communication errors. We evaluated the source code classification
performance of the proposed model and state-of-the-art models by considering error occurrences in
the source code. The proposed model calculated the error probability of each error candidate word to
classify the source code.

In our model, each variable, keyword, operator, operand, class, function, etc. in the source code
was considered as a normal word. The model generated the error probability for each error candidate
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word followed by the softmax layer. In general, our model detects error candidate words and estimates
the corresponding error probability for each one. If the estimated error probability for any word is
greater than 0.90, the source code is classified as incorrect. To evaluate the classification performance,
we compared our model with some baseline methods, namely standard LSTM, RNN, and the random
forest (RF) method with a deep belief network (DBN) [43].

The performance of classification was evaluated in terms of precision, recall, and F-measure
indices, respectively expressed as follows:

Precision (Pi) =
TPi

TPi + FPi
(17)

Recall (Ri) =
TPi

TPi + FNi
(18)

F−measure =
2 ∗ Pi ∗Ri
Pi + Ri

(19)

where TPi is the true positive rate (erroneous source code classified as erroneous), FPi is the false
positive rate (correct source code classified as erroneous), and FNi is the false negative rate (erroneous
source code classified as correct). F-measure is the harmonic mean between precision and recall.
Usually, it is difficult to always obtain excellent precision and recall. If all samples are classified as
erroneous, the recall will be high but precision will be low. F-measure is a balance between precision
and recall. The F-measure value is between 0 and 1, where a higher value indicates better classification.

We evaluated the model performance in terms of classification accuracy using source code samples
with logic and syntax errors. Figure 10 shows the classification results for source code with syntax
errors. The results show that the precision and recall values for the proposed model are better than
those for the other models.
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We calculated the precision and recall values of each type of problem set. The proposed model
had better values than those of the other models. The average precision, recall, and F-measure values
are listed in Table 7.

Table 7. Average precision, recall, and F-measure values for classification of source code with
syntax errors.

Model Precision Recall F-Measure

DBN 0.50 0.50 0.50
RNN 0.54 0.58 0.56
LSTM 0.85 0.85 0.85
LSTM-AttM 0.97 0.96 0.96

Figure 11 shows the classification results for source code with logic errors. The average precision,
recall, and F-measure values are listed in Table 8. The F-measure value indicates the excellent
performance of the proposed LSTM-AttM model.
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Table 8. Average precision, recall, and F-measure values for classification of source code with
logic errors.

Model Precision Recall F-Measure

DBN 0.53 0.50 0.51
RNN 0.55 0.56 0.55
LSTM 0.81 0.84 0.82
LSTM-AttM 0.91 0.95 0.93
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6.6. Classification Result Comparison with Benchmark Models

We compared our experimental classification results with those for some baseline models. All the
researches have a unique goal to achieve by respective research methodology. Nevertheless, we
compared our proposed research with the most similar works. The results are presented in Table 9.

Table 9. Comparison with baseline models for defective source code classification.

Model Description F-Measure

RF+DBN [43] RF is used for classification based on hidden features
extracted using DBN. 0.50

RNN A basic RNN is used to develop a language model for
source code fault detection and prediction. 0.55

LSTM
A standard LSTM network is adapted to develop a
language model for source code error detection,
prediction, and classification.

0.79

DP-ARNN [30] DP-ARNN is a defect prediction model that uses
attention-based RNNs. 0.56

LSTM [29] A source code error detection and prediction model
based on a deep LSTM-based language model. 0.83

LSTM-AttM (Proposed)

A deep seq2seq language model that uses an attention
mechanism + LSTM [29] network with customized
hyperparameters for source code error assessment and
detection and source code classification based on
estimated error probability.

0.94

7. Discussion

The present research focused on source code fault assessment and classification. In software
engineering and programming education, logic error assessment in source code is challenging for
both student and professional programmers. We conducted experiments to assess and detect logic,
semantic, and syntax errors in source code and classify source code as correct or incorrect using various
models. The experimental results were compared with those for traditional unsupervised and other
neural-network-based unsupervised models. The proposed model had the best performance.

The performance of a seq2seq language model strongly depends on the selection of the optimal
number of hidden layers. This selection is based on the perplexity value. We calculated the perplexity
during the training period. Figure 5 shows the perplexity of the RNN, LSTM, and LSTM-AttM models
with various numbers of hidden layers at last epoch for various problems. The perplexity of 100, 150,
and 300 layers are much higher than the 200 layers. Figure 6 shows the epoch-wise perplexity of models
with 200 hidden layers for various problems. The perplexity was lowest for the 200-layer models
that is why we selected 200-layer models for all experiments. We measured the training accuracy of
the proposed language model and other models. The proposed LSTM-AttM model had the highest
training accuracy (see Table 2).

In software engineering and programming education, the assessment and detection of logic errors
in source code is a challenge. To address this problem, we used an attention-based language model
using a deep LSTM neural network. After slight modification in source code pre-processing phase, the
proposed model can be useful for any type of source code (Python, C++, Java, etc.). While a software
system may be large, it has several functions (routines) that each have a limited number of lines. Some
source codes are similar to such a routine. The difficulty level of each source code is not one, some
source code uses complex mathematical logic and functions and some use simple. To evaluate our
model, we used mixed (easy, medium, and hard) source code for error detection. The syntax error
assessment and detection accuracy (see Table 4) for the proposed LSTM-AttM model was better than
those for the LSTM and RNN models. The average accuracy of the proposed LSTM-AttM model was
94.8%, whereas those of LSTM and RNN models were 84.2% and 77.4%, respectively. The logic error
assessment and detection accuracy is shown in Table 6. For logic error detection, the proposed model
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(92.2%) outperformed LSTM (78.2%) and RNN (60.2%). To assess and detect logic errors in source code,
the attention mechanism considers all input sequences because logic error detection is more complex
than other error detection. The proposed model will especially help novice programmers most.

One of our main goals was to classify source code as either correct or incorrect. For this task, we
used the estimated error probability of source code. The proposed LSTM-AttM model detects error
candidates in source code and estimates the corresponding error probability for each error candidate
word. The weight of the estimated error probability might vary because the language model generates
the error probability for each error candidate word based on the training corpus. When the estimated
error probability of any error candidate word is more than 0.90, the source code is treated as incorrect.
The syntax error classification results are shown in Figure 10 and the average precision, recall, and
F-measure values are listed in Table 7. The obtained precision, recall, and F-measure values of the
proposed model are 0.97, 0.96, and 0.96, respectively, and those of the LSTM model are 0.85, 0.85, and
0.85, respectively. The precision and recall values for the classification of source code with logic errors
for various problem sets are shown in Figure 11. The proposed model outperformed the LSTM and
RNN models. The average precision, recall, and F-measure values for the classification of source code
with logic errors are listed in Table 8. The average precision, recall, and F-measure values for the
proposed model are 0.91, 0.95, and 0.93, respectively, better than those for the LSTM and RNN models.
These classification comparison results verify the superiority of the proposed LSTM-AttM model over
existing state-of-the-art models.

Source code classification results were also compared with those for some baseline models in
Table 9. The F-measure value for the proposed model is 0.94, which is far better than those for the
baseline models.

Finally, the experimental evaluation results demonstrate the superiority of the proposed model.
Learners may get stuck when looking for logic errors and may thus spend a huge amount of time
trying to fix them. In such cases, the proposed model can assist learners to accelerate the learning
process. The model identifies errors and predicts the correct words, it also gives the line number for
errors. The model can thus help students and programmers improve their programming skills and
effectively create programs.

8. Conclusion and Future Work

In this study, we proposed an attention-based LSTM language model for assessing and classifying
source code. In both programming education and software engineering, the proposed model can
effectively help programmers. Conventional compilers cannot assess and detect logic errors in source
code, and thus unexpected program output is generated. To avoid this adverse circumstance, the
neural network-based language model achieves great success. The experimental results show that
the accuracies of syntax and logic error detection using the LSTM-AttM model are approximately
94.8% and 92.2%, respectively. The proposed model calculates the error probability of all error
candidate words in the source code and uses it to classify the source code as either correct or incorrect.
The average precision, recall, and F-measure values of the proposed model are 0.97, 0.96, and 0.96,
respectively, for the classification of source code with syntax errors and 0.91, 0.95, and 0.93, respectively,
for the classification of source code with logic errors; these values are better than those for existing
state-of-the-art models. The proposed model shows better performance for long sequences of source
code compared to that for LSTM and RNN. Our model contributes to source code error assessment,
detection, and classification, especially logic error detection and classification, for which conventional
compiler fail. Furthermore, our model predicts the correct words in place of the error in the source
code, making these predicted words helpful for students and programmers to quickly fix the incorrect
code. In particular, newborn programmers will benefit more from the proposed model in learning
programming. The proposed model has some limitations. Error assessment and detection accuracy are
sometimes below the expected values. When the estimated error probability of an error candidate
word is below 0.9, the proposed model does not consider this word as an error candidate even though it
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might be an error. The experimental results obtained from the source code based on the C programming
language do not ensure that the model’s performance will be the same as using other programming
languages. In the future, we will work to resolve these issues using bidirectional LSTM and other
deep neural networks. The proposed model can be integrated with an online-based judge system to
evaluate source code.
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