

Supplementary Materials: An FTIR microspectroscopy ratiometric approach for monitoring X-ray irradiation effects on SH-SY5Y human neuroblastoma cells

Valerio Ricciardi, Marianna Portaccio, Lorenzo Manti and Maria Lepore

Table S1. Fourier transform infrared (FTIR) peaks observed in the spectrum of control cells, with assignments in accordance with the data reported in the literature [10,12,13,39,44]. Abbreviations: as = asymmetric, s = symmetric, v = stretching, δ = bending, sc = scissoring, vbr = vibration, a. a. = free amino acids. The indicated position of every peak is the center of the relative Lorentzian function obtained from the deconvolution fit.

Peak		ASSIGNMENT		
cm⁻¹	DNA/RNA	Protein	Lipid	Carbohydrate
3438				Ο-Η ν
3296		Amide A (–N–H ν)		Ο-Η ν
3159		–NH3 ⁺ as. ν (a. a.)		
2955		CH ₃ as. N	CH ₃ as. ν	
2922			CH_2 as. ν	
2870		CH ₃ s. v	CH₃ s. v	
2851			CH2 s. v	
1652		Amide I (C=Ο ν, C-N ν)		
1553		Amide II (C–N ν, C–NH δ, α-helix)		
1527		Amide II (C–N ν, C–NH δ, β-structure)		
1455		CH ₃ as. δ, CH ₂ sc.	CH3 as. δ, CH2 sc.	
1396		COO ⁻ s. v		
1246	PO₂ ⁻ as. N	С–О–Р v		
1082	PO2 ⁻ s. ν	С-О-Р v		

y 10 Gy

Control	Assignments	2 Gy	4 Gy	6 Gy	8 Gy	10 Gy
Peak		Peak	Peak	Peak	Peak	Peak
(cm ⁻¹)		(cm ⁻¹)				
1617	Antiparallel β-sheets	1617	1618 (+1)	1617	1618 (+1)	1619 (+2)
$%A = 4.6 \pm 0.3$		$%A = 7.4 \pm 0.3$	$%A = 8.0 \pm 0.6$	$%A = 7.2 \pm 0.8$	$%A = 10.0 \pm 1.6$	$%A = 11.8 \pm 1.2$
1626	Parallel β-sheets	1627 (+1)	1627	1627	1628 (+1)	1628 (+1)
$%A = 8.1 \pm 0.8$		$%A = 10.8 \pm 0.3$	$%A = 9.3 \pm 1.2$	$%A = 9.4 \pm 1.0$	$%A = 9.9 \pm 0.8$	$%A = 9.8 \pm 0.7$
1635	Parallel β-sheets	1637 (+2)	1637 (+2)	1637 (+2)	1638 (+3)	1638 (+3)
$%A = 13.2 \pm 1.0$		$%A = 17.7 \pm 0.8$	$%A = 18.6 \pm 0.8$	$%A = 23.3 \pm 0.9$	$%A = 18 \pm 3$	$%A = 18.1 \pm 1.2$
1647	Unordered	1647	1647	1649	1647	1648
$%A = 25.7 \pm 1.0$		$%A = 17.0 \pm 1.7$	$%A = 19.5 \pm 0.6$	$%A = 19.0 \pm 1.0$	$%A = 15 \pm 2$	$%A = 20.2 \pm 1.1$
1661	α-helix	1659 (-2)	1660 (-1)	1660 (-1)	1658 (-3)	1660 (-1)
$%A = 26.8 \pm 0.9$		$%A = 19.7 \pm 0.3$	$%A = 20.1 \pm 0.8$	$%A = 14.9 \pm 0.7$	$%A = 22.7 \pm 1.0$	$%A = 20.8 \pm 1.4$
1674	β –turn	1672 (-2)	1673 (-1)	1671 (-3)	1672 (-2)	1675 (+1)
$%A = 10.7 \pm 0.5$		$%A = 14.8 \pm 1.2$	$%A = 15.5 \pm 0.4$	$%A = 13.4 \pm 0.5$	$%A = 15.0 \pm 1.3$	$%A = 13.6 \pm 0.6$
1686	β –turn	1685 (-1)	1687 (+1)	1684 (-2)	1686	1688 (+2)
$%A = 6.9 \pm 0.4$		$%A = 7.2 \pm 0.7$	$%A = 5.5 \pm 0.4$	$%A = 9.7 \pm 0.9$	$%A = 6.7 \pm 0.6$	$%A = 3.6 \pm 0.8$
1697	Antiparallel β-sheets (weak)	1698 (+1)	1698 (+1)	1699 (+2)	1698 (+1)	1698 (+1)
$%A = 3.4 \pm 0.3$		$%A = 4.5 \pm 0.3$	$%A = 3.0 \pm 0.8$	$%A = 2.6 \pm 0.3$	$%A = 2.0 \pm 1.0$	$%A = 1.7 \pm 0.4$

Table S2. Amide I deconvolution results for control and irradiated sample fixed immediately after irradiation, with assignments in accordance with the data reported in the literature [37–39]; the ratio between the secondary structures peaks area and the area of the entire Amide I peak, as a percentage, are reported in the table.

Control	Assignments	2 Gy	4 Gy	6 Gy	8 Gy	10 Gy
Peak		Peak	Peak	Peak	Peak	Peak
(cm ⁻¹)		(cm ⁻¹)				
1619	Antiparallel β-sheets	1619	1618 (-1)	1620 (+1)	1619	1617 (-2)
$%A = 12.3 \pm 0.7$	·	$%A = 10.5 \pm 0.8$	$%A = 8.3 \pm 0.5$	$%A = 12.7 \pm 0.7$	$%A = 9.8 \pm 0.5$	$%A = 8.3 \pm 1.9$
1628	Parallel β-sheets	1629 (+1)	1628	1630 (+2)	1629 (+1)	1626 (-2)
$%A = 13.4 \pm 0.5$		$%A = 10.6 \pm 1.4$	$%A = 8.7 \pm 1.2$	$%A = 14.1 \pm 0.6$	$%A = 12.7 \pm 0.3$	$%A = 11.9 \pm 1.9$
1639	Parallel β-sheets	1639	1640 (+1)	1641 (+2)	1639	1635 (-4)
$%A = 19.1 \pm 0.4$	·	$%A = 22.7 \pm 1.7$	$%A = 28 \pm 3$	$%A = 20.8 \pm 1.6$	$%A = 19.5 \pm 0.4$	$%A = 16.5 \pm 1.0$
1650	Unordered	1650	1652 (+2)	1651 (+1)	1651 (+1)	1647 (-3)
$%A = 20.30 \pm 0.12$		$%A = 19.9 \pm 0.3$	$%A = 18.8 \pm 1.2$	$%A = 18.2 \pm 1.4$	$%A = 20.8 \pm 0.2$	$%A = 22.4 \pm 1.1$
1662	α -helix	1662	1663 (+1)	1662	1662	1659 (-3)
$%A = 17.0 \pm 0.2$		$%A = 17.0 \pm 0.2$	$%A = 16.1 \pm 0.8$	$%A = 16.4 \pm 0.9$	$%A = 17.8 \pm 0.3$	$%A = 26.0 \pm 0.5$
1673	β –turn	1673	1674 (+1)	1673	1674 (+1)	1675 (+2)
$%A = 9.4 \pm 0.2$		%A = 10.44 ± 0.07	$%A = 10.7 \pm 0.6$	$%A = 7.5 \pm 0.4$	$%A = 10.0 \pm 0.4$	$%A = 7.8 \pm 0.2$
1682	β –turn	1683 (+1)	1683 (+1)	1681 (-1)	1683 (+1)	1684 (+2)
$%A = 4.3 \pm 0.2$		$%A = 5.3 \pm 0.6$	$%A = 4.3 \pm 0.8$	$%A = 4.7 \pm 0.7$	$%A = 3.8 \pm 0.4$	$\% A = 5.0 \pm 0.7$
1692	Antiparallel β-sheets (weak)	1695 (+3)	1695 (+3)	1690 (-2)	1693 (+1)	1696 (+4)
$%A = 3.5 \pm 0.4$		$%A = 3.4 \pm 0.2$	$%A = 4.3 \pm 0.6$	$%A = 4.9 \pm 1.0$	$%A = 4.7 \pm 0.2$	$%A = 2.0 \pm 0.6$

Table S3. Amide I deconvolution results for control and irradiated sample fixed 24 h after irradiation, with assignments in accordance with the data reported in the literature [37–39]; the ratio between the secondary structures peaks area and the area of the entire Amide I peak, as a percentage, are reported in the table.

Low Density

Scale Bar = 100µm High Density

Scale Bar = 100µm

Figure S1. SH-SY5Y cells at different culture density (ATCC, American type culture collection).

Figure S2. Micrograph at 10× magnification of SH-SY5Y cells control sample adherent to the MirrIR slide. A cell cluster is visible in the brighter area that is manually selected for collecting the signal for Fourier transform infrared (FTIR) spectroscopy.