
applied  
sciences

Article

Improved Homotopy Perturbation Method for
Geometrically Nonlinear Analysis of Space Trusses

Hamzeh Dehghani 1, Iman Mansouri 2,3, Alireza Farzampour 4 and Jong Wan Hu 5,6,*
1 Department of Civil Engineering, Higher Education Complex of Bam, Bam 14477-76613, Iran;

hdehghani@bam.ac.ir
2 Department of Civil Engineering, Birjand University of Technology, Birjand 97175-569, Iran;

mansouri@birjandut.ac.ir
3 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
4 Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA;

afarzam@vt.edu
5 Department of Civil and Environmental Engineering, Incheon National University, Incheon 22012, Korea
6 Incheon Disaster Prevention Research Center, Incheon National University, Incheon 22012, Korea
* Correspondence: jongp24@inu.ac.kr

Received: 1 March 2020; Accepted: 20 April 2020; Published: 24 April 2020
����������
�������

Abstract: The objective of this study is to explore a noble application of the improved homotopy
perturbation procedure bases in structural engineering by applying it to the geometrically nonlinear
analysis of the space trusses. The improved perturbation algorithm is proposed to refine the classical
methods in numerical computing techniques such as the Newton–Raphson method. A linear of
sub-problems is generated by transferring the nonlinear problem with perturbation quantities and then
approximated by summation of the solutions related to several sub-problems. In this study, a nonlinear
load control procedure is generated and implemented for structures. Several numerical examples of
known trusses are given to show the applicability of the proposed perturbation procedure without
considering the passing limit points. The results reveal that perturbation modeling methodology
for investigating the structural performance of various applications has high accuracy and low
computational cost of convergence analysis, compared with the Newton–Raphson method.
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1. Introduction

Truss systems are commonly implemented in several structural systems including space structures,
high-span bridge systems and bracing the skeleton buildings. Recently, it is reported that the
implementation of the linear analysis to investigate the structural applications is not sufficiently
reliable without considering nonlinearities [1–4]. Instead, the development of engineering science and
growth in computer processing power have made it possible to conduct an efficient nonlinear analysis.
The linear theory is used for structures that are under service loads, but if there were slender elements
in the structure or external loads exceeding the design loads (e.g., buckling load in the case of structural
stability), ignorance of nonlinear behavior would cause considerable errors in a computational process
due to large nonlinear deflections. Several studies in nonlinear analysis methods are presented [5–9],
in which the stability of trusses under static and dynamic loads is investigated.

Along the same lines, Zhu et al. [10] studied geometric and material nonlinearity for space trusses.
Large deformation of space trusses is investigated with a generalized displacement control method
by Thai and Kim [11]. Greco and Ferreira [12] developed a new method for geometrically nonlinear
analysis of the space trusses. Liu et al. [13] used perturbation algorithms for building membrane
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structure. There are many methods for nonlinear analysis such as iterative, incremental, and simple
incremental–iterative methods. Along the same lines, Kao [14] compared the Newton–Raphson and
incremental methods with geometrically nonlinear analysis, among which the Newton–Raphson
method is used widely in nonlinear problems. Although this method is an efficient technique, a long
computational cost is needed to achieve the convergence requirements [15].

Moreover, fast algorithms were presented to reduce the computational analysis of various
structures [1,16–22]. An iterative perturbation method to solve a nonlinear system is proposed
by Golbabi and Javidi [23]; however, the proposed method was not able to effectively reduce the
convergence time despite reducing the number of iterations. In this paper, the presented method by
Golbabi and Javidi [23] is improved to achieve an efficient nonlinear algorithm for further investigation
of structures. The homotopy methodology is employed previously as a persice perturbation method
for inelastic analysis of 2D frames [20]. The proposed procedures decrease both the iteration number
and the cost of analysis. In this study, it is shown that the proposed methodology efficiently improves
the inability of the Newton–Raphson algorithm in passing limit points due to load control limitations;
hence, it improves the cost of analysis significantly.

2. Geometrically Nonlinear Analysis of Trusses

2.1. Geometrically Nonlinear Analysis of Trusses

The structural equilibrium equations are derived as [18]

fi(u, u2, . . . . . . , un) = Pi and i = 1, . . . , n (1)

where {f } is resultant internal forces based on the developed formed displacements coordinate, Pi
represents the external forces, and n shows the number equilibrium equations. It is not possible to
explicitly solve the load-deflection equations [13]. Hence, for a computational process, the equations’
incremental forms are considered as it is shown in Equations (2) and (3).

[T]{∆u} = {∆P}i (2)

or
{∆u} = [T]−1

{∆P} (3)

in which {∆u} indicates increments of displacements and [T] is the tangential stiffness for the
considered system.

2.2. Tangent Stiffness Matrix for Members

The condition describing the forces at the end of members and end displacements is represented
in Equation (4)

{∆P} = [T]{∆u} (4)

in which, {∆P} is the load at each increment [T] is related to the member tangent stiffness given in
Equation (5) and {∆u} is the increments of displacement [22], as illustrated in Figure 1.

[T] =
(AE

L

)
{B}{B}T + Q[g] (5)

in which, A is the cross-sectional area of the element; E represents the elastic modulus, the Q is the
axial force in the truss member, L is the length of the member, {B} is transformation vector which
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summarizes the transformation from the global coordinate systems with local coordinates, and the
geometric matrix [g] is given by Equation (6) [22].

[g] =
1
L′



−(m2 + n2) lm ln (m2 + n2) −lm −ln
lm −(l2 + n2) mn −lm (l2 + n2) −mn
ln mn −(l2 + m2) −ln −mn (l2 + m2)

(m2 + n2) −lm −ln −(m2 + n2) lm ln
−lm (l2 + n2) −mn lm −(l2 + n2) mn
−ln −mn (l2 + m2) ln mn −(l2 + m2)


(6)

where l, m, and n show the direction cosines of the member in the deformed shape and L’ describes the
after-deformation length.
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3. Nonlinear Analysis Algorithms

3.1. Newton–Raphson Method

The iterative Newton–Raphson method is commonly used for solving nonlinear structural
systems. In this procedure, an approximate response is guessed for a structure described with nonlinear
equations, and then an unknown corrector value is added to refine the initial response. Implementing
approximation series (e.g., Taylor series), the nonlinear equations could be changed to a linear format
equation, and by solving this linear system the corrector factor is achieved and the solution would be
improved accordingly. This process is repeated until an acceptable approximation is obtained [25,26].

3.2. Improved Perturbation Method for the Nonlinear Problem

The perturbation method solution could be described as [27]

D(u(x)) = f (r(x)) (7)

With boundary conditions shown in Equation (8). In Equation (7), u(x) denotes the approximation
function of the solution.

B(u(x), ∂u(x)/∂n) = 0 (8)
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where D is the differential operator and B indicates the boundary condition, and f (r(x)) is a general
analytic function. If the Operator D is divided into two parts of linear LL and NL functions, the analytic
function could be reestablished as shown in Equation (9).

LL(u(x)) + NL(u(x)) = f (r(x)) (9)

Using the homotopy procedure over the constructed homotopy would result in

H(u(x), p) = (1− p)[LL(U(x)) − u0(x)]+p[D(U(x)) − f (r(x)] = 0 (10)

In which p is a small value between 0 and 1. u0(x) is the primary approximation response.
Equation (10) could be described for specific p-values. Shown in Equations (11) and (12).

H(u(x), 0) = LL(U(x)) − u0(x) = 0 (11)

H(u(x), 1) = D(U(x)) − f (r(x)) = 0 (12)

From the above-mentioned equations, it is concluded that varying p from zero to one is equivalent
to varying H(U(x), p from LL(U(x)) − u0(x) to D(U(x)) − f(r(x)). By considering the perturbation
technique, it could be assumed that the solution for Equations (11) and (12) are given as powers series
of p.

U(x) = U0(x) + pU1(x) + p2U2(x) + . . . (13)

From Equation (13) it is concluded that u(x) = lim
p→1

U(x) = U0(x) + U1(x) + U2(x) + . . ., which

indicates the approximate solution. The equivalence convex homotopy is considered to illuminate
NHPM solution procedure as it is indicated in Equation (14).

H(U(x), p) = LL(U(x)) − u0(x) + pu0(x) + p[NL(U(x)) − f (r(x))] = 0 (14)

Equation (14) could be simplified and rewritten as shown in Equation (15)

LL(U(x)) = u0(x) + p[ f (r(x)) − u0(x) −NL(U(x))] (15)

Considering the S as the second derivative differential operator with respect to x (or d2/dx2),
it is concluded that S−1 is the two-fold integration from 0 to x. Therefore, Equation (15) could be
reestablished as shown in Equation (16).

U(x) = C(x) + S−1(u0(x)) + p[S−1( f (r(x)) − S−1(u0(x)) − S−1(N(U(x))) (16)

It is noted that C is the constant incorporated in the integration; therefore, CS = 0. To apply the
nonlinear perturbation method, the initial approximation is considered as shown in Equation (17).

u0(x) =
∞∑

n=0

anFn(x) (17)
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where a0, a1, a2,.. are the unknown factors and F0(x), F1(x), F2(x), . . . are functions. In addition,
if the factor p is considered as insignificant varying from the range 0 to 1, the solution for
Equations (13) and (17) could be written as

∞∑
n=0

pnUn(x) = C(x)+

S−1(
∞∑

n=0
anFn(x))+

p[S−1( f (r(x))) − S−1(
∞∑

n=0
anFn(x))

−S−1NL(
∞∑

n=0
pnUn(x))]

(18)

If the coefficients of terms from the left-hand side and right-hand side of the Equation (18) are
compared; therefore, Equation (19) could be obtained.

p0 : U0(x) = C(x) + S−1(
∞∑

n=0
anFn(x))

p1 : U1(x) = S−1( f (r(x)) + S−1[
∞∑

n=0
anFn(x) − S−1NL(

∞∑
n=0

pnUn(x))]

...
pi : Ui(x) = −S−1NL(U0(x), U1(x), U2(x), . . . , Ui−1(x))

(19)

Therefore, the equations could be solved assuming that U1(x) = 0. Then from Equation (19), U2(x)
= U3(x) = . . . .= 0, Equation (20) could be obtained

u(x) = U0(x) = C(x) + S−1(
∞∑

n=0

anFn(x)) (20)

3.3. Implementation of Perturbation Method in Structural Engineering

To use improved HPM, computational software is implemented for reducing the cost of analysis.
The new approach uses Equations (13) to (20). Consider{

g(u)
}
= {F} −

{
f(u)

}
(21)

where vector [13] denotes generalized coordinates established a base on the translations of nodes, {f} is
resultant internal forces matrix and {F} is the external force matrix. Then[

J(u)
]
= −[T] (22)

where J(u) is a Jacobian matrix that is required at each time increment and describes the local material
behavior, [T] describes stiffness equations; therefore, Equation (22) can be rewritten as

∆u ≈ [T]−1
{
P− f(u)

}
+ [T]−1

(
{P} −

{
f
(u+[T]−1

{P− f(u)})

})
(23)

First, an approximate solution is guessed similar to the Newton–Raphson method. An iterative
algorithm based on previous formulations is developed for improving nonlinear analysis using the
perturbation method. This algorithm is shown as follows:

Step 1: Input variables and parameters are set.
Step 2: The general assumptions related to the structural systems are considered (e.g., material

properties, joint coordinates, boundary conditions, etc.).
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Step 3: [T] is generated and assembled to summarize the stiffness equations to develop the system
tangent stiffness matrix [τ].

Step 4: For the first iteration in (i + 1) loading step, the displacement is calculated.

∆ui+1
1 =

[
T1

]−1

i+1

{
∆Pi+1

}
(24)

Step 5: The new node coordinates are determined.{
ui+1

1

}
=

{
ui

}
+

{
∆ui+1

1

}
(25)

Step 6: The unbalanced forces in jth iteration is determined for (i + 1)th loading step {∆Qj
i+1 }.{

∆Qi+1
j

}
=

{
Pi+1

}
−

{
f(ui+1

j )

}
(26)

Step 7: The {Duj
i+1} is calculated.

∆ui+1
j0 =

[
T j

]−1

i+!

{
∆Qi+1

j

}
∆ui+1

j = ∆xi+1
j0 +

[
T j

]−1

i+!

{
Pi+1

− f(ui+1
j +∆ui+1

j0 )

} (27)

Step 8: Calculate the new geometry of the joints:{
ui+1

j

}
=

{
ui+1

j−1

}
+

{
∆ui+1

j

}
(28)

Step 9: Repeat steps 6–8 considering the convergence criterion is satisfied:√∑
i (∆ui)2∑
i (ui)2

≤ e (29)

Step 10: Steps 6 through 8 are repeated to satisfy the convergence tolerance.

4. Results and Computational Examples

To compare the applicability of the proposed method with commonly used analysis methods in
the nonlinear behavioral assessment of space trusses, four numerical examples are considered in a
microcomputer environment. 32-bit Pentium 1.66 GHz processors (2 CPUs) is used for solving the
numerical examples. For finding the nonlinear equation solutions, the proposed iterative method is
implemented for which the iterative process is stopped as the convergence criteria are met. The tolerance
of 10−4 is considered for evaluation purposes. In what follows, the four examples are discussed and
analyzed with conventional and the proposed methods. In this paper, only geometric nonlinearity is
considered in the numerical examples.

4.1. Example 1: 24-Member Space Truss

Figure 2 shows the first example of a three-dimensional space truss with two axes of a Cartesian
coordinate system for which the z-axis represents the out-of-plane dimensions. As it is shown in
Figure 2, a concentrated load is applied to the top of the dome-shaped space truss. The space truss
consists of 24 members and 13 nodes in total, leading to 21 degrees of freedom. Based on the previously
studied models, the modulus of elasticity E is 6895 kN/cm2, and area A is 6.452 cm2 and ∆P is considered
to be 0.4448 kN.
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Figure 2. Space truss with 24–members, all dimensions are in mm [28].

Subsequently, the 3D truss is analyzed with the proposed PM method in this article and
conventional Newton–Raphson. Figure 3 shows the displacement curve obtained separately based on
each method and the computational cost for each method is summarized in Table 1. It is concluded
that the PM method is able to precisely predict the behavior, while it reduces the computational cost by
10.9% and the number of iterations by 26.8% compared to classic Newton–Raphson.
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Table 1. Comparison of the computational cost and iteration number

Decrease Percentage Present Method Newton Method

Iteration no. Time (s) Iteration No. Time (s) Iteration No. Time (s)

27 10.93 79 0.145 108 0.1628

4.2. Example 2: 42-Member Space Truss

The second space truss example is taken from Papadrakakis and Theoharis studies [9] which is
schematically shown in Figure 4. The considered space truss consists of 42 members and 19 nodes.
The pinned supports are considered as the boundary conditions. The identical cross-sectional properties
are assumed for all the members and the material constitutive model has a module of elasticity of
211.67 kN/mm2. The section area is 16 mm2 and the concentrated force applied to the system is
P = 0.135 N with ∆P = 0.03 N.
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The load-displacement behavior of this model is shown in Figure 5. Table 2 shows the comparison
of the classic Newton–Raphson with the perturbation method. It is concluded that the PM method
is able to precisely evaluate the results, and reduce the computational cost and iteration number by
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Table 2. Comparison of computational cost and iteration number

Decrease Percentage Present Method Newton Method

Iteration no. Time (s) Iteration No. Time (s) Iteration No. Time (s)

29 12.89 107 0.3107 151 0.3567

4.3. Example 3: 120-Member Space Truss

The third example shown in Figure 6 has 120 elements and 49 nodes. The boundary support
condition is pinned to the ground. This example is based on the previous Saka and Ulker [29] studies
on space trusses. It is noted that the axial stiffness (EA) is considered to be 44486.54 kN, and the
concentrated load applied at the crown is equal to 1065 kN with a loading interval of 44.44 kN.
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Table 3. Comparison of the computational cost and iteration number

Decrease Percentage Present Method Newton Method

Iteration No. Time (s) Iteration No. Time (s) Iteration No. Time (s)

31 10.43 51 0.4894 74 0.5464

4.4. Example 4: 168-Member Space Truss

The fourth example is related to a dome truss extracted based on the previous studies [29] which
is shown in Figure 8. The concentrated force of 820 KN is applied at the apex of 168 element truss with
73 nodes and 147 DOFs. It is noted that the out-of-plane motion is restrained for pinned supports for
this structure. The cross-sectional area is 50.431 cm2 for all the members, and the material constitutive
model has an elastic modulus of 2.04 × 104 kN/cm2. The incremental load (∆P) is 20 kN, which is
applied at the apex of the structure.
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Figure 9 shows the numerical load-displacement comparison with the classic numerical method.
It can be concluded that the PM method for this example is able to precisely evaluate the behavior with
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Figure 9. Space truss with 168–members, all dimensions are in mm.

Table 4. Comparison of computational cost and iteration number

Decrease Percentage Present Method Newton Method

Iteration No. Time (s) Iteration No. Time (s) Iteration No. Time (s)

29 8.79 88 1.224 124 1.342

5. Conclusions

A mathematical technique, referred to as the ‘perturbation method’ in this study, is proposed and
applied for modeling space trusses with large displacements. The perturbation method approach is
implemented for the nonlinear analysis of structures. The nonlinear system of equations is separated
into portions of linear and nonlinear terms, and with iterative procedures, each set of equations is
solved. This algorithm could be implemented for improving the nonlinear analysis according to the
load control method based on the developed numerical process. It is shown that the perturbation
method has the same precision compared to the classic Newton–Raphson method; however, it needs
less computational work, iteration number, and computing time of analysis. It is shown that this
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method is a robust and efficient technique for nonlinear analysis of the large space trusses up to a limit,
although the proposed procedure is incapable of tracing the equilibrium curve after the limit points.
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