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Abstract: The ability of an agent to accomplish a trajectory during a certain motor task depends on
the fit between external (environment) and internal (agent) constraints, also known as affordance.
A model of difficulty for a generalized reaching motor task is proposed as an affordance-related
measure, as perceived by a specific agent for a given environment and task. By extending the
information-based Index of Difficulty of a trajectory, a stochastic model of difficulty is formulated
based on the observed variability of spatial trajectories executed by a given agent during a repetitive
motor task. The model is tested on an experimental walking dataset available in the literature, where
the repetitive stride movement of differently aged subjects (14 “old” subjects aged 50–73; 20 “young”
subjects aged 21–37) at multiple speed conditions (comfortable, ~30% faster, ~30% slower) is analyzed.
Reduced trajectory variability in older as compared to younger adults results in a higher Index of
Difficulty (slower: +24%, p < 0.0125; faster: +38%, p < 0.002) which is interpreted in this context as
reduced affordance. The model overcomes the limits of existing difficulty measures by capturing the
stochastic dependency of task difficulty on a subject’s age and average speed. This model provides a
benchmarking tool for motor performance in biomechanics and ergonomics applications.

Keywords: reaching motor task; trajectory complexity; Index of Difficulty; gait variability; young
and elderly gait; affordance; foot trajectory

1. Introduction

Studies on human or robot motor performance pertain to an interdisciplinary field of
research with several applications ranging from robotics to biomechanics to ergonomics.
This performance is typically measured in human or robot agents by analyzing a trajectory
executed during a motor task. Reaching motor tasks (i.e., a movement in which the end-
effector aims at a reaching target starting from a given position) are widely studied when
assessing human motor performance and control [1,2]. These motor tasks are subject to
external constraints imposed by the environment which include, for example, the spatial
constraints as well as the geometrical features of the object to be moved by the agent.
Factors, such as age, sex, and other physical features of a human agent affect the physical
status and, in turn, the resulting trajectories that can be executed during a motor task.

Reaching tasks typically consist of repetitive movements that the agent performs by
executing a set of possible trajectories, from initial point to target, each of them being
characterized by different features (e.g., path length and shape, energy consumption
and speed of execution). The set of possible trajectories are limited by the agent’s internal
constraints, as well as environmental constraints. Internal constraints are of different nature
and include the number of degrees of freedom available to control the musculoskeletal
system of a human or bio-inspired robot agent, its available physical strength to move
objects at a specific speed, and its experience and skill in executing the task. The higher the
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agent’s motor abilities, the higher the possibilities for action that the agent perceives for a
given movement and environment, also known as affordances [3].

The concept of “affordance” has been firstly theorized in [4]. Information-based
affordance measures have been proposed for various tasks of both robot and human
agents. The “Labelling entropy” measure or “binary cross entropy” loss function have
been adopted to investigate the affordance of a robot in object recognition tasks [5,6].
Information-based measures have been also proposed for motor tasks [7–9] to investigate
the affordance of human climbing with assigned environment constraints. In climbing
tasks, external constraints include the width of the path, the wall inclination, and the shape
and orientation of the handles, which determine the climber’s selection of the sequence
of poses and resulting path. An expert climber tends to travel straighter paths, which are
less complex and more affordable trajectories; on the contrary, when a novice climber faces
with a challenging route that force him to reach the affordance boundaries of his abilities,
he tends to perform more complex trajectories [10,11].

A complexity measure of a general motion path is proposed in [12]; here, the entropy
of a curve (i.e., a spatial trajectory) is defined as:

H = ln
(

2 · L
c

)
(1)

where L is the length of the curve, c is the convex hull (perimeter) of the curve, and 2·L
c

is the average number of intersections between the curve and a straight line [13]. The H
formulation, measured in bit, is also known as the Geometric Index of Entropy:

GIE =
H

ln(2)
(2)

It has been applied in human climbing [8,9]. The GIE can measure the difficulty of a
trajectory observed during general reaching tasks. Since the GIE is sensitive to external and
internal constraints of an agent [14], it has been adopted as an affordance-related measure
of the agent [8,9]. However, the GIE shows limits in capturing the complexity of a trajectory
as it refers to the overall trajectory neglecting local criticalities that a trajectory could show
and that could be of interest to identify which internal or external constraints limit his
action. Moreover, the GIE does not consider the accuracy the subject shows in executing
a trajectory. Finally, the GIE is a deterministic measure, whereas possible trajectories can
vary stochastically due to the limited repeatability of human actions.

A different approach for evaluating the complexity of a motor task is the formulation of
the Index of Difficulty (ID) originally proposed by Fitts [15], which quantifies the difficulty
of a simple reaching motor task required to reach a target of width W placed at distance D
from a starting point. The ID has been derived by analogy with the Shannon theorem n◦

17 [16], theorized within the information theory. Accordingly, a successive formulation of
the ID is proposed in [17] as:

ID = log2

(
D
W

+ 1
)

(3)

ID is measured in [bit] and the above formulation has demonstrated a better fit with
the Fitts’ empirical data [17]. The various formulations of the ID [15,17,18], and field
studies [19–24] refer to simple “point-to-point” reaching motor tasks without considering
the travelled path. In such experiences, subjects can fail in meeting the final target and
accuracy issues are addressed. The error rate of subjects in meeting the final target at
different speed has been put into relation to the standard deviation of the position of the
endpoint; to this purpose, the “Speed-Accuracy” model was discussed in [17].

The Index of Difficulty of a general trajectory (IDt) spatially constrained along a path
of any shape, defined in a two-dimensional plane, is proposed in [25]. Starting from the
general IDt formulation, the “Speed-ID-Accuracy” model, which shows the effects of speed
and difficulty of task on the accuracy, is proposed in [26].
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In spite of a wide scientific literature on ID formulations and experimental testing [19–24],
these experiences refer to motor tasks with negligible dynamics, i.e., they refer to reaching
motor tasks at a slow speed or manipulating light objects (e.g., a computer device, stylus
pen on a tablet, etc.). On the contrary, in many practical cases referable to reaching tasks
in work environment or in biomechanics, the dynamics of the phenomenon cannot be
neglected since mass and acceleration are not negligible. The ability of an agent to meet
internal and external constraints is dependent on the dynamics that governs the motor task
execution [27]. As often observed in work environments, an agent is required to execute
spatially constrained complex trajectories. Perceived affordance in complex trajectories
is affected by agent’s features like geometry, mass distribution, force of the actuators (or
physical strength), speed of execution. Modeling the dynamics of the phenomenon reveals
a quite complex issue not yet addressed by research, also due to the stochastic variability
of internal constraints of a human agent.

In this study, a novel Index of Difficulty is proposed in order to overcome the above-
mentioned limits. The model quantifies the Index of Difficulty as a probabilistic affordance-
related measure of a generalized reaching task, based on the observed variability of the
repeated trajectories executed by a given agent. The execution of a trajectory is considered
as the reaching of a series of consecutive targets orthogonally distributed along a nominal
path (i.e., the average trajectory). The current formulation is derived under the assumption
of two-dimensional paths. Furthermore, the hits on targets are assumed as normally dis-
tributed. A major novelty of the proposed stochastic model relies in its intrinsic ability to
take into account all the agent-specific features affecting the dynamics of the motor task
under internal (agent) and external (task) constraints. Therefore, the model is effective in
performing reliable affordance analysis of a specific individual or groups of individuals of
given features accomplishing a reaching task for statistical analyses.

The paper is organized as follows. In Section 2, the stochastic model to calculate the
Index of Difficulty is proposed. In Section 3, the model is applied to field data on young
and elderly human subjects performing walking motor tasks (available in public dataset) in
order to show the use and capabilities of the model proposed to discriminate agent-specific
performances. A statistical analysis of the Index of Difficulty results on subjects with
different age and speed conditions is presented in Section 4. The evaluated dataset is used
to determine a regression model for the Index of Difficulty with dependency on age and
speed values. Finally, conclusions and further research are outlined in Section 5.

2. Stochastic Index of Difficulty for a Generalized Reaching Task

The Index of Difficulty of a general trajectory realized within given spatial constraints
has been defined by [25] as follows:

IDt =
∫

t

ds
W(s)

(4)

where, the spatial trajectory (i.e., path) t is constrained within a given width W(s) along the
curvilinear abscissa s (Figure 1). This result is derived from the Mackenzie formulation of
the Index of Difficulty for simple reaching tasks with straight hand path [17], by considering
a generic curved path to be an infinite sequence of simple reaching tasks with targets
(constraints) of variable width W(s).



Appl. Sci. 2021, 11, 4330 4 of 15

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 15 
 

 
Figure 1. Representation of a general spatial trajectory t and related constraints W(s). Authors’ 
elaboration according to [25]. 

The above Index of Difficulty (IDt) is a purely geometric measure derived from infor-
mation theory and is uniquely dependent on the prescribed spatial trajectory and relative 
constraints. It can be applied to any nominal trajectory that travels within a tunnel of var-
iable width, W(s), during a generic motor task. A narrow tunnel width leads to increased 
trajectory difficulty. However, this geometric model does not include specific information 
on the agent (e.g., human, robot) and its end-effector (e.g., hand, finger, foot) employed in 
the motor task. Therefore, Equation (4) does not capture important differences in agents’ 
dynamics and motor control ability that may affect the perceived difficulty (hence af-
fordance) of a certain constrained motor task. 

In this study, the geometrical IDt (Equation (4)) is adopted to formulate a novel in-
formation-based stochastic model of generalized reaching task difficulty for a specific 
agent. A generalized reaching task is defined herein as the movement of a given end-
effector of a specific agent, with desired initial and final end-effector positions. When a 
given agent performs multiple trials of a generalized reaching motor task, the observed 
trajectories of the end-effector will vary stochastically, due to motor noise [28,29]. In par-
ticular, the observed trajectories at given speed and environmental conditions will be en-
closed within spatial limits W(s) that are governed by a combination of factors: in the case 
of a human agent, for example, the subject’s internal model of motor control (including its 
dynamics features, such as mass distribution, geometry, joint and actuation limits), the 
given task requirements, and the constrained environment will synergistically affect the 
spatial limits W(s) observed during the actual trials. As opposed to Equation (4), the spa-
tial limits W(s) in the stochastic model are not assigned a priori; they will be the result of 
both internal and external constraints to the motor task and are indicated in this study as 
“affordance limits” of the combined agent-environment system. 

Let us consider a series of spatial trajectories , 	 = 	1, … , , with average ̅, ob-
served for a given agent in n trials of a generalized reaching motor task under the same 
average speed and environmental conditions (Figure 2). Without loss of generality, a two-
dimensional task is considered, with the end-effector moving in the (x, y) plane. 

 
Figure 2. Observed trajectories (t1,t2,…, tn) of an agent and related average trajectory ̅. 
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The above Index of Difficulty (IDt) is a purely geometric measure derived from
information theory and is uniquely dependent on the prescribed spatial trajectory and
relative constraints. It can be applied to any nominal trajectory that travels within a tunnel
of variable width, W(s), during a generic motor task. A narrow tunnel width leads to
increased trajectory difficulty. However, this geometric model does not include specific
information on the agent (e.g., human, robot) and its end-effector (e.g., hand, finger, foot)
employed in the motor task. Therefore, Equation (4) does not capture important differences
in agents’ dynamics and motor control ability that may affect the perceived difficulty (hence
affordance) of a certain constrained motor task.

In this study, the geometrical IDt (Equation (4)) is adopted to formulate a novel
information-based stochastic model of generalized reaching task difficulty for a specific
agent. A generalized reaching task is defined herein as the movement of a given end-
effector of a specific agent, with desired initial and final end-effector positions. When a
given agent performs multiple trials of a generalized reaching motor task, the observed
trajectories of the end-effector will vary stochastically, due to motor noise [28,29]. In
particular, the observed trajectories at given speed and environmental conditions will be
enclosed within spatial limits W(s) that are governed by a combination of factors: in the
case of a human agent, for example, the subject’s internal model of motor control (including
its dynamics features, such as mass distribution, geometry, joint and actuation limits), the
given task requirements, and the constrained environment will synergistically affect the
spatial limits W(s) observed during the actual trials. As opposed to Equation (4), the spatial
limits W(s) in the stochastic model are not assigned a priori; they will be the result of
both internal and external constraints to the motor task and are indicated in this study as
“affordance limits” of the combined agent-environment system.

Let us consider a series of spatial trajectories tk, k = 1, . . . , n, with average t, ob-
served for a given agent in n trials of a generalized reaching motor task under the same
average speed and environmental conditions (Figure 2). Without loss of generality, a
two-dimensional task is considered, with the end-effector moving in the (x, y) plane.

Let p(s) = p(x(s), y(s)) be the point of t at the curvilinear abscissa s. The segment
orthogonal to the tangent line at p(s) intersects the k-th trajectory at qk(s) = (xk(s), yk(s))
and identifies the distance dk(s) between the two points (Figure 2). For a given p(s), the
stochastic variable dk(s), representing the local distance between the observed and average
trajectory, is distributed according to a probability density function. The local affordance
limits observed at point p(s) due to the variability of the agent’s behavior are modeled
by W(s, ϕ), which is the variability range of dk(s) at a probability ϕ (Figure 3). Within the
limits of W(s, ϕ), the generalized reaching movement is considered affordable for the agent,
at the given probability level. When dk(s) is normally distributed with zero mean value,
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i.e., dk(s) ∼ N(0, σ(dk(s))), the sample standard deviation calculated on n trial trajectories
observed is:

σ(dk(s)) =

√
1

n− 1
·

n

∑
k=1

(
(xk(s)− x(s))2 + (yk(s)− y(s))2

)
(5)
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Under this hypothesis, the range of variability of dk(s) identified as the affordance
limits of the agent-environment system, results as follows:

W(s, ϕ) = 2 · z · σ(dk(s)) (6)

where the z scores of the unit-normal curve depend on the ϕ value (z = 1 for ϕ = 0.6827;
z = 2 for ϕ = 0.9545; z = 2.066 for ϕ = 0.9600; z = 3 for ϕ = 0.9973).

Under the assumptions made, and based on Equation (4), the Index of Difficulty
IDagent

(
t, ϕ
)

of an agent with observed average trajectory t is defined for a given probability
value ϕ, as follows:

IDagent
(
t, ϕ
)
=
∫

t

ds
W(s, ϕ)

(7)
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where, W(s, ϕ) is given by Equation (6) and ds is the infinitesimal length of the average
spatial trajectory t. This cumulative index captures, in a probabilistic way, the agent-
specific difficulty of the overall generalized reaching task, from initial to final position.
The stochastic Index of Difficulty can also be calculated at the generic point of the curved
path p(s) = p(x(s), y(s)) ∈ t, as follows:

IDagent(x, ϕ) =
∫ x

x0

1
W(x′, ϕ)

·

√
1 +

(
dy
dx′

)2
· dx′ (8)

where the infinitesimal length of the curved path has been rewritten as ds =

√
1 +

(
dy
dx

)2
dx

and x0 is the x coordinate of t for s = 0. This second formulation (Equation (8)) captures
the agent-specific level of difficulty “locally”, i.e., for a given portion of interest of the
motor task.

It should be noted that the hypothesis of normality of dk(s) does not limit the general
validity of the model; different probability density functions dk(s) at each point of the
average trajectory can be assumed. For example, when dk(s) follows a uniform probability
density function, it can be easily demonstrated that the affordance limits in the model can
be identified by the variability range W(s, ϕ) = 2 ·

√
3 · σ(dk(s)) · ϕ.

Due to its high number of degrees of freedom, the motor-control system of an agent has
the possibility to exploit motor redundancies at the end-effector when performing repetitive
movements, which can result in an increased variability observed during repeated trials of
the same motor task [30]. A reduced level of redundancy in a generalized reaching task
can be representative of a reduced affordance resulting from the interactions between the
agent’s dynamics and the constrained environment. In the proposed model, a reduced
affordance is mainly captured by smaller limits W(s, ϕ), which are associated with a higher
Index of Difficulty. Conversely, the agent-specific difficulty of a generalized reaching task
(or a portion of it) is small when the combined agent-environment system shows increased
affordance, by taking advantage of the motor redundancies. The variability–difficulty
relationship given by the model and its proposed redundancy-affordance interpretation is
in line with the alternative view on motor redundancy, called the principle of abundance,
which considers the redundant degrees-of-freedom to be useful and even vital for many
aspects of motor behavior [31].

3. Application of the Stochastic Model to an Example Motor Task

The general model proposed is valid for any generalized reaching motor task observed
at a generic end-effector (e.g., foot, hand) of a moving agent (e.g., human, robot). In this
study, the stochastic difficulty model is demonstrated for the gait of healthy human subjects
of different age groups, where the rhythmic stride movement is considered as an example of
a generalized reaching motor task. In this example, the ankle of the swing foot is considered
as the agent’s end-effector that during each stride of the gait cycle follows a repetitive
spatial trajectory, traveling a distance equal to the stride length along the direction of
forward progression [32]. The experimental dataset, publicly available in [33], consists of
the subjects’ kinematics captured during multiple overground walking trials at three speed
levels: slow, comfortable, and fast. The dataset also provides information about sex and
age of subjects and their anthropometric features (mass, height, and legs’ length).

Numerical Evaluation of the Index of Difficulty IDagent for a Single Elderly Subject

The proposed model of agent-specific Index of Difficulty is tested on one human
subject (male, 61 years old) walking at fast speed level (average speed of 1.584 m/s).
The spatial trajectories of the swing foot’s ankle are recorded over 11 walking trials and
projected onto the anatomical sagittal plane (x, y), where the x coordinate indicates the
direction of the forward gait progression and the y coordinate indicates the direction normal
to the ground. The trajectory followed by the ankle during the second stride of each k-th
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walking trial (k = 1–11) is sampled and averaged for the analysis of task difficulty (Figure 4).
The stride motor task of a given leg is modelled as a generalized reaching task starting from
the instant of “flat foot” (i.e., the foot is still in full contact with the ground, right before the
swing phase) and terminating at the instant of “heel strike” (i.e., when the same foot makes
the new contact with the ground, terminating the swing phase). Each trajectory is observed
from a local reference frame located at the ankle of the foot at the initial time (i.e., at the flat
foot condition). This allows for the quantification of the trajectory variability’s effect on the
net increase of affordance limits in the direction of forward progression, which leads to the
variability in the reaching target x-position (i.e., stride length variability).
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difficulty is allocated in the first quarter of the trajectory, from flat foot to the point of
maximum swing foot height (Figure 4). Towards the end of this phase, the end-effector
affordance of the subject improves, as shown by the decreasing derivative of IDagent(x, ϕ).

In the second phase (400 < x < 1200 (mm)), 25% of the total task difficulty is realized
during the central portion of the trajectory, in which the swing foot is moving from a
point of maximum to minimum height, while traveling about 50% of the total stride
length. In this phase, the rate of increase of IDagent(x, ϕ) is approximately constant, with
affordance limits W(x, ϕ) first increasing, reaching a maximum at about half of the stride,
and then decreasing. In this phase, the subject’s affordance in motor task execution is on
average constant, demonstrating his potential to control his movements in a more flexible
(redundant) way. The combination of the variability range of trajectories (W(x, ϕ)), that is
constant on average, and the linear increase in the forward path (dx) results in an effectively
constant task difficulty.
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average speed of 1.584 m/s.

Finally, in the last quarter of the stride (1200 < x < 1600 (mm)), i.e., the last 25% of the
travelled distance, the subject is employing 25% of the total task difficulty. The IDagent(x, ϕ)
shows first a high rate of increase, due to the rapid decrease of trajectories variability and
affordance while the foot prepares for the upcoming contact with the ground; then, as
the end-effector approaches the trajectory endpoint (x ∼ 1600 [mm]), the IDagent(x, ϕ)
derivative decreases due to a higher variability of trajectories.

Evaluating the ratio between the percent increase of the ID and the percent increase
of distance travelled in each of the three phases of the task (2, 0.5, and 1, respectively), it
can be noted that the stride movement of the given subject is characterized by consecutive
phases at high, low, and intermediate level of difficulty, respectively. The overall trajectory
variability range, from initial to final point, leads to a stride length variability of 7 cm
observed for this subject at the given walking speed.

The example results presented above are the proof-of-concept demonstration of the
stochastic model proposed for task difficulty and its ability to describe the level of affor-
dance and difficulty of a given agent during different phases of the task. This applica-
tion represents an example of how the model can be used for benchmarking important
subject-specific motor performances (i.e., affordance and difficulty) during a generalized
reaching motor task and for quantifying the variations of such performances when the
agent–environment conditions are altered (e.g., reduced subject’s strength, variable task
speed, etc).

4. Statistical Analysis on the Index of Difficulty IDagent for Differently Aged Subjects

The walking trajectories of 34 subjects have been analyzed at the slow, comfortable,
and fast speed levels. The subjects are grouped into “Young” (21–37 years, N = 20) and
“Old” (50–73 years, N = 14) age groups. Each subject performs an average of nine walking
trials per speed level. The second stride of each trial is sampled to avoid non-steady gait
effects and averaged for each subject and each speed condition. The stochastic model of
task difficulty IDagent(x, ϕ) has been evaluated for the considered motor task, demonstrat-
ing the proposed agent-specific index’s capability of capturing statistical differences in
compared populations.

The cumulative index IDagent(x, ϕ) profiles for each subject are shown for the “Young”
and “Old” groups at perceived walking speed levels “Slow” and “Fast” (Figure 6). Values
refer to probability level ϕ = 0.96 (i.e., z = 2.133).
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Figure 6. Index of Difficulty IDagent(x, ϕ = 0.96) calculated along the x coordinate of the swing foot trajectory in “Young”
(red lines, N = 20) and “Old” (blue lines, N = 14) subjects, for walking trials at “Slow” (a) and “Fast” (b) speed.

In both speed conditions, the elderly population shows a steeper increase in the Index
of Difficulty during the first part of the trajectory, compared to the young population;
this is a consequence of lower values of W(x, ϕ) for old subjects, who show a smaller
adaptation capability and, therefore, a lower affordance during the pre-swing phase of the
trajectory. Similarly, greater IDagent

(
t, ϕ
)

values for the overall trajectory are obtained for
the elderly subjects.

The average IDagent(x, ϕ) profiles have been calculated for the categories “Young”
and “Old”, at “Slow” and “Fast” speed levels (Figure 7). At each x value, a higher speed
leads to higher IDagent(x, ϕ) average values for both young and old subjects; higher speed
values also lead to greater stride length.
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A mixed-design analysis of variance (ANOVA) is conducted to assess the effects of
age and speed on the Index of Difficulty of each trajectory IDagent

(
t, ϕ
)
. The age group

is defined as the “between-subjects” factor and the speed condition is defined as the
“within-subjects” factor.
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Prior to the ANOVA, both between-subjects and within-subjects assumptions are
checked. All subjects are independent from each other. The Shapiro–Wilk test is used
to determine whether each subset of data (according to the categorization from Table 1)
is approximately normal; the older subjects within the slow condition did not meet this
assumption (p = 0.018). Aside from this subset, the remainder of the dataset is approxi-
mately normally distributed. The ANOVA is typically robust to violations of normality,
and therefore the analysis was pursued even though one subset of the data did not meet the
assumption. The variances are tested using the Levene’s test, where it is confirmed that the
variances among both age groups for each speed condition are approximately similar (Slow
vs. Age: p = 0.789 > 0.05; Fast vs. Age: p = 0.701 > 0.05). The within-subjects assumptions
are also met: each subject participated in both the slow and fast speed conditions, the total
number of subjects (N = 34) is large enough to assume normality, and sphericity can be
assumed since there are only two conditions.

Table 1. Sample size for the mixed design ANOVA.

Slow Fast

Young N = 20 N = 20
Old N = 14 N = 14

The mixed-design ANOVA reveals a significant within-subjects effect of speed
(F(1,32) = 73.71, p < 0.001) and between-subjects effect of age (F(1,32) = 14.70, p < 0.001)
on IDagent

(
t, ϕ
)
. An interaction between both factors (F(1,32) = 4.38, p < 0.05) is also ob-

served. To further examine the significance, four post-hoc tests are conducted, where two
independent-samples t-tests are used to determine the between-subjects significance of age
and two paired-samples t-tests are used to determine the within-subjects significance of
speed conditions (Figure 8). Post-hoc independent-samples t-tests, using the Bonferroni
correction (α = 0.05/4 = 0.0125), confirmed that the IDagent

(
t, ϕ
)

of the two age groups did
differ during the slow condition (t(32) = 2.65, p = 0.01248) and during the fast condition
(t(32) = 3.47, p < 0.002), with higher IDagent

(
t, ϕ
)

values in the older subjects. Post-hoc
paired t-tests, using the Bonferroni correction (α = 0.05/4 = 0.0125), confirmed that the
IDagent

(
t, ϕ
)

of each age group did differ significantly (young: t(19) = −4.94, p < 0.001; old:
t(13) = −7.23, p < 0.001) across the two within-subjects conditions (slow vs. fast).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 15 
 

checked. All subjects are independent from each other. The Shapiro–Wilk test is used to 
determine whether each subset of data (according to the categorization from Table 1) is 
approximately normal; the older subjects within the slow condition did not meet this as-
sumption (p = 0.018). Aside from this subset, the remainder of the dataset is approximately 
normally distributed. The ANOVA is typically robust to violations of normality, and 
therefore the analysis was pursued even though one subset of the data did not meet the 
assumption. The variances are tested using the Levene’s test, where it is confirmed that 
the variances among both age groups for each speed condition are approximately similar 
(Slow vs. Age: p = 0.789 > 0.05; Fast vs. Age: p = 0.701 > 0.05). The within-subjects assump-
tions are also met: each subject participated in both the slow and fast speed conditions, 
the total number of subjects (N = 34) is large enough to assume normality, and sphericity 
can be assumed since there are only two conditions. 

Table 1. Sample size for the mixed design ANOVA. 

 Slow Fast 
Young N = 20 N = 20 

Old N = 14 N = 14 

The mixed-design ANOVA reveals a significant within-subjects effect of speed 
(F(1,32) = 73.71, p < 0.001) and between-subjects effect of age (F(1,32) = 14.70, p < 0.001) on ( ̅, ). An interaction between both factors (F(1,32) = 4.38, p < 0.05) is also observed. 
To further examine the significance, four post-hoc tests are conducted, where two inde-
pendent-samples t-tests are used to determine the between-subjects significance of age 
and two paired-samples t-tests are used to determine the within-subjects significance of 
speed conditions (Figure 8). Post-hoc independent-samples t-tests, using the Bonferroni 
correction (α = 0.05/4 = 0.0125), confirmed that the ( ̅, ) of the two age groups did 
differ during the slow condition (t(32) = 2.65, p = 0.01248) and during the fast condition 
(t(32) = 3.47, p < 0.002), with higher ( ̅, ) values in the older subjects. Post-hoc 
paired t-tests, using the Bonferroni correction (α = 0.05/4 = 0.0125), confirmed that the ( ̅, ) of each age group did differ significantly (young: t(19) = −4.94, p < 0.001; old: 
t(13) = −7.23, p < 0.001) across the two within-subjects conditions (slow vs. fast). 

 
Figure 8. Mean values of ( ̅, )	in each group at slow and fast speed conditions. Error bars 
show SEM (Standard Error of the Mean). Single asterisk indicates significant difference between 
young and old groups during slow speed condition, p < 0.0125. Double asterisks indicate signifi-
cant differences across speed conditions for both age groups and a significant difference between 
young and old groups during fast speed condition, p < 0.002. 

Figure 8. Mean values of IDagent
(
t, ϕ
)

in each group at slow and fast speed conditions. Error bars
show SEM (Standard Error of the Mean). Single asterisk indicates significant difference between
young and old groups during slow speed condition, p < 0.0125. Double asterisks indicate significant
differences across speed conditions for both age groups and a significant difference between young
and old groups during fast speed condition, p < 0.002.
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In Table 2, the age and average speed of each subject walking at different speed levels
obtained by the publicly available dataset [33] are shown.

Table 2. Age and average speed of each subject at different speed level (Slow, Comfortable, and
Fast) calculated from [33]. For each speed level, the average speed is calculated across all trials of
each subject.

Speed (m/s)

Group Age Subject Slow Comfortable Fast

Young

25 1 0.824 1.245 1.544
22 2 0.879 1.207 1.446
33 3 0.659 0.929 1.233
24 4 0.880 1.233 1.585
25 5 0.890 1.276 1.474
25 6 0.824 1.113 1.514
31 7 0.912 1.206 1.759
32 8 0.902 1.289 1.553
24 9 0.715 1.066 1.353
36 10 0.964 1.275 1.759
24 11 0.732 1.082 1.343
23 12 1.056 1.404 1.821
31 13 0.724 1.141 1.414
28 14 0.956 1.295 1.600
28 15 0.851 1.262 1.588
29 16 0.791 1.128 1.530
21 17 0.910 1.203 1.638
25 18 1.085 1.366 1.615
28 19 1.024 1.264 1.598
37 20 0.716 0.996 1.214

Old

57 21 0.911 1.296 1.570
61 22 0.844 1.143 1.584
71 23 0.943 1.284 1.517
58 24 0.724 1.082 1.277
68 25 1.029 1.234 1.542
59 26 0.978 1.317 1.517
50 27 0.868 1.146 1.406
63 28 0.726 1.154 1.302
62 29 0.737 0.997 1.286
63 30 1.040 1.269 1.569
55 31 0.751 0.994 1.343
61 32 0.904 1.266 1.498
63 33 0.839 1.159 1.498
73 34 0.760 1.011 1.376

At given probability ϕ, the IDagent(t, ϕ) values have been calculated for each subject
of given age in all speed conditions obtaining the following regression model:

IDdyn(ϕ, Speed, Age) = aϕ · Speedα + bϕ · Ageβ (9)

with:

• “Age” = age of the subject;
• “Speed” = average speed of the subject in performing a trajectory at a given speed condition;

• aϕ = aϕ1 ·
z(ϕ1)
z(ϕ)

• bϕ = bϕ1 ·
z(ϕ1)
z(ϕ)

where:

• (aϕ, bϕ) are the regression parameters obtained for a probability value of ϕ;
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• z(ϕ) is the generic z-score of a unit normal distribution corresponding to a generic
probability value of ϕ;

• z(ϕ1) is the reference z-score of a unit normal distribution corresponding to a proba-
bility value of ϕ1: the k-th trajectory of a subject meets, with probability ϕ1, the spatial
constraint of width 2·z(ϕ1)·σ(di,k) at the i-th point pi ∈ t. ϕ1 is a reference probability
value; we set ϕ1 = 0.6827 (i.e., z(ϕ1) = 1);

• (α, β) are the regression parameters which proved, in the dataset considered, not
varying with probability ϕ values.

The regression parameters obtained are shown in Table 3.

Table 3. Regression parameters’ values of Equation (9).

ϕ z(ϕ) aϕ bϕ α β R2 p-Value

0.68 1 88.60 11.85 1.3898 0.5364 93.35% <0.001

In Figure 9, IDagent(ϕ, Speed, Age) is plotted against the age of the subjects for differ-
ent speed and ϕ values.
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As previously noted, for a given probability ϕ, IDagent increases with the age and
speed. Higher IDagent values are observed for higher speed and lower probability values,
indicating that the subject has less redundancy in executing trajectories. This proves the
effectiveness of the regression models in capturing IDagent’s major dependency on age and
average speed, as already observed in the previous statistical analysis. Such a result is
strictly referable to the dataset adopted. However, the approach proposed is of general
validity and could be applied to different motor tasks.

The IDagent model (Equation (8)) shows to be effective in describing the complexity
of trajectories observed and IDagent can be adopted as an affordance measure of a subject
executing trajectories. Such a conclusion is confirmed by comparing the IDagent with the
Geometric Index of Entropy (GIE) proposed in the literature (Equation (2)).

The comparison between the IDagent and the GIE is carried out. By adopting the
same dataset of relation (9), GIE values are calculated, and the following regression model
is obtained:

GIE = 0.0069 · Speed0.4958 + 0.0119 · Age0.3505 (10)

with R2 = 34.22% and p-value > 0.2. The poor statistical significance of the regression
expresses a significantly lower capability of GIE, in comparison with IDagent, in catching
statistical affordance of differently aged subjects in executing a motor task along a trajectory
at different average speed. This is due to the different nature of the compared affordance
indexes. On the one hand, the GIE refers to the length and to the convex hull of the trajectory
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neglecting its shape: differently shaped trajectories having the same length and convex
hull can have the same GIE. On the other hand, the peculiarity of the IDagent definition
refers to specific trajectory’s shape and length. Furthermore, IDagent also considers the
stochastic variability range at each point of the trajectory which is an essential information
for affordance evaluations we carried out by the proposed model.

5. Conclusions and Further Research

This study deals with affordance measures of observed reaching motor tasks executed
by subjects. The issue is of great scientific and industrial interest as it pertains the ability of
a human agent with given dynamic features to accomplish different trajectories constrained
by the environment (external constraints) and by internal constraints (features of the
agent). To this purpose, the authors propose an analytical stochastic model to calculate
a new Index of Difficulty IDagent extending the deterministic formulation of the Index of
Difficulty, IDt, proposed in the literature [25]; IDt was originally defined as being dependent
on only the geometry of a spatially constrained trajectory. On the contrary, stochasticity
of the phenomenon has to be considered for taking into account of the natural variability
of subjects in following different trajectories for an assigned reaching motor task in a
given environment.

The model proposed has been applied to an available dataset of differently aged
subjects, each of them having known features such as mass and leg length, executing a
trajectory in a given environment. We proved the proposed Index of Difficulty, IDagent,
being an effective measure to capture the stochastic complexity of a general spatially
constrained trajectory or parts of it. The model revealed a strong statistical dependency of
IDagent on age and average execution speed of the subjects.

A statistical analysis (mixed design ANOVA and post hoc tests) provided significant
differences in the average IDagent for “Young” vs. “Old” subjects, and, for each age
class, for “Slow” vs. “Fast” average speed. A regression model confirms the significant
dependency of IDagent of a subject on age and speed execution. The results obtained are
strictly referable to the dataset considered. However, the approach and model proposed
are of general applicability.

A current limitation of the proposed model (Equations (7) and (8)) is the assumption
of two-dimensional trajectories. This assumption is valid in many practical cases, such as
walking, where the foot end-effector movement is mostly contained in the sagittal plane [34],
or in object manipulation for industrial settings where the hands of the operator move in
the horizontal plane (like the positioning of a component or a fixture on a horizontal work
surface area). Future research will focus on extending the model to a three-dimensional
trajectory. The extension will further enable the applicability of the model to real cases.

In biomechanics, the model proposed could be adopted to appreciate differences in
motion affordance of observed trajectories for different parts of the human body. Clinically,
the model can provide quantitative estimations in affordance improvements of a subject
participating in a rehabilitation program by executing the same reaching motor task,
allowing for the analysis of the subject’s improvement after the program.

During a general task, humans are able to demonstrate variability while maintaining
robust control over their motion due to redundancies that exist within these tasks [35]. In
this regard, the Index of Difficulty suggests a novel additional perspective to understand
the nature and effects of trajectory variability, which cannot only predict motor impairment
as it is usually considered, but it can also be a measure of redundancy exploitation and be
an indicator of optimal motor control. Within the working environment, the model could
be usefully applied to investigate affordance of subjects in executing reaching motor tasks
by upper limbs. The model proposed can provide quantitative affordance evaluations
on capability of workers in carrying out working tasks and related improvements due to
workers’ training.
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