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Abstract: The scarcity of balanced and annotated datasets has been a recurring problem in medical
image analysis. Several researchers have tried to fill this gap employing dataset synthesis with adver-
sarial networks (GANs). Breast magnetic resonance imaging (MRI) provides complex, texture-rich
medical images, with the same annotation shortage issues, for which, to the best of our knowledge,
no previous work tried synthesizing data. Within this context, our work addresses the problem of
synthesizing breast MRI images from corresponding annotations and evaluate the impact of this data
augmentation strategy on a semantic segmentation task. We explored variations of image-to-image
translation using conditional GANs, namely fitting the generator’s architecture with residual blocks
and experimenting with cycle consistency approaches. We studied the impact of these changes on
visual verisimilarity and how an U-Net segmentation model is affected by the usage of synthetic data.
We achieved sufficiently realistic-looking breast MRI images and maintained a stable segmentation
score even when completely replacing the dataset with the synthetic set. Our results were promising,
especially when concerning to Pix2PixHD and Residual CycleGAN architectures.

Keywords: breast; semantic segmentation; generation; MRI; label map; data augmentation; synthetic
data; generative adversarial network; U-Net

1. Introduction

Coping with small and poorly annotated datasets has been a recurring problem
for medical image analysis researchers, limiting their success in validating supervised
learning algorithms for real-life use. The paucity of comprehensive and annotated medical
data is due to several factors: acquiring medical images often involves expensive and
invasive procedures, and annotating them is a time-consuming task that requires the
labor of experienced specialists. Additionally, these datasets are often unbalanced and
lack variability since abnormal exams are captured less frequently than normal ones,
contributing to unsatisfying performances in classification tasks.

Images produced by traditional data augmentation techniques (e.g., rotation, transla-
tion, crop, shear) are often highly correlated with the already available ones, which makes
this strategy insufficient to counteract the consequences of data scarcity. Furthermore,
most of these alterations compromise the expected anatomy structure and positioning,
producing unexpected or even distorted outcomes, which will be inadvertently and erro-
neously learnt. This, together with the data needs that accompanied the expansion of Deep
Learning, served as motivations for the development of techniques to generate meaningful
synthetic data and fast-forwarded research on this topic in recent years. One of the most
promising approaches that emerged from that research is Generative Adversarial Net-
works (GANs) [1], which was already shown to be successful for the synthesis of natural
images [2] and for super-resolution tasks [3].
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The use of GANs to generate medical images is recent and, as such, to this date,
only a limited set of imaging modalities and applications was explored. Still, important
studies emerged over the past few years. Several works concerning the conversion across
different parameter series or even whole imaging modalities have been proposed, such
as from MRI to Computed Tomography (CT). Examples of MRI to CT conversion are
classical GANs, trained with patches of images and applied in Auto-Context models [4,5],
and the usage of the CycleGAN to deal with unregistered datasets [6]. The CycleGAN
is also used for multi-contrast MRI synthesis (T1 to T2 weighted conversion and vice
versa) [7]. Lastly, the conversion of T1 and T2 weighted MRI images into corresponding
magnetic resonance angiography representations was explored through the application of
the steerable GAN, a variant of the PatchGAN which applies a steerable filter loss [8]. Other
relevant applications of GANs to medical images include the usage of deep convolutional
GANs for the generation of fake tumors in liver CT [9] and in multi-sequence brain MRI [10].
A super resolution GAN variation was also proposed to increase the resolution of brain
MRI images [11]. Finally, MEDGAN [12], a cascade of U-Net blocks poses further material
to be inspired from.

Furthermore, of note is the image-to-image translation conditional GAN [13], known
as Pix2Pix, which has been applied for conversion between annotations and medical images.
This framework was used for the synthesis of abnormal brain MRI images from annotations
with a tumor label [14], and for the generation of retinal images from vessel masks [15].
A more recent work based on Contrastive Learning [16] has tried to both improve and
generalize the image synthesis approach by disregarding the bijective assumption implicit
in works using cycle-consistency and still avoid tailoring a loss function to the setup.

In this work, we explore how some generative adversarial networks can be used
for the synthesis of breast magnetic resonance images from corresponding annotations,
for data augmentation purposes. Additionally, we contribute to the answering of the
following questions:

• Generator architecture: what generator architecture can enable the synthesis of more
realistic images?

• Synthetic data effect: what amount and level of generative quality is enough for an
effective learning by a segmentation network?

For this synthesis task, we proposed two approaches with near equivalent outcomes: a
variant of the Pix2Pix framework that employs a generator with residual learning blocks, on
a forward-backward loop, as in a CycleGAN, and the use of a more complex, but forward-
only, approach named Pix2PixHD [17]. We have selected a U-Net architecture for the
semantic segmentation task. Both generative models seem to produce images with quality
comparable to the original. As the images are inherently fake, the concept of realism falls
under the confines of the overall physicality of the objects contained, namely the shape, size
and positioning of the anatomical structures, and the proximity to real MRI’s intensities
and textures. We evaluate the visual quality of the results with the Fréchet Inception
Distance [18] (FID), for texture, and the Structure Similarity Index (SSIM) [19] metrics, for
the remaining aspects. The usefulness of the synthetic images on an augmentation setup
is measured with the area focused Sørensen–Dice coefficient. The amount of synthetic
data necessary is evaluated by introducing fake images and ablating the real ones on the
segmentation training set, while the minimum level of quality required is obtained by the
use of differently performing synthsets.

2. Methods

Our work focuses on converting from the annotations’ domain, with anatomical
structures’ area, to single-channel, breast MRI slices. The specific variation of generator ar-
chitecture employed, though, is altered during the course of the experiments. Performance
is evaluated both at the end of the generative task, measuring its verisimilitude, and at the
end of the segmentation process.
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2.1. Segmenter U-Net

The U-Net [20] is a relatively ubiquitous segmentation architecture, as it focuses on
individual pixel contribution to a class-label instead of providing only a generalised class
for the image, as its contemporary networks. It consists of progressively contracting image
resolution steps, using pooling or down-convolutional layers (an encoder of sorts). It may
compensate that reduction by increasing the number of filter representations. When the
smallest representation is reached the complementary process is applied until the original
resolution is obtained (the decoder). The U-Net also has the particularity of employing skip
connections, that link each encoder layer’s output to the same level decoder input, con-
catenating both components. The network’s output can either be a complete image of the
output domain or a set of logits or probabilities of each pixel belonging to a particular class.

The version adopted in this work ends in a logit normalization step that rescales the
label probability to a sum total of 1. After these probability maps are obtained, the softDICE
loss is calculated.

2.2. Adversarial Generator

The base of our generator follows the Pix2Pix [13] framework, which is an embodi-
ment of a Conditional Generative Adversarial Network that aims at domain translation.
It presents a Conditional Generator Network (G) that produces fake images and a Discrim-
inator network (D) that tries to discern which images are fake and real from a set. Both
improve over time in a counterfeiter versus police fashion.

The Pix2Pix’s Generator used is of a U-Net architecture. Fakes are created by the G
and it learns via an adversarial loss ( the current accuracy of the D) and a more direct
loss such as L1 or L2. The D is a PatchGAN—a patch-wise, convolutional classifier that
averages over all individual patches their real or fake decisions. This setup somewhat
enforces a “form of texture/style loss”, which deals with high frequency components, not
tackled by L1 or L2.

2.2.1. Residual Block Pix2Pix Variation (ResGAN)

We did some changes to the generator architecture of the base Pix2Pix framework,
namely removing the U-Net skip connections and including a sequence of residual learning
blocks (as those in [21]) between the encoder and the decoder portions, as shown in Figure 1.
Considering the following notation:

• Ck: Convolution—Batch/Instance Normalization—ReLU with k filters;
• TCk: Transposed Convolution—Batch/Instance Normalization—ReLU, with k filters;
• Rk: Residual block consisting in Convolution—Batch/Instance Normalization—ReLU—

Convolution, with k filters for the input and output of all convolutions.
• Y×Bk: Block Bk repeated Y times, in series.

The generator architecture is the following:

C64-C128-C256-9×R256-TC128-TC64-C1

Figure 1. ResGAN architecture generator.

For C64 and C1 modules, the convolutions have a kernel size of 7× 7, a stride of 1 and
padding of 3, while all other convolutions have a kernel size of 3× 3, a stride of 2 and a
padding of 1. For C1, no batch normalization is used and the activation function applied is
the hyperbolic tangent.
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Throughout the rest of this article, we will refer to this model as ResGAN.

2.2.2. CycleGAN

The CycleGAN [22] is yet another iteration on the original Pix2Pix architecture, espe-
cially suited for datasets with unpaired domain samples. Knowing that the most common
situation with MRI datasets is not having the respective annotations, we experimented
with the cycle-consistency loss and framework to approach our task. The framework boils
down to a GAN design, similar to the one presented in ResGAN (Figure 1), with the added
complexity of duplicating the structure: two generators (Gxy & Gyx) and two discriminators
(Dy & Dx).

The concept behind it is to avoid having paired data by training a Conditional GAN
(Gxy & Dy) to translate the input X to the output domain Y, while a second, similar GAN
(Gyx & Dx) converts that output Y back to the original domain X (Figure 2). By providing
this closed loop processing scheme, one can add, to the classic loss, a cycle-consistency loss.
This is done by comparing the original input to its reconstruction using a L1 distance:

Lcyc(Gxy, Gyx) =Ex∼pdata(x)
[∥∥Gyx(Gxy(x))− x

∥∥
1

]
+

Ey∼pdata(y)

[∥∥Gxy(Gyx(y))− y
∥∥

1

] (1)

Figure 2. CycleGAN architecture diagram.

The authors of the CycleGAN also introduced the idea of identity loss—n autoencod-
ing loss component for the generator—with the goal of color correction.

The cycle consistency term is controlled by λ1, while the identity term is factored by
λ2, giving the full loss function present in Equation (2).

L (Gxy, Gyx, Dy, Dx) =LGAN(Gxy, Dy, X, Y) +LGAN(Gyx, Dx, Y, X)+

λ1Lcyc(Gxy, Gyx) + λ2Lid(Gxy, Gyx)
(2)

2.2.3. Pix2PixHD

Another approach towards better resolution generative setups came in the form of
Pix2PixHD [17]. This architecture with no cycle-consistency employed a more complex
generator of residual blocks and a multi-scale discriminator.

Figure 3 shows the generator architecture of Pix2PixHD. The generator network can
be divided into the global generator (G1) and the local enhancer (G2). The G1 follows the
pipeline of ResGAN (Figure 1), only differing by receiving a 2 times downsampled version
of the input and returning an image at that same decimated resolution.

The local enhancer, however receives the original input and reduces the resolution
to the same size of the decimated image using a C32-C64 front-end network. This other
partial output is summed element-wise with the last feature map from G1 (before the image
output), and fed to the G2 back-end network. This back-end processes the input with
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another series of residual blocks (3×R64 in our case) and finally outputs a generated image
after the transposed convolution, complementary to those of the G2 front-end (C32-C1).

Figure 3. Coarse-to-fine generator of pix2pixHD.

The discrimination component of the network is composed of 3 PatchGAN models, in
a pyramidal scheme (D1, D2 and D3). Each operates at a different resolution level, dealing
with data at the input scale (D1) and with downsampled versions of factors 2 (D2) and 4
(D3). Both real and synthetic images suffer this discrimination and the results are combined
to get a single adversarial loss.

This strategy was devised to avoid using a unique discriminator with a large receptive
field, which would be necessary for the intended image resolution. The usage of a deeper
architecture or larger convolutional kernels would translate to a larger model and induce
overfitting. It was also shown that the multi-scale discriminators avoid pattern repetition
over the images [17].

The reported Pix2PixHD loss function includes two additional terms, focusing on
feature matching and perceptual loss.

For the feature matching component, each intermediate feature map (D(i)) along each
discriminator scale (Dk) is obtained for an image. The loss consists of computing the L1
distance between the feature maps for a real image and a synthetic one. This loss is shown
in Equation (3).

LFM(G, Dk) = Ex,y

T

∑
i=1

1
Ni

[∥∥∥D(i)
k (x, y)− D(i)

k (x, G(x))
∥∥∥

1

]
(3)

Here, T is the total number of layers, and Ni is the number of elements of the ith layer.
The perceptual loss enforces a similar logic to that of the feature matching, however,

it makes use of the layer responses of the pre-trained VGG network [23]. The calculation
is done through Equation (4), where F(i) represents the ith layer with Mi elements on the
VGG network.

Lpercep(y, G) =
N

∑
i=1

1
Mi

[∥∥∥F(i)(y)− F(i)(G(x))
∥∥∥

1

]
(4)

The complete loss function is present in Equation (5).

L (G, Dk) = ∑
k=1,2,3

LGAN(G, Dk) + λ ∑
k=1,2,3

LFM(G, Dk) + λLpercep(y, G) (5)

2.2.4. Other Experiments with Losses

Several experiments were also conducted using FID and SSIM as alternative partial
losses of the generative training but found no particular enhancement. In fact, visual
fidelity tended to decrease, especially with the FID loss. Due to hardware limitations we
were not able to use both as partial losses simultaneously. As such, the usage of these
metrics was restricted to validation and testing tasks.

2.3. Evaluation Metrics

This work encompasses two stages: generation and segmentation. Thus, we employ
different metrics for evaluating the performance according to the stage. For the generation
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we use two metrics that measure slightly different aspects, the Fréchet Inception Distance
(FID) and the Structure Similarity Index Measure (SSIM). These have been applied in works
of similar context [3,7,11,12,16,18,24–26]. For semantic segmentation purposes we opt for
the DICE score.

We also experimented using Peak Signal to Noise Ratio [19]; however, throughout
the experiments we found it highly correlated with SSIM and, thus, we opted to ignore it
for brevity.

2.3.1. FID and SSIM

The FID [18] evaluates the generator’s performance by measuring the Fréchet distance
between two multivariate Gaussians, modeled by the 2048-dimensional activations of the
Inception-v3 pool3 layer for real and synthetic images. Equation (6) details the FID calcula-
tion, where Xr ∼ N (µr, Σr) and Xg ∼ N (µg, Σg) refer, respectively, to the activations of
the pooling layer mentioned above for real and fake images.

FID = ||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)
1/2) (6)

The FID has a lower bound of 0 but has no upper bound. A lower FID value will
indicate higher similarity between the real image and the corresponding synthetic one
and, therefore, a better synthesis quality. In [18], it is shown that FID is more robust to
noise and blurring than the Inception Score [27], besides also being more sensitive to mode
collapse and capable of evaluating intra-class variability. However, this metric depends of
the capabilities of the Inception network, it assumes that Gaussian distributions correctly
model the feature maps extracted and only takes into consideration the first two order
moments of the distributions, which may not be suitable approximations [28].

The SSIM [19] is a three-aspect metric that looks at the luminance distortion (l),
contrast distortion (c) and loss of structural correlation (s). Image distortions are less
noticeable on bright or textured regions. In turn, this drove the usage of luminance and
contrast distortion, respectively. The concept of close neighbouring pixels having high
interdependence is leveraged for estimating the structural aspect of objects.

For measuring the distance between two images ( f and g), each of the three aspects is
calculated as shown in Equation (7).

l( f , g) =
2µ f µg+C1

µ2
f +µ2

g+C1

c( f , g) =
2σf σg+C2
σf +σg+C2

s( f , g) =
σf g+C3

σf σg+C3

(7)

Here, µ f and µg refer to mean intensity values, σf and σg to the respective standard
deviation, σf g to the co-variance matrix, and C1 to C3 to arbitrary constants. Equation (8)
presents how to calculate the composite metric:

SSIM( f , g) = l( f , g)c( f , g)s( f , g) (8)

SSIM’s values range between −1 and 1, where 0 reports no correlation between the
images, 1 means equal images and −1 indicates that the structure is inverted.

2.3.2. Metrics Analysis

The particularity of FID not having an upper bound and the fact of values being
domain specific, motivated further study. To do so, we performed an analysis of the
metrics’ outcomes when applied between a reference image and that same image tampered
with specific artifacts. We seized the opportunity to also evaluate which types of artifacts
influenced the SSIM the most. Concretely, we transformed one image, from our breast MRI
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dataset, using an array of processing algorithms. The tamperings chosen reflect some of
the issues that may be found in artificial images, which are the following:

• T1—horizontal flip;
• T2—horizontal translation (20 pixels);
• T3—zoom (140%) and crop;
• T4—rotation (10º);
• T5—gamma correction (γ = 2.5), resulting in a lower intensity distribution;
• T6—gamma correction (γ = 0.5), resulting in a higher intensity distribution;
• T7—median blur (size 15× 15);
• T8—downsampling ( 1

4 factor) with aliasing, and resize, resulting in a blurry image;
• T9—Gaussian blur (σ = 2, kernel 13× 13);
• T10—salt and pepper noise.

Figure 4 show the reference and tampered MRI images. Respective FID and SSIM
values are presented in Table 1.

MRI

T1—H-flip T2—H-offset T3—zoom in T4—rotation T5—2.5
gamma

T6—0.5
gamma T7—Med. blur T8—Down

sampling
T9—Gauss

blur
T10—

Salt&Pepper

Figure 4. Reference and tampered MRI images.

Table 1. Reference metrics values for transformations: T1—H-flip, T2—H-offset, T3—zoom in, T4—
rotation, T5—2.5 gamma, T6—0.5 gamma, T7—Med. blur, T8—Down sampling, T9—Gauss blur,
T10—Salt&Pepper.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

FID↓ 49.84 69.89 92.63 129.4 107.2 133.3 229.0 273.1 293.8 367.1
SSIM↑ 0.615 0.528 0.547 0.582 0.744 0.766 0.814 0.845 0.838 0.117

SSIM—Structural Similarity Index, range −1 to 1, best is max, negative is inverted; FID—Fréchet Inception
Distance, range 0 to Inf, best is 0.

Table 1 shows FID scores between a range of 49 to 370, approximately. Against the MRI
reference, the horizontal flip (T1), horizontal translation (T2) and zoom (T3) transformations
produce FID values under 100, which we find low considering the observable FID range.
On the other hand, the SSIM for the same transformation resulted in values below 0.65.
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This is not surprising as SSIM is sensitive to the structure of the data and performing
flipping, translation, cropping or rescaling affects the co-variance matrix, and thus, those
properties. In fact, the 10% slight rotation (T4) also strongly influences SSIM (0.582) while
the increase in FID does not seem that substantial (129.4).

The gamma corrections (T5 and T6), that homogeneously alter the full image, have
considerably less of an impact on the SSIM than the previous affine changes (T1 to T4). This
may result from the fact that SSIM tries to normalize for overall image luminance, focusing
on the impact of localized distortions. Conversely, FID is slightly worse, as the squashing
or expansion of the pixel intensities changes more considerably than SSIM. However, this
T5–T6 impact on FID is comparable to the rotation test (T4), which leads to believe that
both SSIM and FID may not be rotation invariant.

We can also observe that the best SSIM values (T7 to T9) also correspond to higher,
and among the worst, FID scores. These different kinds of blur effects change very little
the structure of the data, hence also do not affect as much on the SSIM. Conversely, the FID
shows significant alterations (over 4 times the lowest FID) for this blurring sub-set.

Among the transformations tested, the one that both FID and SSIM clearly “agree”
that provokes significant changes is the Salt & Pepper noise addition (T10), where both
metrics scored worst.

In summary, SSIM can be safely used to focus on the correct structuring and placement
of the anatomy, while FID can complement SSIM on the measurement of the sharpness of
an image, looking at the high-frequency domain.

2.3.3. Pipeline DICE

A fairly common segmentation metric is the Sørensen–Dice coefficient which leverages
the intersection over union. DICE has many variations, namely on how to present a single
value when dealing with multiple labels, leaning more towards FP or FN (Tversky loss [29]).
There is a differentiable, and less penalizing option that deals with belonging probabilities,
rather than with label counts. We employ this softDICE [30] for evaluating the overall
performance of this multi-label segmentation task, both as a validation score and as a
training loss (1-score).

Even though we are aware of the issue softDICE presents as a learning loss [31], we
were forced to consider it, as certain labels are severely under-represented, both on the
frequency of occurrence within a patient’s volume and as the total area occupied. Previous
experiments using cross-entropy loss or regular DICE were found to be largely fruitless,
rendering segmentation outcomes that simply ignored those labels.

The segmentation network produces logits for each class/channel instead of probabil-
ities. To help the learning and inference process, we normalize ([0, 1]) these logits across
each pixel label logits, creating true label probabilities that are later fed to softDICE.

3. Experiments and Results
3.1. Experimental Setup

We trained the models on a GeForce RTX 2080 Ti with 11 GB, until no significant
qualitative differences were observed between the results of consecutive training iterations.
All code was developed in Python (3.6.9) using PyTorch (1.5.1), Torchvision (0.6.1) and
SciPy (1.5.1). The code is publicly available at INESC TEC’s public repository [32].

3.2. Dataset

The dataset used was provided by the BCCT.plan project (BCCT.plan—3D tool for plan-
ning breast cancer conservative treatment - NORTE-01-0247-FEDER-017688) and consists
of 27 T1-weighted thoracic MRI exams from breast cancer patients, obtained with a Philips
Ingenia 3.0T MRI scanner. Each exam comprises 60 gray-scale axial image slices, with a
3 mm thickness and a resolution between 550 and 750 pixels, squared (0.3–0.5 mm/pixel).

All exams have corresponding annotations consisting of label masks of the sternum,
clavicle, nipple, pectoral muscle and breasts, all drawn manually by experts. Additionally,
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we automatically generated a label for the area occupied by the thoracic cavity between the
rightmost and leftmost limits of the breasts label, to which we called Pleura, for convenience.
Without this extra label, despite having very different intensity distributions, the entire
thoracic cavity region and the background would have the same label, which would induce
artifacts in the synthetic images. Naturally, this is not an extensive anatomical annotation
as other potentially relevant structures are not finely marked, such as fibro-glandular tissue,
vascular networks, the heart, ribs or intercostal muscles. Figure 5 shows some examples of
the dataset for slices at the middle and the top of the torso.

MRI /Texture data Annotation labels Labels With Pleura

Figure 5. Examples from the Dataset, with background cropped for reader convenience.

Of the 27 available exams, 21 were assigned for the training set, 3 for the validation
set and 3 for test set. All images were cropped and padded into a square shape, excluding
most of the background area, and resized to 256× 256 pixels.

The generated synthetic magnetic resonance images have also 256× 256 pixels. For
brevity, we will be calling these datasets of fake data by synthetic sets or synthsets.

3.3. Experiments
3.3.1. MRI Generation

The main experiments focused on analyzing the generative capabilities of ResGAN,
CycleGAN and Pix2PixHD for our dataset. Apart from the initial hyper-parameter em-
pirical setting, we experiment with the variation of batch sizes (BS) and the inclusion of
Experience Replay [22].

Experience Replay consists of keeping an image buffer that desynchronizes the im-
ages that the Discriminator (D) and the Generator (G) receive on a given iteration. Most
importantly, this enables D to occasionally review images of older iterations in an effort
to keep it from overfitting to the current state of G. Batch size tests were done for G with
values 4, 8, 16, except for the CycleGAN architecture that had to be limited to one image
per batch. Experience replay tests were done with a pool of 32 images, however, for similar
hardware reasons, this test could not be performed coupled to Pix2PixHD.

All models were trained for 300 epochs, using a learning rate of 0.0002 for both the
generator and the discriminator. The learning rate stayed constant for the first 150 epochs
and was linearly decayed to 0 for the remainder epochs.

Of the experiments run, batch size 8 presented the best, or similar results to those of
BS 16. Table 2 presents the metrics for these best models, per architecture, while Figure 6
shows visual results.
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Table 2. Generation test results (170 images). Presents the minimum (⊥), mean (µ), standard
deviation (σ) and maximum (>) values of SSIM and the FID results for each network, with respective
batch sizes (BS).

SSIM↑ FID↓
⊥ µ σ ↓ >

Pix2PixHD BS8 0.778 0.849 0.041 0.951 167.0

ResGAN BS8 0.799 0.874 0.036 0.961 206.3

ResGAN BS8 + ExpReplay 0.798 0.873 0.036 0.960 213.8

CycleGAN BS1 + ExpReplay 0.764 0.844 0.041 0.953 157.4
SSIM—Structural Similarity Index, range −1 to 1, best is max, negative is inverted, averaged sample metric;
FID—Fréchet Inception Distance, range 0 to Inf, best is 0, set metric.

Input GT Pix2PixHD ResGAN CycleGAN

- - 0.753 0.799 0.742

- - 0.762 0.793 0.753

- - 0.863 0.877 0.863

Figure 6. Best visual test set generation results and respective SSIM. ResGAN and Pix2PixHD with
BS8. CycleGAN with BS1 and Experience Replay. More results on Appendix A Figures A1 and A2.

Although the objective of this work is to assess the effect of the synthetic images on
the segmentation task, we tried to push forward those generative results that were visually
closest to the original dataset. We largely assumed that a more faithful image set would
induce a more reliable segmentation model.

Among the first experiments, was the usage of the original Pix2Pix architecture and
its subsequent upgrading to a double GAN, cycle-consistent approach. The results for both
versions were unimpressive at best. The generated images consisted of intensity blurred
versions of the annotation-like input data, with no minimal texture similarity to that of the
target MRI. The D losses always managed to quickly go to zero, which signaled its inability
to properly enter an adversarial competition. We concluded that the U-Net skip connections
did more harm than good and the common loss functions used were not enough to sway
this architectural auto-correlatory bias. Here, the smaller scale nature of the residual blocks,
present in other of the Pix2Pix variants used, and the absence of those encoder-decoder
arching skip connections managed to produce more visually appealing results.
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We noticed that, for all the Pix2Pix based models used, the channel concatenation of
between the G input and the synthetic output was passed to the D’s input. We viewed
this scheme with the rationale of the discriminator not only distinguishing if the received
image is real or fake, but also as a task of verifying if that image is also truly matched with
the G original input. However, for our dataset, we did not find a particular decrement
when removing this feature. In fact, although, naturally the training loss increased with its
removal, as the constant half of the target was no more, the inference visual and quantitative
results remained similar.

In order to improve further the models, we started to employ several of the known
tricks for improving GAN training. Apart from the experience replay previously presented
(Section 3.3.1), we also examined the effects of label flipping, label smoothing and the
addition of gaussian noise to the discriminator input with subsequent decay during training.
We did not found their influence particularly relevant.

Finally, due to the nipple label being rather small and infrequent we also wanted
to gauge the effect of consider it the same label as breasts. We found that the generated
appearance was quite similar overall.

3.3.2. Semantic Segmentation

The segmentation part of the pipeline was performed over the original dataset, aug-
mented with the synthetic images alternatively coming from each of the generative models.
A factor of augmentation (p) was varied, ranging from just the original set (p = 0), to a set
with as much real as synthetic data (p = 0.5). A more in-depth study regarding the effects
of p is presented in Section 4.3.

Every model was trained for 75 epochs, using a learning rate of 0.0001. Like with the
generative models, the learning rate stayed constant for the first half of the epochs and was
linearly decayed to 0 for the remainder epochs.

The U-Net segmentation model resulted in the outcomes shown in Tables 3 and 4 and
Figure 7.

Table 3. Global segmentation test scores. Presents the minimum (⊥), mean (µ), standard deviation
(σ) and maximum (>) values of SSIM for the U-Net trained with the best synthset of each respective
generator. The best no augmentation baseline (No Aug) is also shown.

Synthset
Generator Best * p

DICE ↑
⊥ µ σ >

No Aug 0 0.495 0.806 0.079 0.949

Pix2PixHD 0.333 0.459 0.803 0.082 0.954

ResGAN 0.333 0.504 0.813 0.077 0.956

CycleGAN 0.15 0.483 0.813 0.081 0.957
p—augmentation factor: 0—only original set, 0.5—original and synth sets in 50/50; * Best during validation phase.

The original code from the U-Net used [33] employed a cross-entropy loss function.
We found that, due to the natural label imbalance of MRI volumes, cross-entropy loss,
along with the single channel multi-label approach was not reaching sufficient results. We
experimented briefly with cross-entropy loss coupled to a multi-channel output (a channel
per label) setup, but results were also lackluster. After that, we promptly changed to DICE
loss that yielded better results, and later to softDICE with the logit normalization trick
(Section 2.3), to enhance training nuances and enable quicker learning and more accurate
outcomes. Following this trajectory, and still somewhat concerned with balancing issues
during training, we looked into replacing the DICE with, the related, Tversky Loss [29]
(Section 2.3), tilting the overall metric towards False Negative reduction. With this we
aimed to compensate the less frequently appearing labels (≈10%). We found that, in our
setup, the Tversky loss did not provide significant change to results, and thus, we opted to
continue with softDICE.
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Table 4. Class-wise segmentation test scores. Presents the best DICE mean (µ) and standard deviation
(σ) results for the labels: Background, Breast, Pleura, Pectoral Muscle, Sternum and Clavicules,
respectively, for the augmentation experimental setups of each generator. The no augmentation
baseline (No Aug) is also shown.

Synthset
Generator Best * p

DICE

Bgd Breast Pleura Pect.M. Sternum Clav.

No Aug µ ↑ 0 0.976 0.946 0.637 0.669 0.777 0.497
σ ↓ 0.011 0.042 0.218 0.173 0.228 0.282

Pix2PixHD µ ↑ 0.333 0.976 0.945 0.652 0.625 0.808 0.440
σ ↓ 0.009 0.049 0.215 0.238 0.154 0.293

ResGAN µ ↑ 0.333 0.976 0.941 0.657 0.672 0.799 0.540
σ ↓ 0.010 0.061 0.199 0.198 0.187 0.330

CycleGAN µ ↑ 0.15 0.976 0.950 0.659 0.667 0.791 0.502
σ ↓ 0.011 0.040 0.204 0.198 0.230 0.284

p—augmentation factor: 0—only original set, 0.5—original and synth sets in 50/50; * Best during validation phase.

Input GT No augm. Pix2PixHD ResGAN CycleGAN

Figure 7. Best visual test results for the segmentation U-Net, trained with the respective synthsets
ResGAN and Pix2PixHD with BS8. CycleGAN with BS1 and Experience Replay. Further results on
Appendix A Figures A3 and A4.

An additional experiment coupled the DICE loss with a relevance map, in which we
weight differently regions of the label masks. We noticed that after the inclusion of the DICE
loss some, fairly obvious, breast label portions started to be classified as background. Some
holes started to appear in the middle of that label. On the other hand, the posterior regions
that also included breast and pleura labels were correctly being predicted, even though
the available labels did not include those portions. The model was correctly propagating
the concept. We wanted to reward this behaviour and punish the middle of breast hole
misclassification. To do so, we developed a relevance map, reducing the relative weight
of the posterior portions of background label, starting from the most posterior pleura
pixels. However, the visual outcomes did not provide obvious enhancements as this
tradeoff improved some cases but worsened others. We opted to discard this concept on
other experiments.

4. Discussion

Noticeably, the versions of the models we report in Section 2 generally contain less
layers and use inputs of lower resolutions than in the original papers. In part, this is related
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with the lower native resolution of our data. On the other hand, the equipment listed in
Section 3.1 limited the total number of parameters a model can leverage. These limitations,
as it turns out, happen to not hamper substantially and still enable to conduct this study.

4.1. Generation Results

We can observe that the overall SSIM values are quite similar along the multiple case
distribution. This seems to suggest that the structure and overall distortion nature is fairly
similar across the results. FID, however, tells another story. FID clearly sets apart the
highly complex Pix2PixHD and CycleGAN from the ResGAN experiments, which have
a distance increment of around 50. This suggests that the properties in which FID differs
from SSIM are those that change significantly between the approaches. Indeed, as Figure 6
confirms, the images of the single ResGAN generator present much more blurry content
than the others. In fact, among the methods tested, ResGAN presented a D training loss
that converged to zero. This suggests that the model by itself, with the available loss
function, was not able to maintain the adversarial nature, while G was also not able to keep
up with the D learning.

Concerning visual outputs, several additional details stand out. One of which is the
prediction of Pleura and Breast portions, missing from the label map at the posterior chest
zone. This produces a generated image very similar to the corresponding original MRI.
In fact, on the generated images, the more than occasional presence of the completely
unlabeled Latissumus Dorsi muscle can be observed on the bottom left and right image
portions. The Pleura regions typically present patterns similar to those appearing on the
training set, and, evidently, not replicating the respective original MRI image. However,
these extrapolations seem fairly natural, even sometimes presenting the small “whitish”
contours of the heart, at the center, on middle slices. The, also unlabeled, vascular network
and fibro-glandular regions, at the center of each breast, show intricate patterns of the
correct intensity levels, often mimicking the anatomy. On a final note, the generated images
also sometimes replicate the overarching intensity distortions that frequently occur. Some
of the most posterior portions present darker intensities, especially noticeable over the
breast contours, as the pictures in Figure 6 display on the bottom left corners.

4.2. Segmentation Results

The global segmentation results in Table 3 suggest that the augmentation produces
stable outcomes. In fact, all experiments with synthsets maintained their metrics to a
surprising degree, as all average scores are well within a standard deviation of each other.
Even the most changed scores—the minimum values—still have not changed significantly
from the no augmentation outcomes.

The class-wise results of Table 4 and the image outcomes in Figure 7 shed a light
on the focus of the network. It is immediately clear that the Background and Breast labels
are mostly well segmented, with DICE’s over 94% on all sets. The central small Sternum
area seems to be fairly well detected, or better put, when correctly identified, most of
its area is accurately found, with DICE around 78% and a bit higher standard deviation
(σ ≈ 0.2). Sometimes a central portion of the higher intensity Breast is confused for the also
relatively bright Sternum label. This can be seen on all results on Figure 7’s bottom images.
Pectoral muscle has slightly worse results. Though Pectoral muscle has visually appealing
detections, the model is prone to produce long and thin objects, where there should be
none, on slices under those that bear muscle (top images on Figure 7). It is also prone to
under-segment this muscle if it is particularly permeated with fat, as in the middle images
of Figure 7. Pleura’s metrics in Table 4 are in a tier similar to Pectoral muscle (≈65%), but
visual results point out at general over-segmentation as the labels provided commonly
are not extended to the bottom of the images. This, in our opinion, does not imply poor
performance from the model. On the other hand, in some cases across the augmented
set outcomes, the Pleura presents clustered regions that are classified as Background. An
example of these “holes” is shown on the first row ResGAN image, in Figure 7. This
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misclassification coupled with the expected extrapolation explains the numeric results.
Finally, the under-represented Clavicule label has, not surprisingly, the lower DICE values
(≈50%). These results tend to occur due to a homogeneous mix of failure to accurately
detect the object, spurious detections on incorrect places and confusion of other anatomical
structures as Clavicule. Example of this is the sometimes “spreading detection”, where the
correct object is erroneously propagated to an adjacent structure with similar textures and
intensities. The general delineation, however, is often very accurate.

Concerning an intra-synthset analysis, Table 4 seems to corroborate the findings from
Table 3, as there does not seem that the augmentation provides any substantial score change
between the options.

4.3. Model and Augmentation Stability

To understand the significance of the DICE metric differences within and between
models, we thought of analyzing the stability of the segmenter outcomes using multiple
random generation seeds. We aggregated the DICE values over 6 experiments, each with
its own seed, and along a specific augmented set. The sets presented correspond to the
pipeline that produced the best DICE scores for each generative model. Figure 8 shows
how the DICE varied according to both generative architecture change and seed change.

Figure 8. Segmentation model stability results—seed variation.

The results seem to indicate that the proposition of this kind of augmentation manages
to maintain the quality of results. While largely not hindering the generalisation process, the
case of CycleGAN stands out as consistently positive, even if only by a 1% improvement.

4.4. Effects of Synthetic Data

Since the main focus of this work is to evaluate the effects of data augmentation on
the training of the segmentation models, we perform a specific test: linearly increasing the
percentage of synthetic set that is included along with the real data. After this inclusion
peaks (p = 0.5) and the synthset becomes the same size as the real one, we freeze the
synthset and start reducing the amount of real data. This progresses until the real set is
completely removed and only synthetic data remains (p = 1).
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Figure 9 shows how this procedure affects the segmenter model’s DICE score. The
study was performed for the synthsets provided by the two visually best architectures: the
Pix2PixHD and CycleGAN.

Figure 9. Effects of augmentation (p = 0→ p = 0.5) and removal of real data (p = 0.5→ p = 1).

The progression of p tells an interesting story. Both augmentation sets seem to pro-
duce fairly consistent outcomes, despite the fact that we are progressively reducing the
contribution of the original set. By the p = 1 mark, the CycleGAN enhanced U-Net was
completely trained on synthetic data and only dropped under 3% from the original value
(p = 0). The Pix2PixHD even managed to improve a little. This is particularly interesting
as it suggests that, at least for this segmentation model, the generative properties passed
onto the synthset were enough for the segmentation model to be adequately trained.

4.5. Region Error Profiles

Due to the different anatomy and structure distributions present among the image
slices one could expect a similarly differential magnitude of errors along the slices. To
answer this claim, we provide a study of error distributions by slice height on the torso
(Figure 10). Slice 1 neighbours the limit between the abdominal and pulmonary regions,
while slice 60 corresponds to the end of upper torso, nearing the top of the clavicles and
the jugular notch.

The results across the models are of approximate levels between the whole volume. It
seems that the usage of DICE Loss for training the segmentation model managed to keep
the balance between the different labels.
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5. Conclusions

The availability of annotated datasets is a transversal problem in data science, in
particular when concerning medical related exams. Some works have already tried to
tackle this issue by approaching domain transfer tasks, employing generative adversarial
networks. This work presents an application of some of these GANs to obtain synthetic
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5. Conclusions

The availability of annotated datasets is a transversal problem in data science, in
particular when concerning medical related exams. Some works have already tried to
tackle this issue by approaching domain transfer tasks, employing generative adversarial
networks. This work presents an application of some of these GANs to obtain synthetic
MRI from label maps so to provide an augmentation dataset for segmentation purposes. We
study some particularities of these generative architectures, their outcomes and the effects
of these synthetic sets on the learning of a U-Net semantic segmentation network. We found
that Pix2PixHD and CycleGAN show promising results on replicating the complexities
of this MRI data, even with several degrees of freedom still remaining on the input label
maps. We found that the cycle-consistency nature of the CycleGAN, although a useful
setup, is not able to improve certain networks, such as the original U-Net based Pix2Pix.
We also observed that the high frequency detail was not determinant for the successful
segmentation of the label maps available and that Pix2PixHD and CycleGAN synthsets
managed to maintain the discrimination capability of the U-Net, even after training was
performed without the original set. The contributions made in this work are of practical
nature. We aim to more precisely expand our theoretical understanding in the future. For
future work we intend on introduce small manipulations of the existing annotation label
maps to obtain different pairs and enhance the diversity of the augmented dataset, also
leveraging a larger synthetic portion without removing the original data. An additional
path to follow involves the annotation and use of more detailed label maps, with finer labels
to assist to control the generation such as fibro-glandular tissue, vascular networks, the
heart, ribs or intercostal muscles. After this, we plan on further training the segmentation
network only on synthsets with larger sizes and evaluate its performance.
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Appendix A

Input GT Pix2PixHD ResGAN ResCycleGAN

- - 0.795 0.836 0.790

- - 0.757 0.796 0.759

- - 0.845 0.856 0.855

- - 0.756 0.796 0.744

- - 0.797 0.837 0.792

Figure A1. Further best visual test set generation results and respective SSIM. ResGAN and Pix2Pix-
HD with BS8. CycleGAN with BS1 and Experience Replay. Part 1.
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Input GT Pix2PixHD ResGAN ResCycleGAN

- - 0.845 0.859 0.847

- - 0.796 0.817 0.796

- - 0.747 0.771 0.750

- - 0.802 0.830 0.803

- - 0.857 0.872 0.855

Figure A2. Further best visual test set generation results and respective SSIM. ResGAN and Pix2Pix-
HD with BS8. CycleGAN with BS1 and Experience Replay. Part 2.
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Input GT No augm. Pix2PixHD ResGAN CycleGAN

Figure A3. Further best visual test results for the segmentation U-Net, trained with the respective
synthsets ResGAN and Pix2PixHD with BS8. CycleGAN with BS1 and Experience Replay. Part 1.
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Input GT No augm. Pix2PixHD ResGAN CycleGAN

Figure A4. Further best visual test results for the segmentation U-Net, trained with the respective
synthsets ResGAN and Pix2PixHD with BS8. CycleGAN with BS1 and Experience Replay. Part 2.
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