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Abstract: This paper presents a novel approach to continuous dynamic hand gesture recognition.
Our approach contains two main modules: gesture spotting and gesture classification. Firstly, the
gesture spotting module pre-segments the video sequence with continuous gestures into isolated
gestures. Secondly, the gesture classification module identifies the segmented gestures. In the gesture
spotting module, the motion of the hand palm and fingers are fed into the Bidirectional Long Short-
Term Memory (Bi-LSTM) network for gesture spotting. In the gesture classification module, three
residual 3D Convolution Neural Networks based on ResNet architectures (3D_ResNet) and one Long
Short-Term Memory (LSTM) network are combined to efficiently utilize the multiple data channels
such as RGB, Optical Flow, Depth, and 3D positions of key joints. The promising performance
of our approach is obtained through experiments conducted on three public datasets—Chalearn
LAP ConGD dataset, 20BN-Jester, and NVIDIA Dynamic Hand gesture Dataset. Our approach
outperforms the state-of-the-art methods on the Chalearn LAP ConGD dataset.

Keywords: continuous hand gesture recognition; gesture spotting; gesture classification; multi-modal
features; 3D skeletal; CNN

1. Introduction

Nowadays, the role of dynamic hand gesture recognition has become crucial in vision-
based applications for human-computer interaction, telecommunications, and robotics, due
to its convenience and genuineness. There are many successful approaches to isolated hand
gesture recognition with the recent development of neural networks, but in real-world
systems, the continuous dynamic hand gesture recognition remains a challenge due to the
diversity and complexity of the sequence of gestures.

Initially, most continuous hand gesture recognition approaches were based on tra-
ditional methods such as Conditional Random Fields (CRF) [1], Hidden Markov Model
(HMM), Dynamic Time Warping (DTW), and Bézier curve [2]. Recently, deep learning
methods based on convolution neural networks (CNN) and recurrent neural networks
(RNN) [3–7] have gained popularity.

The majority of continuous dynamic hand-gesture recognition methods [3–6] include
two separate procedures: gesture spotting and gesture classification. They utilized the
spatial and temporal features to improve the performance mainly in gesture classification.

However, there are limitations in the performance of gesture spotting due to its
inherent variability in the duration of the gesture. In existing methods, gestures are usually
spotted by detecting transitional frames between two gestures. Recently, an approach [7]
simultaneously performed the task of gesture spotting and gestures classification, but it
turned out to be suitable only for feebly segmented videos.

Most of the recent researches [8–11] intently focus on improving the performance of
the gesture classification phase, while the gesture spotting phase is often neglected on the
assumption that the isolated pre-segmented gesture sequences are available for input to
the gesture classification.
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However, in real-world systems, spotting of the gesture segmentation plays a crucial
role in the whole process of gesture recognition, hence, it greatly affects the final recognition
performance. In paper [3], they segmented the videos into sets of images and used them to
predict the fusion score, which means they simultaneously did the gesture spotting and
gesture classification. The authors in [5] utilized the Connectionist temporal classification to
detect the nucleus of the gesture and the no-gesture class to assist the gesture classification
without requiring explicit pre-segmentation. In [4,6], the continuous gestures are often
spotted into isolation based on the assumption that hands will always be put down at the
end of each gesture which turned out to be inconvenient. It does not work well for all
situations, such as in “zoom in”, “zoom out” gestures, i.e., when only the fingers move
while the hand stands still.

In this paper, we propose a spotting-classification algorithm for continuous dynamic
hand gestures which we separate the two tasks like [4,6] but we avoid the existing problems
of those methods. In the spotting module, as shown in Figure 1, the continuous gestures
from the unsegmented and unbounded input stream are firstly segmented into individually
isolated gestures based on 3D key joints extracted from each frame by 3D human pose
and hand pose extraction algorithm. The time series of 3D key poses are fed into the
Bidirectional Long Short-Term Memory (Bi-LSTM) network with connectionist temporal
classification (CTC) [12] for gesture spotting.
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The isolated gestures segmented using the gesture spotting module are classified in the
gesture classification module with a multi-modal M-3D network. As indicated in Figure 1,
in the gesture classification module, the M-3D network is built by combining multi-modal
data inputs which comprise RGB, Optical Flow, Depth, and 3D pose information data
channels. Three residual 3D Convolution Neural Network based on ResNet architectures
(3D_ResNet) [13] stream networks of RGB, Optical Flow and Depth channel along with
an LSTM network of 3D pose channel are effectively combined using a fusion layer for
gesture classification.

The preliminary version of this paper has appeared in [14]. In this paper, depth infor-
mation has been considered together with 3D skeleton joints information with extensive
experiments, resulting in upgraded performance.

The remainder of this paper is organized as follows. In Section 2, we review the related
works. The proposed continuous dynamic hand gesture recognition algorithm is intently
discussed in Section 3. In Section 4, the experiments with proposed algorithms conducted
on three published datasets—Chalearn LAP ConGD dataset, 20BN-Jester, and NVIDIA
Dynamic Hand Gesture Dataset are presented with discussions. Finally, we conclude the
paper in Section 5.
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2. Related Works

In general, the continuous dynamic gesture recognition task is more complicated than
the isolated gesture recognition task, where the sequence of gestures from an unsegmented
and unbounded input stream are separated into complete individual gestures, called
gesture spotting or gesture segmentation before classification. The majority of recent
researchers solve the continuous dynamic gesture recognition task using two separate
processes—gesture spotting and gesture recognition [1,4–6].

In the early years, the approaches for gesture spotting were commonly based on
traditional machine learning techniques for the time series problems such as Conditional
Random Fields (CRF) [1], Hidden Markov Model (HMM) [2], and Dynamic Time Warping
(DTW) [3]. Yang et al. [1] presented a CRF threshold model that recognized gestures based
on system vocabulary for labeling sequence data. Similar to the method introduced by
Yang, Lee et al. [2] proposed the HMM-based method, which recognized gestures by the
likelihood threshold estimation of the input pattern. Celebi et al. [3] proposed a template
matching algorithm, i.e., the weighted DTW method, which used the time sequence of the
weighted joint positions obtained from a Kinect sensor to compute the similarity of the two
sequences. Krishnan et al. [15] presented a method using the Adaptive Boosting algorithm
based on the threshold model for gesture spotting using continuous accelerometer data
and the HMM model for gesture classification. The limitations of these methods are the
parameter of the model has been decided through experience and the algorithm is sensitive
to noise. In the recent past, with the success of deep learning applications in computer
vision, deep learning approaches have been utilized for hand gesture recognition to achieve
impressive performance compared to traditional methods.

The majority of the methods using recurrent neural networks (RNN) [16–18] or
CNN [8,10,19–21] focus only on isolated gesture recognition, which ignores the gesture
spotting phase. After the dataset for continuous gesture spotting-Chalearn LAP ConGD
dataset was provided, a number of methods have been proposed to solve both phases
of gesture spotting and gestures recognition [3,4,6]. Naguri et al. [6] applied 3D motion
data input from infrared sensors into an algorithm based on CNN and LSTM to distin-
guish gestures. In this method, they segmented gestures by detecting transition frames
between two isolated gestures. Similarly, Wang et al. [3] utilized transition frame detection
using two streams CNN to spot gestures. In another approach proposed by Chai et al. [4],
continuous gestures were spotted based on the hand position detected by Faster R-CNN
and isolated gesture was classified by two parallel recurrent neural network SRNN with
RGB_D data input. The multi-modal network, which combines a Gaussian-Bernoulli Deep
Belief Network (DBN) with skeleton data input and a 3DCNN model with RGB_D data,
was effectively utilized for gesture classification by Di et al. [7]. Tran et al. [22] presented
CNN based method using a Kinect Camera for spotting and classification of hand gestures.
However, the gesture spotting was done manually from a pre-specified hand shape or
finger-tip pattern. And classification of hand gestures used only fundamental 3DCNN
networks without employing the LSTM network. The system is based on the Kinect system
and the comparison using a commonly used public dataset is almost impossible.

Recently, Molchanov et al. [5] proposed a method for joint gesture spotting and gesture
recognition using a zero or negative lag procedure through a recurrent three-dimensional
convolution neural network (R3DCNN). This network is highly effective in recognizing
weakly segmented gestures from multi-modal data.

In this paper, we propose an effective algorithm for both spotting and classification
tasks by utilizing extracted 3D human and hand skeletal features.

3. Proposed Algorithm

In this section, we intently focus on the proposed method using two main modules:
gesture spotting and gesture classification. For entire frames of continuous gesture video,
the speed of hand and finger estimated from the extracted 3D human pose and 3D hand
pose are utilized to segment continuous gesture. The isolated gesture segmented by gesture
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spotting module is classified using the proposed M-3D network with RGB, Optical flow,
Depth, and 3D key joints information.

3.1. Gesture Spotting

The gesture spotting module is shown on the left of Figure 1. All frames of continuous
gesture sequence are utilized to extract 3D human pose using the algorithm proposed
in [23]. Through RGB hand ROI localized from 3D hand palm position Jh(x,y,z) when
the hand palm stands still and over spine base joint, we use a 3D hand pose estimation
algorithm to effectively extract the 3D position of the finger joints. From the extracted 3D
human pose, the hand speed vhand is estimated using the movement distance of the hand
joint between two consecutive frames.

• 3D human pose extraction: From each RGB frame, we obtain a 3D human pose by
using one of the state-of-the-art methods for 2D/3D human pose estimation in the
wild-pose-hgreg-3d network. This network has been proposed by Zhou et al. [23]
which provides the pre-trained model on the Human3.6M dataset [24]. This is the
largest dataset providing both 2D, 3D annotations of human poses in 3.6 million
RGB images. This network is a fast, simple, and accurate neural network based on
3D geometric constraints for weakly-supervised learning of 3D pose with 2D joint
annotations extracted through the state-of-the-art of 2D pose estimation method,
i.e., stacked hourglass network of Newell et al. [25]. In our proposed approach, we use
this 3D human pose estimation network to extract the exact 3D hand joint information,
which is effectively utilized for both gesture spotting and gesture recognition task.

Let Jh(xhk, yhk, zhk), Jh(xhk−1, yhk−1, zhk−1) be the 3D position of the hand joint at the kth
frame, and (k − 1)th frame, respectively. The hand speed is estimated as

vhand = α·
√
(xhk − xhk−1)

2 + (yhk − yhk−1)
2 + (zhk − zhk−1)

2 (1)

where α is the frame rate.
The finger speed is estimated by the change in distance between the 3D position of

fingertips of the thumb and the index finger in sequence frames. Let denote Jft(xftk, yftk,
zftk), Jfi(xink, yink, zink) the 3D position fingertips of the thumb and the index finger at the kth
frame, respectively. The distance between the two fingertips at the kth frame is given as

d f k =

√(
x f tk − xink

)2
+
(

y f tk − yink

)2
+
(

z f tk − zink

)2
(2)

where dfk and dfk−1 represent the distances of the kth frame and previous frame, respectively,
the finger speed vfinger is estimated as

v f inger = α·
(

d f k − d f k−1

)
(3)

The function utilizes vhand and vfinger extracted from each frame:

vk = vhand + v f inger (4)

and is used as the input of the Bi-LSTM network to spot gestures from video streams, as
shown in Figure 2. In our network, the Connectionist temporal classification [12] CTC loss
is used to identify whether the sequence frames are in gesture frames or transition frames.

• 3D hand pose extraction: Using the hand palm location detected by the 3D human
pose estimation network, we extract hand ROI and use it for 3D hand pose extraction
when the hand palm stands still over the spine base joint. We also estimate the 3D
hand pose by using the real-time 3D hand joints tracking network of OccludedHands
proposed by Mueller et al. [26] and further additionally fine-tuned it with the hand
pose dataset of Stereo Hand Pose Tracking Benchmark [27]. In this method, they
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utilized both RGB and Depth information to robustly and accurately localize the hand
center position and regress the 3D joint from the 2D hand position heat-map. Firstly,
they used a CNN network called HALNet to estimate the heat-map of the hand center
and then crop the hand region. Secondly, they applied another CNN network called
JORNet for a hand cropped frame to generate a heat-map of 2D hand joints and regress
3D hand joint positions from it. The Stereo Hand Pose Tracking Benchmark is a large
dataset for 2D and 3D hand pose estimation with 21 joint points for 18,000 images.
Due to the robustness and accuracy of its performance, the 3D position of the thumb
and index fingertips detected by the network are used for finger speed calculation and
other recognition features. In the case where the predicted joint becomes invisible with
very low confidence, we estimate this joint position based on its last known position.

• LSTM: An LSTM network is a recurrent neural network of a special kind, in which
current network output is influenced by previously memorized inputs. The network
can learn the contextual information of a temporal sequence. In an LSTM network,
the gates and memory cells at time t are given as follows:



it = σ(Wi[xt, ht−1] + bi

ft = σ
(

W f [xt, ht−1] + b f

ot = σ(Wo[xt, ht−1] + bo
c̃t = tanh(Wc[xt, ht−1] + bc),

ct = ft ∗ ct−1 + it ∗ c̃t,
ht = tanh(ct) ∗ ot

(5)

where i, f, and o are the vectors of input, forget and output gate, respectively. c̃t and ct
are called the “candidate” hidden state and internal memory of the unit. ht represents the
output hidden state. σ(.) is a sigmoid function while W and b are connected weights matrix
and bias vectors, respectively.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 13 
 

 
Figure 2. Gesture segmentation with Bi_LSTM and CTC loss. 

• 3D hand pose extraction: Using the hand palm location detected by the 3D human 
pose estimation network, we extract hand ROI and use it for 3D hand pose extraction 
when the hand palm stands still over the spine base joint. We also estimate the 3D 
hand pose by using the real-time 3D hand joints tracking network of OccludedHands 
proposed by Mueller et al. [26] and further additionally fine-tuned it with the hand 
pose dataset of Stereo Hand Pose Tracking Benchmark [27]. In this method, they uti-
lized both RGB and Depth information to robustly and accurately localize the hand 
center position and regress the 3D joint from the 2D hand position heat-map. Firstly, 
they used a CNN network called HALNet to estimate the heat-map of the hand cen-
ter and then crop the hand region. Secondly, they applied another CNN network 
called JORNet for a hand cropped frame to generate a heat-map of 2D hand joints 
and regress 3D hand joint positions from it. The Stereo Hand Pose Tracking Bench-
mark is a large dataset for 2D and 3D hand pose estimation with 21 joint points for 
18,000 images. Due to the robustness and accuracy of its performance, the 3D position 
of the thumb and index fingertips detected by the network are used for finger speed 
calculation and other recognition features. In the case where the predicted joint be-
comes invisible with very low confidence, we estimate this joint position based on its 
last known position. 

• LSTM: An LSTM network is a recurrent neural network of a special kind, in which 
current network output is influenced by previously memorized inputs. The network 
can learn the contextual information of a temporal sequence. In an LSTM network, 
the gates and memory cells at time t are given as follows: 

⎩⎪⎪⎨
⎪⎪⎧ 𝑖௧ =  σ(𝑊௜ሾ𝑥௧, ℎ௧ିଵሿ + 𝑏௜),𝑓௧ = σ൫𝑊௙ሾ𝑥௧, ℎ௧ିଵሿ + 𝑏௙൯,𝑜௧ = σ(𝑊௢ሾ𝑥௧, ℎ௧ିଵሿ + 𝑏௢),𝑐௧෥ = tanh(𝑊௖ሾ𝑥௧, ℎ௧ିଵሿ +  𝑏௖) ,𝑐௧ =  𝑓௧ ∗ 𝑐௧ିଵ + 𝑖௧ ∗ 𝑐௧෥ ,ℎ௧ = tanh(𝑐௧) ∗ 𝑜௧

 (5)

where i, f, and o are the vectors of input, forget and output gate, respectively. 𝑐௧෥  and 𝑐௧ are called the “candidate” hidden state and internal memory of the unit. ht repre-
sents the output hidden state. σ(.) is a sigmoid function while W and b are connected 
weights matrix and bias vectors, respectively. 

• Bi-LSTM network: While the output of a single forward LSTM network depends 
only on previous input features, the Bi-LSTM network is known as an effective 
method for sequence labeling tasks, which is beneficial to both previous and future 
input features. Bi-LSTM can be considered as a stack of two LSTM layers, in which, 
a forward LSTM layer utilizes the previous input features while the backward LSTM 

Figure 2. Gesture segmentation with Bi_LSTM and CTC loss.

• Bi-LSTM network: While the output of a single forward LSTM network depends only
on previous input features, the Bi-LSTM network is known as an effective method for
sequence labeling tasks, which is beneficial to both previous and future input features.
Bi-LSTM can be considered as a stack of two LSTM layers, in which, a forward LSTM
layer utilizes the previous input features while the backward LSTM layer captures the
future input features. The benefit of the fact that the Bi-LSTM network considers both
previous and future input features is its effectiveness to classify the frame in sequence
frame, gesture frame, or transition frame. The prediction error can be reduced by
using Bi-LSTM instead of LSTM.



Appl. Sci. 2021, 11, 4689 6 of 13

• Connectionist temporal classification: The Connectionist temporal classification CTC
is known as the loss function which is highly effective in sequential label prediction
problems. The proposed algorithm utilizes CTC to detect whether the sequence frames
are in gesture frames or transition frames with input from a sequence of Soft-Max
layer outputs.

3.2. Gesture Classification

The isolated gestures segmented by the present gesture spotting module are classified
into individual gesture classes in the gesture recognition module. The proposed gesture
recognition module is a multi-model network called the M-3D network. This model is
based on a multi-channel network with three different data modalities, as shown on the
right of Figure 1.

In our approach, from each frame of a video, we extract optical flow, 3D pose (hand
joint, thumb tip, and index fingertip joint) information of multi-channel features input to the
model. Optical flow is determined by two adjacent frames. There are some existing methods
of optical flow extraction such as Farneback [28], MPEG flow [29], and Brox flow [30]. The
quality motion information of optical flow clearly affects the performance of the gesture
recognition model. Therefore, the Brox flow technique is applied to our approach as it has
better quality performance compared to other optical flow extraction techniques.

While the key hand and finger joints positions are extracted by the 3D human pose
and 3D hand pose extraction network presented in Section 3.1, we only focus on the two
most important joints of thumb tip and index fingertip which can describe all gesture
types. Our gesture classification algorithm is based on the combination of three 3D_ResNet
stream networks of RGB, Optical Flow, Depth channels with an LSTM network of 3D key
joint features.

• Three stream RGB, Optical Flow, and Depth 3D_ResNet networks: The 3D_CNN
framework is regarded as one of the best frameworks for spatiotemporal feature
learning. The 3D_ResNet network is an improved version of the residual 3D_CNN
framework based on ResNet [31] architecture. The effectiveness of 3D_ResNet has
been proved by remarkable performance in action video classification.

The single 3D_ResNet is described in Figure 3. The 3D_ResNet consists of a 3D
convolutional layer and is followed by a batch normalization layer and rectified-linear
unit layer. Each RGB and Optical Flow stream model is pre-trained on the largest action
video classification dataset of the Sports-1M dataset [32]. Input videos are resampled into
16 frames-clips before being fed into the network. Let a resampled sequence of 16 frames
RGB frames be Vc = {xc1, xc2, . . . , xc16}, Optical Flow frames be Vof = {xof1, xof2, . . . , xof16}
and Depth frames be Vd = {xd1, xd2, . . . , xd16} and operation function 3D_ResNet network
of RGB, Optical Flow and Depth modalities be Θc(.), Θof(.) and Θd(.), respectively. Hence,
the prediction probability of two single networks for i classes is

Pc{p1, p2, . . . , p16|Vc} = Θc(Vc) (6)

Po f

{
p1, p2, . . . , p16

∣∣∣Vo f

}
= Θo f

(
Vo f

)
(7)

PD{p1, p2, . . . , p16|VD} = ΘD(VD) (8)

where pi is the prediction probability of video belonging to the ith class.

• LSTM network with 3D pose information: In dynamic gesture recognition, temporal
information learning plays a critical role in the performance of the model. In our
approach, we utilize the temporal features by tracking the trajectory of the hand palm
together with the specific thumb tip and index fingertip joint. LSTM framework is suit-
ably proposed to learn the features for the gesture classification task. The parameters
of our LSTM refer to the approach [33]. Input vectors from a sequence of the LSTM
network frames is defined as: Vj = {vj1, vj2, . . . , vj16} where: vjk = {Jh(xhk, yhk, zhk),
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Jft(xftk, yftk, zftk), Jfi(xink, yink, zink)} is a 9 × 1 vector which contains 3D position informa-
tion of key joints at kth frame. The input of the LSTM network corresponds to the
dimension of a single frame of sequences of 16 sampled frames in a gesture video that
is a tensor for 1 × 9 numbers. The prediction probability output using LSTM with
input Vj is

PL
{

p1, p2, . . . , p16
∣∣Vj
}
= ΘL

(
Vj
)

(9)

where ΘL(.) denotes the operation function of the LSTM network.
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• Multi-modality fusion: The results of the multiple different channel networks are
fused in the final fusion layer to predict a gesture class. It is a fully connected layer
where the number of output units is equal to the number of classes on the dataset.
The output probability of each class is estimated by pre-trained last fusion layer with
Θfusion(.) operation function:

P{p1, p2, . . . , p16|Vc} = Θ f usion

{
Pc{p1, p2, . . . , p16|Vc} , Po f

{
p1, p2, . . . , p16

∣∣∣Vo f

}
,

PD{p1, p2, . . . , p16|VD}, PL
{

p1, p2, . . . , p16
∣∣Vj
} }

(10)

The performance of the gesture recognition task is improved by combining the tem-
poral information learning by LSTM network with spatiotemporal features learning by
3D_ResNet that is proved through experimental results.

4. Experiments and Results

In this section, we describe the experiments that evaluate the performance of the
proposed approach on three public datasets: 20BN_Jester dataset [34], NVIDIA Dynamic
Hand Gesture dataset [5], and Chalearn LAP ConGD dataset [35].

4.1. Datasets

• 20BN_Jester dataset: is a large dataset collected from 148,092 densely-labeled RGB
video clips for hand gesture recognition tasks from 27 gestures classes. The dataset is
divided into three subsets: the training set having 118,562 videos, 14,787 videos for
the validation set, and 14,743 videos (without labels) for the test set. This dataset has
only been used for the gesture classification module.

• NVIDIA Dynamic Hand Gesture dataset is a collection of 1532 feebly segmented
dynamic hand gesture RGB-Depth videos captured using SoftKinetic DS325 sensor
with a frame rate of 30 fps of 20 subjects for 25 gesture classes. The continuous data
streams are captured in an indoor car with both dim and bright lighting conditions.
This weakly segmented gesture video includes the preparation, nucleus, and transition
frames of gesture.

• Chalearn LAP ConGD dataset: is a large dataset containing 47,933 gesture instances
with 22,535 RGB-Depth videos for both continuous gesture spotting and gesture
recognition task. The dataset includes 249 gestures performed by 21 different individ-
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uals. This dataset is further divided into three subsets: training set (14,314 videos),
validation set (4179 videos), and test set (4042 videos).

The summary of the three datasets is shown in Table 1.

Table 1. Ablation studies on the ISBI 2016 and ISBI 2017 datasets.

Dataset Number of
Classes

Number of
Videos

umber of Videos for Train,
Validation, Test Set

Gesture
Segmentation Task

Provided

20BN_Jester 27 148,092 118,562|14,787|14,743 No
NVIDIA Hand Gesture 25 1532 1050|−|428 Yes

Chalearn LAP ConGD 249 22,535
(47,933 instances) 14,314|4179|4042 Yes

4.2. Training Process

• Network training for hand gesture spotting: To train the Bi-LSTM network for seg-
mentation of continuous gestures, we firstly use a pre-trained 3D human pose extrac-
tion network (on Human3.6M dataset) and a pre-trained 3D hand pose extraction
network (on Stereo Hand Pose Tracking dataset) to extract the 3D position of key poses.
The quality between human and hand pose extraction algorithms are demonstrated in
Figure 4. Using those extracted input features for the network, we train the Bi_LSTM
network with the provided gesture segmentation labels by a training set of Chalearn
LAP ConGD dataset.
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Bi-LSTM network is trained with CTC loss for predicting the sequence of binary
output values to classify whether the frame belongs to gesture frame or transition frame.
In Bi_LSTM, the input layer has 20 time-steps, the hidden layer has 50 memory units, and
the last fully connected layer output has one binary value per time-step with a sigmoid
active function. The efficient ADAM optimization algorithm [36] is applied to find the
optimal weight of the network. The spotting output of the Bi-LSTM network by a given
speed input is displayed as in Figure 5.

• Network training for hand gesture classification: The single-stream network (pre-
trained on Sports-1M dataset) is separately fine-tuned on the huge dataset Chalearn
LAP ConGD dataset. Each fine-tuned stream 3D_CNN network weights is learned
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using ADAM optimization, learning rate with an initial value of 0.0001 reducing by
half for every 10 epochs on 200 epochs. Ensemble modeling with 5 3D_ResNet models
is applied to increase the classification accuracy. The LSTM network parameters are
selected through the observations of experimental results. The optimal LSTM model
parameters are 3 memory blocks, and 256 LSTM Cells per memory block. The pre-
trained LSTM network is trained with a learning rate of 0.0001 on 1000 epochs. After
pre-training of each streaming network, we retrain these networks with a specific
dataset. Finally, we concatenate the prediction probability outputs of these trained
models to train the weights of the last fusion fully connected layer for gesture clas-
sification. Besides training with the 3D_ResNet framework, we also train with the
3D_CNN framework to prove the effectiveness of the proposed algorithm.
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4.3. Results and Analysis

• Hand gesture spotting: To prove the performance of the proposed hand gesture spot-
ting module, we evaluated the model on two datasets—the NVIDIA Dynamic Hand
Gesture dataset and Chalearn LAP ConGD dataset. The frame-wise accuracy metric
and edit distance score [37] are used to measure the gesture segmentation performance.
The results and comparison with other methods are shown in Tables 2 and 3. From the
results shown in these tables, our proposed approach achieved the best performance
as compared to other methods in both datasets. Our approach gets higher frame-
wise accuracy and edits distance score on NVIDIA Dynamic Hand Gesture dataset
and Chalearn LAP ConGD dataset than existing works. The significantly improved
experimental results proved the effectiveness of the proposed approach.

• Hand gesture classification: The performance of our gesture classification module
is evaluated by experiments conducted on the 20BN_Jester dataset (without Depth
modality) and NVIDIA Dynamic Hand Gesture dataset. The accuracy comparison with
other approaches for isolated dynamic hand gesture classification is shown in Table 3.

Table 3 shows that our gesture recognition module obtained a positive result. The
recognition performance is improved by using 3D data information of key joints. More-
over, the recognition performance of our method is among the top performers of existing
approaches, with an accuracy of 95.6% on the 20BN-Jester Dataset and an accuracy of 82.4%
on the NVIDIA Hand Gesture dataset.

• Continuous hand gesture spotting classification: To entirely evaluate our approach
on continuous dynamic hand gesture spotting recognition, we apply the Jaccard
index [3] for measuring the performance. For a given gesture video, the Jaccard index
estimates the average relative overlap between the ground truth and the predicted
sequences of frames. A sequence S is given by ith class gesture label and binary vector



Appl. Sci. 2021, 11, 4689 10 of 13

ground truth Gs,i, while the binary vector prediction for the ith class is denoted as Ps,i.
The binary vector Gs,i and Ps,i are vectors with 1-values indicating the corresponding
frames in which the ith gesture class is being performed. So, the Jaccard Index for the
given sequence S is computed by the following formula of

Js,i =
Gs,i

⋂
Ps,i

Gs,i
⋃

Ps,i
(11)

When Gs,i and Ps,i are empty vectors, the Jaccard Index Js,i is set as 0. For a given
sequence S containing L number of true class labels ls, the Jaccard Index is estimated by
the function:

Js =
1
ls

∑l
i=1 Js,i (12)

For all testing sequence of n gestures: s = {s1, s2, . . . , sn} the mean Jaccard Index Js
J → s J → s is applied to evaluation as follows:

Js =
1
n ∑n

j=1 Js,j (13)

The spotting-recognition performance comparison of our proposed approach to the
existing methods by evaluation experiment on the test set of Chalearn LAP ConGD dataset
is shown in Table 4.

Table 2. Gestures spotting performance comparison with different methods on NVIDIA Hand
Gesture dataset. Bold values are highest indices.

Method
NVIDIA Hand Gesture Chalearn LAP ConGD

Frame-Wise
Accuracy

Edit Distance
Score

Frame-Wise
Accuracy

Edit Distance
Score

2S-RNN [4] 80.3 74.8 87.5 86.3
Proposed in [3] 84.6 79.6 90.8 88.4
R-3DCNN [5] 90.1 88.4 90.4 90.1
Our proposed 91.2 89.6 93.1 93.8

Table 3. Gesture classification performance comparison of different methods on the 20BN_Jester
dataset and NVIDIA Hand Gesture dataset. Bold values are highest indices.

Method Accuracy on 20BN-Jester
Dataset

Accuracy on NVIDIA
Hand Dataset

iDT-HOG [2] - 59.1
C3D [8] 91.6 69.3

R-3DCNN [5] 95.0 79.3
MFFs [9] 96.2 84.7

3D_ResNet (RGB) 92.8 75.5
3D_ResNet (RGB + Optical flow) 93.3 77.8

Ours M3D 95.6 82.4

Table 4. The spotting-recognition performance comparison of our proposed approach to existing
methods on the test set of the Chalearn LAP ConGD dataset. Bold values are highest indices.

Method Mean Jaccard Index

2S-RNN [4] 0.5162
Proposed in [3] (RGB + Depth) 0.5950

R-3DCNN [5] 0.5154
Our proposed (3D_CNN) 0.5982

Our proposed 0.6159
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From the results illustrated in Table 4, the mean Jaccard Index on the test set of the
Chalearn LAP ConGD dataset shows that the proposed method achieves satisfactory
performance on the dataset. By using 3D key joint features and multiples, the recognition
performance is significantly enhanced.

5. Discussions

In Section 4.3, we have shown the effectiveness of our method on the three datasets.
In terms of hand gesture spotting, we get the best results of both indexes on the NVIDIA
Dynamic Hand Gesture dataset and Chalearn LAP ConGD dataset. The extraction of
human pose and hand pose helps us track the hand movement more accurately and
detect the beginning and the end of the sequence, avoiding the minor motion that could
contaminate the following classification task. In the task of hand gesture classification,
Table 3 presents the efficiency of the addition of modalities into our model on both the
20BN_Jester dataset and the NVIDIA Dynamic Hand Gesture dataset. Different views of
data are crucial to the performance of the hand gesture classification. Continuous gesture
classification is more difficult when there are several kinds of gestures in one video, which
means the capability of gesture spotting greatly influences the performance of gesture
classification. In Table 4, we get the best results when doing both tasks on the Chalearn
LAP ConGD dataset.

6. Conclusions

In this paper, we presented an effective approach for continuous dynamic hand
gesture spotting recognition for RGB input data. The continuous gesture sequences are
firstly segmented into separate gestures by utilizing the motion speed of key 3D poses
as the input of the Bi-LSTM network. After that, each segmented gesture is defined in
the gesture classification module using a multi-modal M-3D network. In this network,
three 3D_ResNet stream networks of RGB, Optical Flow, Depth data channel, and LSTM
networks of 3D key pose features channel are effectively combined for gesture classification
purposes. The results of the experiments conducted on the ChaLearn LAP ConGD Dataset,
NVIDIA Hand Gesture dataset, and 20_BN Jester dataset proved the effectiveness of
our proposed method. In the future, we will try to include other different modalities to
improve the performance. The tasks of gesture spotting and classification in this paper are
performed separately into 2 steps. The upcoming plan is to do both tasks by one end-to-end
model so that it is more practical in real-world problems.
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