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Abstract: The problem analyzed in this paper deals with the classification of Internet traffic. During
the last years, this problem has experienced a new hype, as classification of Internet traffic has become
essential to perform advanced network management. As a result, many different methods based on
classical Machine Learning and Deep Learning have been proposed. Despite the success achieved by
these techniques, existing methods are lacking because they provide a classification output that does
not help practitioners with any information regarding the criteria that have been taken to the given
classification or what information in the input data makes them arrive at their decisions. To overcome
these limitations, in this paper we focus on an “explainable” method for traffic classification able
to provide the practitioners with information about the classification output. More specifically, our
proposed solution is based on a multi-objective evolutionary fuzzy classifier (MOEFC), which offers
a good trade-off between accuracy and explainability of the generated classification models. The
experimental results, obtained over two well-known publicly available data sets, namely, UniBS and
UPC, demonstrate the effectiveness of our method.

Keywords: traffic classification; fuzzy classifier; multi-objective evolutionary learning scheme

1. Introduction

Network traffic classification represents one of the main challenges in network man-
agement nowadays. Indeed, Internet Service Providers (ISPs) devote most of their efforts to
Internet traffic classification and management. Historically, the Internet traffic classification
task was performed primarily for security reasons, as it permits the detection and identifi-
cation of intrusions and malicious behavior. However, over recent years, the identification
of Internet traffic type and workload has become necessary not only for security purposes,
but also to perform traffic engineering and to make decisions on policing, traffic shaping,
billing, dynamic Quality of Service, and so on. Most of the management techniques are
built on top of classification results: as an example, consider billing and accounting, which
are only possible if the traffic is first correctly classified. Moreover, attack detection tech-
niques are usually built on top of a traffic classifier. Nonetheless, despite many years of
research on the topic, an ultimate solution able to provide “good enough” performance is
still under study.

In the literature, several approaches have been proposed to classify IP traffic flows ac-
cording to the application that generated the traffic. Historically, the most commonly used
method is to associate the observed traffic (using flow level data or a packet sniffer) with
an application, on the basis of TCP or UDP port numbers [1]. However, port-based classi-
fication is inadequate [2], as mapping between ports and applications is not always well
defined. As a consequence, in the last decade, research efforts have moved towards classifi-
cation tools based on Machine Learning (ML) and Artificial Intelligence (AI) algorithms,
which rely on statistical features [3].
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Among these, Support Vector Machine (SVM) [4] and deep learning techniques [5]
have emerged as powerful tools for traffic classification and other network application,
such as intrusion detection [6] and other cyber security application [7,8]. Indeed, these
techniques, and especially SVM, represent an almost de facto standard in the field. Such
methods are able to provide very high accuracy values, often just observing a few traffic
statistics computed over the first packets of each flow.

Nonetheless, all of the methods based on machine learning algorithms present a
common drawback, as the generated models are seen as black boxes characterized by a low
“explainability” level. Indeed, the classification result does not provide the practitioners
with any information regarding the criteria that have taken to the given classification, or
what information in the input data makes them arrive at their decisions. This is usually
justified by the fact that the main goal traditionally pursued is to make the model matching
reality (i.e., accurate models), without actually caring for explainable models.

Nowadays, several new requirements have emerged related to fairness or unbiased-
ness, privacy, reliability, robustness, causality, and/or trust posing the need of deploying
systems that must provide explanations for the taken decisions, where necessary [9]. There-
fore, traffic classifiers, as well as other traffic analysis systems, must be optimized not only
for accuracy but also for the other criteria previously listed.

In such a context, a lot of research efforts are nowadays focusing on “explainable”
methods (e.g., explainable artificial intelligence), where explainability “encompasses
ML/AI systems for opening black box models, for improving the understanding of what the
models have learned and/or for explaining individual predictions” [9]. In this specific area,
a recent work in [10] clearly indicates that exploiting the synergy between Fuzzy Rule-Based
Systems (FRBSs) and Evolutionary Algorithms is one of the most straightforward ways of
combining accuracy and interpretability/explainability in machine learning-based tools.

For such a reason, in this work, which significantly extends the preliminary results
presented in [11], we propose a traffic classification approach based on multi-objective
evolutionary fuzzy classifiers (MOEFCs) [12,13]. Specifically, MOEFCs deal with the
application of Multi-Objective Evolutionary Algorithms (MOEAs) [14] for generating a
collection of Fuzzy Rule-Based Classifiers (FRBCs) characterized by different trade-offs
between their accuracy and their explainability level [15]. We recall that FRBCs adopt
(i) a rule base composed of linguistic IF-THEN rules and (ii) a database which contains
the description of the linguistic terms adopted for the fuzzy discretization of each input
variable. A specific inference mechanism is adopted for taking a decision whenever a new
input is presented to the system.

In this contribution, we exploit the PAES-RCS algorithm, in which the accuracy is
calculated in terms of percentage of correctly classified flows of internet traffic. As regards
the explainability level, it is calculated in terms of total rule length (TRL), namely, the
total number of conditions taken into consideration in the whole rule base. Low values
of TRL are associated with rule bases which contain a reduced number of simple rules
(i.e., rules in which a low number of conditions are adopted in their antecedent). Note
that PAES-RCS has been successfully exploited in a number of recent contributions on
real-world applications [15,16].

To evaluate and validate the proposed approach, we have used two publicly available
data sets, namely, UniBS and UPC, showing that our system can achieve nearly optimal
performance, while simultaneously guaranteeing the explainability of the classification
results. We also compared the results achieved by MOEFCs with the ones achieved by
two classical ML-based classification algorithms, namely, SVM and Decision Trees. SVM
algorithms have been chosen as they represent the de facto standard among machine learn-
ing algorithms commonly adopted for solving the internet traffic classification problem.
However, SVM models are characterized by a very low explainability level. Regarding
decision trees, as from the trees it is possible to extract a set of decision rules, they represent
a category of interpretable models among classical machine learning classifiers. However,
their rules are not linguistic and the final models are often described by a large number of
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parameters, namely, the number of nodes and leaves. Thus, also the explainability level of
decision trees is often compromised. As a counterpart, the proposed approach, based on
MOEFCs, generates models characterized by good trade-offs between their accuracy and
their explainability.

The remainder of the paper is organized as follows. In Section 2, we discuss some
notable related works, while in Section 3.1 we describe the used data sets. Then, in
Section 3.2 we introduce the experimented explainable traffic classification approach. The
achieved results are shown in Section 4. Finally, Section 5 concludes the paper with some
final remarks and future work.

2. Related Work

Research on traffic classification has been quite prolific in the years and, as a conse-
quence, many works have been written on the topic. Therefore, the aim of this section is
not to provide the reader with a comprehensive review of the related works (for which we
refer the reader to the surveys on the topic), but just to point out some works significant
for our specific proposal.

Machine Learning techniques have been first applied to network traffic classification
in 1994 [17] and since then many different methods have been proposed, as detailed in
some recent surveys [3,18].

Among the many proposals, particular interest has been raised by classifiers based on
Support Vector Machine (SVM). One of the first significant work on the application of SVM
to traffic classification is [19], where the authors apply one of the approaches to solving
multi-class problems with SVMs and describe a simple optimization algorithm that allows
the classifier to perform correctly with as little training as a few hundred samples. Since
then, many other works have proposed SVM-based methods [4,20–23] and, as a result,
SVM is nowadays considered as a de facto standard in the field. Nonetheless, as already
discussed, all of these works propose methods based on black-box models that do not
provide any information about the classification criteria.

As far as Fuzzy Rule-Based Classifiers (FRBCs) are concerned, given their ability to
deal with vague and noisy data and to explain how the classification task is performed, they
have been widely exploited in several contexts, such as medical diagnosis applications [24],
industrial applications [25], and Internet of Things [26]. In the years, several techniques to
generate and optimize the structure of FRBCs have been proposed, often without taking
into consideration how this maximization affects the FRBC explainability, but only in the
last decade, researchers have also focused their attention on the explainability aspects of
FRBCs [27]. As accuracy and explainability are conflicting objectives, the generation of
the FRBS structure has been modeled as a multi-objective optimization problem. Multi-
objective evolutionary algorithms (MOEAs) have been successfully employed to tackle this
optimization problem and the term multi-objective evolutionary fuzzy systems (MOEFSs)
has been coined [12,28] to identify FRBSs generated by MOEAs. Since then, many papers
have proposed the use of MOEFSs in classification problems [16,29–33].

In the specific context of traffic classification, there are some works [34,35] that propose
the use of fuzzy models. The work in [34] discusses the application of hybrid models in
which fuzzy theory elements are included into a neural network architecture. As regards
the contribution discussed in [35], the authors propose an approach which combines a
decision trees and fuzzy membership functions for dealing with noisy and vague data.
Note that both works include in their experimental analysis a comparison with the traffic
classification methods based on SVM. Nonetheless, to the best of our knowledge, our work
is the first to propose and evaluate in a systematic way, the application of MOEFCs to
generate explainable models for network traffic classification.

3. Materials and Methods

In this section, we first describe the data sets used to evaluate and validate our study,
and then we detail the proposed Traffic Classification System.
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3.1. Data Sets

We have used two distinct well-known and publicly available data sets: UniBS
and UPC.

3.1.1. UniBS Data Set

The UniBS data set [36] is made of traffic collected in the University of Brescia cam-
pus network during three consecutive days (from 30 September 2009 to 1 October 2009),
anonymized with the Crypto-PAn tool [37]. The dataset has been employed recently in the
contributions discussed in [38,39].

The data set is coupled with a log file, containing for each flow, the information

<timestamp> : <IP src> : <IP dst> :
<transport port src> : <transport port dst> :
<DPI verdict(s)> : <application name> :
<transport protocol>

In this work, we have considered the classes corresponding to the following applica-
tions: Mail, Skype, Firefox, Safari, BitTorrent, and Amule. Table 1 reports the number of
instances per class, considering flows made of at least three, five, and ten packets.

Table 1. UniBS data set: number of instances per each class.

Class >3 pkts >5 pkts >10 pkts

Mail 4628 4627 4621
Skype 2516 2484 2412
Firefox 906 906 901
Safari 13,204 13,300 13,178
BitTorrent 2414 2411 1761
Amule 5311 5296 5202

3.1.2. UPC Data-Set

The UPC data set [40] is made from a subset (about 5.23 GB) of the full-payload
traffic traces used in [41] and collected in the Universitat Politecnica de Catalunia during
66 days (from 25 February 2013 to 1 May 2013). Furthermore, these data have been recently
used in the experiments on internet traffic classification carried out in [42,43].

As for the UniBS data-set, a log file accompanying the data set contains, for each flow,
the information:

flow_id#start_time#end_time#local_ip
#remote_ip#local_port#remote_port
#transport_protocol#operating_system
#process_name#urls#referers#
content_types#

where process_name corresponds to the application that generated the flow.
Table 2 reports the number of instances per class, considering flows made of at least

three, five, and ten packets.

Table 2. UPC data set: number of instances per each class.

Class >3 pkts >5 pkts >10 pkts

SSHD 7863 7769 7739
XRDP 3196 3031 2926
DNSMasq 2993 1731 631
Chrome 4549 4540 3635
Firefox 1926 1924 1147
Amule 4594 2362 1282
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3.2. The Proposed Traffic Classification System

In the following, we detail the proposed approach for generating explainable traffic
classification models. The diagram depicted in Figure 1 represents the schema of the
proposed internet traffic classification system. The data (both the Training Internet Flow
(T_IF) and the Real-Time Internet Flow (RT_IF)) are preprocessed through a Feature
Extraction strategy (discussed in Section 3.2.2), which generates a representation of the
data by means of the chosen features. Note that while T_IF is composed of historical
data collected for training the classification model, the RT_IF, in a real-world application,
is continuously extracted from a network. The representation of the training data (T_IF
representation) is used by the PAES-RCS algorithm to build a collection of FRBCs, namely,
a collection of XAI classification models. Each model is characterized by a specific trade-off
between accuracy and explainability, therefore the final user can select the one that best
satisfies her/his requirements. This model (Selected XAI Model in the figure) is then
applied on the representation of the Real-Time Internet Flow (RT_IF representation) to
classify it. In the following, we first focus on the description of adopted multi-objective
evolutionary learning scheme for generating FRBCs. Then, we describe two different
feature extraction strategies, that we have experimented as preprocessing stage of the
overall traffic classification task.

Figure 1. Block diagram of the proposed Traffic Classification System.

3.2.1. PAES-RCS Method

Evolutionary fuzzy systems, which consist of evolutionary algorithms applied to the
design of fuzzy systems, are one of the greatest advances within the area of computa-
tional intelligence.

Among these, multi-objective evolutionary fuzzy classifiers (MOEFCs) are character-
ized by a good trade-off between accuracy and explainability level [12,16]. Therefore, these
models have been widely used for approaching classification problems. Indeed, MOEFCs
deal with the design of fuzzy rule based classifiers (FRBCs) by means of multi-objective
evolutionary algorithms: during the evolutionary design process, both the accuracy and
the explainability level of the models are concurrently optimized. At the end of the de-
sign process, a set of classification models, characterized by different trade-offs between
accuracy and interpretability (Pareto front approximation), are available for the final user
that will select the most suitable solution for its problem domain. The final models are
usually characterized by compact fuzzy rules, namely, linguistic IF-THEN rules, which can
describe the classification process in an explainable way.
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An FBRC basically includes a rule base (RB), a database (DB) containing the definition
of the fuzzy sets used in the RB, and an inference engine. RB and DB comprise the
knowledge base of the rule-based system.

Let X = {X1, . . . , XF} be the set of input variables and XF+1 be the output variable
of the classifier. Let U f , with f = 1, ..., F, being the universe of the f th input variable X f .
Let Pf = {A f ,1, . . . , A f ,j, . . . , A f ,Tf

} be a partition of variable X f consisting of Tf fuzzy sets.
The output variable XF+1 is a categorical variable assuming values in the set Γ of K possible
classes Γ = {C1, . . . , CK}. Let {(x1, xF+1,1), . . . , (xN , xF+1,N)} be a training set composed of
N input–output pairs, with xt = [xt,1 . . . , xt,F] ∈ <F, t = 1, . . . , N and xF+1,t ∈ Γ.

With the aim of determining the class of a given input vector, we adopt an RB com-
posed of M rules expressed as

Rm : IF X1 is A1,jm,1 AND . . . AND XF is AF,jm,F

THEN XF+1 is Cjm with RWm (1)

where Cjm is the class label associated with the mth rule, and RWm is the rule weight, i.e., a
certainty degree of the classification in the class Cjm for a pattern belonging to the subspace
delimited by the antecedent of rule Rm.

Usually, a purposely defined fuzzy set A f ,0 ( f = 1, . . . , F) is considered for all the F
input variables. This fuzzy set, which represents the “do not care” condition, is defined by
a membership function equal to 1 on the overall universe. The term A f ,0 allows generating
rules that contain only a subset of the input variables.

A specific reasoning method employs the information it receives from the RB to deter-
mine the class label for a given input pattern. We adopt the maximum matching as reasoning
method (see [16] for details).

Concerning the DB, we adopted triangular fuzzy sets: each fuzzy set A f ,j is identified
by the tuples (a f ,j, b f ,j, c f ,j), where a f ,j and c f ,j correspond to the left and right extremes
of the support, and b f ,j to the core. In particular, in the experiments, we use strong fuzzy
partitions, where a f ,1 = b f ,1, b f ,Tf

= c f ,T f and, for j = 2, ..., Tf − 1, b f ,j = c f ,j−1 and
b f ,j = a f ,j+1. In Figure 2, we show an example of a strong fuzzy partition composed by
three triangular fuzzy sets.

Figure 2. An example of a strong fuzzy partition.

In order to concurrently design the RB and tune the parameters of the fuzzy sets,
we adopt the PAES-RCS algorithm introduced in [44]. The multi-objective evolutionary
learning scheme is based on the (2 + 2)M-PAES, which is an MOEA successfully employed
in the context of MOEFSs during the last years. We concurrently optimize two objectives:
the first objective considers the interpretability of the RB, calculated as the total rule
length (TRL), that is, the number of propositions used in the antecedents of the rules
contained in the RB; the second objective takes into account the accuracy, assessed in terms
of classification rate.
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In the learning scheme, we first generated an initial RB and then selected, during
the evolutionary process, the most relevant rules and their conditions. Moreover, we
concurrently tune the parameters of the fuzzy sets by using a mapping strategy based on a
piecewise linear transformation [44]. Once we had defined an initial strong fuzzy partition for
each input variable, we extracted the initial set of candidate fuzzy rules from a decision
tree: in particular, in this work, we use a recent algorithm, discussed in [45], for generating
multi-way fuzzy decision trees. One rule is then created for each path from the root to a
leaf node.

In PAES-RCS, each solution is codified by a chromosome C composed of two parts
(CR, CT), which define, respectively, the RB and the positions of the representatives of the
fuzzy sets, namely, the cores, in the transformed space.

Let JDT and MDT be the initial set of candidate rules generated by the decision tree and
the number of rules of this RB, respectively. In order to generate compact and interpretable
RBs, we allow that the RB of a solution contains at most Mmax rules. The CR part, which
codifies the RB, is a vector of Mmax pairs pm = (km, vm), where km ∈ [0, MDT ] identifies
the selected rule of JDT and vm = [vm,1, . . . , vm,F] is a binary vector which indicates, for
each variable X f , if the condition is present or not. In particular, if km = 0 the mth rule
is not included in the RB. Thus, we can generate RBs with a lower number of rules than
Mmax. Further if vm, f = 0 the f th condition of the mth rule can be replaced by a “don’t care”
condition.

CT is a vector containing F vectors of Tmax − 2 real numbers: the f th vector[
b f ,2, . . . , b f ,Tmax−1

]
determines the positions of the fuzzy set representatives in the specific

variable X f .
In order to generate the offspring populations, we exploit both crossover and mutation.

We apply separately the one-point crossover to CR and the BLX-α-crossover, with α = 0.5,
to CT . As regards the mutation, we apply two distinct operators for CR and an operator for
CT . More details regarding the mating operators and the steps of PAES-RCS can be found
in [16,44].

3.2.2. Feature Extraction

The feature extraction phase has been designed and implemented so as to process real-
time traffic captured by means of the pcap libraries. First of all, the traffic is reconstructed
to identify the flows, defined by the 5-uple: source and destination IP addresses, source and
destination ports, and protocol (note that, in this work, we consider bidirectional flows).
Then, each 5-uple is transformed in a vector of features to be used as input of the FRBC,
which is in charge of estimating the type of traffic.

In this work, we have experimented two distinct typologies of traffic features:

• Statistical features: the flow is described by a set of statistical values (namely 21),
reported in Table 3.
It is important to highlight that in this work, such features have only been computed
for flows made of five or more packets.

• Composite features: the flow is described by an array x ∈ R3H−1, where H is the
number of analyzed flow packets, of higher granularity (i.e., packet level) features [34]:

x = (d1, l1, d2, l2, t2, . . . dH , lH , tH) (2)

where

– di ∈ [0, 1] with i = 1, 2, . . . H is the direction of the ith packet
– li with i = 1, 2, . . . H is the dimension in Byte of the ith packet, normalized with

respect to lMAX
– ti with i = 1, 2, . . . H is the time in seconds between packet i and packet i− 1

Clearly, such features depend on the parameter H and can only be computed for
those flows made of at least H packets. In the experimental results, we will consider
H ∈ [3, 5, 10].
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Table 3. Statistical features.

Description of the Feature U/M Features
Forward Reverse

Flow duration ms ∆
Number of transferred packets - f _N r_N
Transferred volume B f _V r_V
Minimum packet size B f _Sm r_Sm
Maximum packet size B f _SM r_SM
Average packet size B f _Sµ r_Sµ

Standard deviation of packet size B f _Sσ r_Sσ

Minimum inter-packet time ms f _Tm r_Tm
Maximum inter-packet time ms f _TM r_TM
Average inter-packet time ms f _Tµ r_Tµ

Standard deviation of inter-packet time ms f _Tσ r_Tσ

4. Experimental Results

In this section, we present the results of the experimental tests, carried out to validate
and evaluate our proposal. The performance have been measured in terms of the following
metrics (defined per class):

• True Positive Rate

TPR =
TP

TP + FN

• False Positive Rate

FPR =
FP

FP + TN

• Accuracy

ACC =
TP + TN

TP + TN + FP + FN
In the previous formulas, TP, TN, FP, and FN, respectively, represent the number of

true positives, of true negatives, of false positives, and of false negatives. Moreover, for
some significant cases (for sake of brevity not for all the cases), the confusion matrix is
also reported.

Note that in all the tests, we have adopted a k-fold cross-validation approach, with
k = 5.

In the following, to allow a proper comparison of our system against state-of-the-art
classifiers, we present, at first, the performance achieved by SVM and C4.5 decision tree,
used as benchmarks, and then the results obtained by our system.

4.1. SVM Classifier

As far as the SVM classifier is concerned, we have used the implementation available
in WEKA Toolkit (https://www.cs.waikato.ac.nz/ml/weka/ accessed on 20 May 2021)
based on the Sequential Minimal Optimization training algorithm [46]. The parameters of
the algorithm have been set as

• ε = 10−12

• tolerance = 10−13

In Table 4, we show the achieved accuracy on both datasets and for each feature
extraction method. Moreover, Tables 5 and 6 show the results in terms of TPR and FPR for
each class of the UniBS and UPC data sets, respectively.

https://www.cs.waikato.ac.nz/ml/weka/
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Table 4. Accuracy achieved by the support vector machine (SVM) classifier.

Data-Set Features Accuracy

UniBS

Statistical 0.759
Composite (H = 3) 0.662
Composite (H = 5) 0.717
Composite (H = 10) 0.874

UPC

Statistical 0.71
Composite (H = 3) 0.538
Composite (H = 5) 0.776
Composite (H = 10) 0.896

Table 5. SVM: TPR and FPR over UniBS data set.

Feature Class TPR FPR

Statistical

Mail 0.75 0.06
Skype 0.55 0.006
Firefox 0.38 0.001
Safari 0.81 0.12
BitTorrent 0.95 0.003
Amule 0.71 0.13

Composite (H = 3)

Mail 0 0
Skype 0.59 0.01
Firefox 0 0.001
Safari 0.86 0.31
BitTorrent 0.89 0.001
Amule 0.77 0.18

Composite (H = 5)

Mail 0.19 0.002
Skype 0.57 0.007
Firefox 0.9 0.01
Safari 0.86 0.3
BitTorrent 0.96 0.002
Amule 0.726 0.12

Composite (H = 10)

Mail 0.9 0.004
Skype 0.56 0.005
Firefox 0.96 0.001
Safari 0.89 0.005
BitTorrent 0.95 0.002
Amule 0.95 0.06

Regarding the accuracy, the best performance is achieved, for both datasets, adopting
composite features and H = 10 (ACC = 0.874 over the UPC data set and ACC = 0.896
over the UniBS data set). In both cases, adopting statistical features, the SVM classifier
achieves better performances rather than adopting composite features with H = 3, and
even with H = 5 in the case of UniBS data set.

Finally, for a deeper analysis, Table 7 reports the confusion matrix for the UniBS case
with composite features and H = 10 (note that for sake of brevity we do not show the
confusion matrix for all the cases, as they would not add any significant insight). Note
that, for the considered case, the worst results are obtained for Skype, which is often
classified as Amule. Such a result can be justified by the fact that the two applications have
a similar architecture.
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Table 6. SVM: TPR and FPR over UPC data set.

Feature Class TPR FPR

Statistical

SSHD 0.93 0.297
XRDP 0.64 0.66
DNSMasq 0.95 0
Chrome 0.54 0.05
Firefox 0 0
Amule 0.79 0.004

Composite (H = 3)

SSHD 1 0.63
XRDP 0 0
DNSMasq 0.78 0.004
Chrome 0 0
Firefox 0 0
Amule 0.72 0.028

Composite (H = 5)

SSHD 0.99 0.11
XRDP 0.95 0.1
DNSMasq 0.89 0
Chrome 0.74 0.007
Firefox 0 0
Amule 0.46 0.001

Composite (H = 10)

SSHD 0.97 0.01
XRDP 0.97 0.01
DNSMasq 0.99 0
Chrome 0.98 0.008
Firefox 0.001 0
Amule 0.76 0.01

Table 7. SVM: confusion matrix (UniBS, composite—H = 10).

Mail Skype Firefox Safari BitTorrent Amule

Mail 4174 0 0 411 0 36
Skype 31 1351 0 110 40 880

Firefox 0 6 865 5 0 25
Safari 964 0 0 11,778 1 435

BitTorrent 0 68 2 0 1685 6
Amule 82 55 34 314 7 4710

4.2. C4.5 Decision Tree

The C4.5 decision tree has been taken into consideration because of the partly explain-
ability of the results. Indeed, depending on the dimension of the tree and on the number of
leaves, the classification results can be accompanied by an analysis of the criteria that take
to a given decision. In this work, we have used the J48 classifier available in WEKA toolkit.
As regards the parameters of the decision tree, we used the default parameters suggested
in WEKA. In particular, the pruning of the decision tree is activated with a confidence
parameter value of 0.25. In addition, the minimum number of instances per leaf is set equal
to 2.

Similarly to the UniBS case, Table 8 shows the achieved overall performance, while
Tables 9 and 10 report the results in terms of TPR and FPR for each class of the UniBS and
UPC data sets, respectively.
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Table 8. Performance achieved by the C4.5 classifier.

Data-Set Features Accuracy

UniBS

Statistical 0.969
Composite (H = 3) 0.82
Composite (H = 5) 0.86
Composite (H = 10) 0.961

UPC

Statistical 0.981
Composite (H = 3) 0.867
Composite (H = 5) 0.964
Composite (H = 10) 0.966

Table 9. C4.5: Performance over UniBS data set.

Feature Class TPR FPR

Statistical

Mail 0.96 0.005
Skype 0.92 0.008
Firefox 0.98 0.001
Safari 0.97 0.02
BitTorrent 0.97 0.001
Amule 0.96 0.006

Composite (H = 3)

Mail 0.78 0.07
Skype 0.59 0.008
Firefox 0.98 0.002
Safari 0.83 0.11
BitTorrent 0.96 0.001
Amule 0.83 0.058

Composite (H = 5)

Mail 0.85 0.05
Skype 0.7 0.01
Firefox 0.98 0.01
Safari 0.86 0.07
BitTorrent 0.97 0.001
Amule 0.84 0.04

Composite (H = 10)

Mail 0.95 0.005
Skype 0.9 0.01
Firefox 0.98 0
Safari 0.97 0.02
BitTorrent 0.953 0
Amule 0.95 0.01

Note that in this case, the best accuracy is obtained in both cases with the statistical
features (ACC = 0.981 over the UPC data set and ACC = 0.969 over the UniBS data set).
Furthermore, differently from the SVM case, we can notice that the C4.5 does not present
any critical result in terms of almost always unrecognized classes.

For allowing a deeper analysis of the achieved results, in Table 11 we report the
confusion matrix for the UPC data set and statistical features. Note that the C4.5 offers
almost optimal results over all the classes in this case. Indeed, the only misclassifications
occur with the most similar classes, that is when considering Chrome and Firefox.
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Table 10. C4.5: Performance over UPC data set.

Feature Class TPR FPR

Statistical

SSHD 0.99 0.001
XRDP 0.99 0.001
DNSMasq 0.99 0.001
Chrome 0.97 0.001
Firefox 0.9 0.007
Amule 0.98 0.001

Composite (H = 3)

SSHD 0.95 0.002
XRDP 0.74 0.002
DNSMasq 0.99 0.001
Chrome 0.86 0.007
Firefox 0.349 0.002
Amule 0.94 0.003

Composite (H = 5)

SSHD 0.99 0.002
XRDP 0.99 0.02
DNSMasq 0.99 0.01
Chrome 0.94 0.02
Firefox 0.79 0.01
Amule 0.98 0.001

Composite (H = 10)

SSHD 0.99 0.001
XRDP 0.99 0.001
DNSMasq 0.98 0.001
Chrome 0.94 0.02
Firefox 0.72 0.01
Amule 0.97 0.002

Table 11. C45: confusion matrix (UPC, statistical).

SSHD XRDP DNSMasq Chrome Firefox Amule

SSHD 7756 5 1 2 1 4
XRDP 6 3017 0 4 2 2

DNSMasq 2 1 1726 0 0 2
Chrome 1 0 5 4404 129 1
Firefox 0 0 2 183 1735 4
Amule 10 10 6 14 3 2319

4.3. PAES-RCS

As for the previous cases, and also for the proposed method, we have run a 5-fold
cross-validation, and for each fold we have run three trials (each with a different seed of
the random number generator). The algorithm has been run with the parameters indicated
in Table 12, and for each fold and each trial we have generated an approximation of the
optimal Pareto front. In the following, we report the average results of three representative
solutions ordered according to decreasing accuracy. Specifically, as discussed in [44], we
sorted the FRBCs in each Pareto front approximation in ascending order of accuracy. Then,
we extracted the First (the most accurate and the less explainable), the Median, and the
Last solution (the less accurate and the most explainable).
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Table 12. Values of the parameters for PAES-RCS used in the experiments.

Parameter Description Value

AS PAES archive dimension 64
Tf Number of fuzzy sets per variable X f 7
Mmin Minimum number of rules in CRB 5
Mmax Maximum number of rules in CRB 100
Emax Total number of fitness evaluations 50,000
PCR Probability of applying crossover operator to CR 0.1
PCT Probability of applying crossover operator to CT 0.5
PMRB1 Probability of applying first mutation operator to CR 0.1
PMRB2 Probability of applying second mutation operator to CR 0.7
PMT Probability of applying mutation operator to CT 0.2

Similarly to what done so far, in Tables 13 and 14 we present the overall performance
over the UniBS and the UPC data-set, respectively, in terms of accuracy, number of rules
Rules, and total rule length TRL. From the tables we can see that out system is able to
achieve nearly optimal results, with an accuracy close to 0.9 in both the cases.

Table 13. Performance achieved by the proposed classifier over the UniBS data set.

Feature Solution Acc Rules TRL

Statistical
First 0.875 17.86 95.8
Median 0.86 10.83 32.9
Last 0.595 7.6 8.47

Composite (H = 3)
First 0.704 35.3 98.13
Median 0.691 26.63 79.23
Last 0.64 25.0 76.93

Composite (H = 5)
First 0.72 21.4 41.86
Median 0.704 10.8 13.8
Last 0.652 8.4 8.4

Composite (H = 10)
First 0.802 15.6 40.53
Median 0.734 10.03 18.67
Last 0.629 8.07 8.2

Table 14. Performance achieved by the proposed classifier over the UPC data set.

Feature Solution Acc Rules TRL

Statistical
First 0.861 15.93 59.06
Median 0.843 11.17 24.9
Last 0.61 8.73 9.06

Composite (H = 3)
First 0.662 14.86 22.2
Median 0.647 10.9 13.57
Last 0.612 7.07 7.07

Composite (H = 5)
First 0.816 17.53 36.46
Median 0.79 12.37 18.63
Last 0.6 8.67 8.67

Composite (H = 10)
First 0.886 16.73 50.87
Median 0.877 11.27 20.4
Last 0.645 8.87 9.0

Then, in Tables 15 and 16, we present the results in terms of TPR and FPR for each
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class on the UniBS and UPC data sets, respectively. Note that, apart with composite
feature and H = 3, there is not any class that is mostly unrecognized (as for the SVM
classifier). Moreover, it is also interesting to see that, differently from the C4.5 classifier, the
proposed method is able to correctly classify Chrome, while it presents some issues in the
classification of Firefox.

For a deeper analysis, Tables 17 and 18 report the confusion matrix for the UniBS and
UPC case with statistical features, respectively. As expected, these results highlight that,
in the UPC case, the most critical case is represented by Firefox, which is often classified
as Chrome.

4.4. Comparison among the Different Classification Models

To easily compare the achieved results, Table 19 reports the best results, in terms of
accuracy, per each classifier on the two considered data sets, both for the training set and
the test set, respectively.

Starting by comparing the performance of our method with those of SVM on the test
set, it is easy to see that our method achieves more or less the same accuracy than SVM,
with a maximum accuracy of 0.875 (against 0.874) on the UniBS data set, and 0.886 (against
0.896) over the UPC data set. On the contrary, considering again the test set, our method is
outperformed, in terms of accuracy, by C4.5 over both the data sets.

Similar results are obtained on the training set. Nevertheless, in this case, note that
the overfitting is very high for the SVM algorithm. Furthermore, the decision tree and the
proposed PAES-RCS algorithms suffer from this problem, but in this case the phenomenon
is less evident.

Table 15. Proposed method: Performance over UniBS data set.

First Median Last
Feature Class TPR FPR TPR FPR TPR FPR

Statistical

Mail 0.814 0.006 0.801 0.006 0.152 0.027
Skype 0.636 0.006 0.619 0.007 0.503 0.009
Firefox 0.696 0.002 0.653 0.002 0.375 0.004
Safari 0.955 0.005 0.941 0.006 0.810 0.018
BitTorrent 0.955 0.001 0.949 0.001 0.653 0.006
Amule 0.836 0.006 0.819 0.007 0.499 0.019

Composite (H = 3)

Mail 0.000 0.032 0.000 0.032 0.000 0.032
Skype 0.588 0.007 0.592 0.007 0.592 0.007
Firefox 0.892 0.001 0.736 0.002 0.637 0.002
Safari 0.876 0.013 0.865 0.014 0.944 0.006
BitTorrent 0.968 0.001 0.968 0.001 0.807 0.003
Amule 0.791 0.008 0.771 0.009 0.312 0.025

Composite (H = 5)

Mail 0.088 0.029 0.029 0.031 0.000 0.032
Skype 0.583 0.007 0.583 0.007 0.583 0.007
Firefox 0.902 0.001 0.822 0.001 0.492 0.003
Safari 0.896 0.011 0.877 0.013 0.901 0.010
BitTorrent 0.969 0.001 0.969 0.001 0.839 0.003
Amule 0.758 0.009 0.776 0.009 0.564 0.016

Composite (H = 10)

Mail 0.547 0.015 0.502 0.017 0.048 0.031
Skype 0.572 0.007 0.572 0.007 0.572 0.007
Firefox 0.892 0.001 0.768 0.001 0.398 0.004
Safari 0.917 0.009 0.892 0.011 0.891 0.012
BitTorrent 0.957 0.001 0.956 0.001 0.750 0.003
Amule 0.788 0.008 0.779 0.009 0.506 0.019
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Table 16. Proposed method: Performance over UPC data set.

First Median Last
Feature Class TPR FPR TPR FPR TPR FPR

Statistical

SSHD 0.948 0.004 0.941 0.005 0.813 0.014
XRDP 0.883 0.003 0.885 0.003 0.531 0.014
DNSMasq 0.969 0.001 0.961 0.001 0.694 0.005
Chrome 0.933 0.003 0.894 0.005 0.510 0.021
Firefox 0.201 0.015 0.203 0.014 0.156 0.015
Amule 0.871 0.003 0.835 0.004 0.567 0.010

Composite (H = 3)

SSHD 0.950 0.004 0.952 0.003 0.945 0.004
XRDP 0.592 0.011 0.582 0.011 0.524 0.012
DNSMasq 0.853 0.004 0.845 0.004 0.752 0.006
Chrome 0.101 0.033 0.089 0.033 0.015 0.036
Firefox 0.000 0.015 0.000 0.015 0.002 0.015
Amule 0.917 0.003 0.903 0.004 0.854 0.006

Composite (H = 5)

SSHD 0.972 0.002 0.973 0.002 0.896 0.008
XRDP 0.636 0.011 0.646 0.010 0.432 0.016
DNSMasq 0.930 0.001 0.906 0.002 0.371 0.010
Chrome 0.943 0.003 0.877 0.005 0.534 0.020
Firefox 0.033 0.017 0.000 0.018 0.022 0.018
Amule 0.848 0.003 0.835 0.004 0.600 0.009

Composite (H = 10)

SSHD 0.972 0.003 0.972 0.003 0.871 0.012
XRDP 0.887 0.004 0.881 0.004 0.495 0.017
DNSMasq 0.970 0.000 0.949 0.000 0.556 0.003
Chrome 0.954 0.002 0.947 0.002 0.562 0.019
Firefox 0.113 0.012 0.091 0.012 0.086 0.012
Amule 0.809 0.003 0.773 0.003 0.389 0.009

Table 17. Proposed method: confusion matrix (UniBS, statistical).

Mail Skype Firefox Safari BitTorrent Amule

Mail 823 0 0 99 0 9
Skype 0 326 0 111 4 73

Firefox 0 0 173 2 2 2
Safari 26 4 0 2538 0 64

BitTorrent 0 15 2 2 451 12
Amule 6 34 19 112 0 896

Table 18. Proposed method: confusion matrix (UPC, statistical).

SSHD XRDP DNSMasq Chrome Firefox Amule

SSHD 1449 91 0 8 0 0
XRDP 3 581 0 40 0 1

DNSMasq 0 0 342 1 0 8
Chrome 24 2 0 887 3 0
Firefox 11 0 01 256 106 0
Amule 15 8 1 39 0 395
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Table 19. Performance comparison: Accuracy (for the PAES-RCS algorithm the First solution has
been considered).

Training Test
Data-Set Feature SVM C4.5 PAES-RCS SVM C4.5 PAES-RCS

UniBS

Statistical 0.864 0.972 0.893 0.759 0.969 0.875
Composite (H = 3) 0.741 0.842 0.752 0.662 0.828 0.704
Composite (H = 5) 0.85 0.871 0.804 0.717 0.86 0.72
Composite (H = 10) 0.964 0.974 0.839 0.874 0.961 0.802

UPC

Statistical 0.854 0.99 0.883 0.71 0.981 0.861
Composite (H = 3) 0.635 0.887 0.721 0.538 0.867 0.662
Composite (H = 5) 0.884 0.983 0.892 0.776 0.964 0.816
Composite (H = 10) 0.977 0.973 0.904 0.896 0.966 0.886

Nonetheless, as already discussed, our method is characterized by a high level of
explainability. To quantify such an aspect, in Table 20 we report the complexity of our
method (in terms of number of rules and TRL) and of the C4.5 algorithm (in terms of
number of leaves and tree dimension). Note that we do not take into consideration SVM in
this analysis, as it is well known that SVM must be considered as a “black box”.

As it can be observed from the table, the higher accuracy of C4.5 is paid with a much
higher complexity, which directly results in a lower explainability. Note that as far as
complexity is concerned, that for our proposed method we have considered the “First”
case, which has a much higher complexity, but an only slightly better accuracy, with respect
to the “Median” case. Therefore, out method results even more convenient, considering
the “Median” case.

Table 20. Performance comparison: Complexity (for the PAES-RCS algorithm the First solution has
been considered).

C4.5 PAES-RCS
Data-Set Feature Tree Dimension Leaves TRL Rules

UniBS

Statistical 449 228 95.8 17.86
Composite (H = 3) 194 118 98.13 35.3
Composite (H = 5) 889 435 41.86 21.4
Composite (H = 10) 712 383 40.53 15.6

UPC

Statistical 3321 147 59.06 15.93
Composite (H = 3) 247 134 22.2 14.86
Composite (H = 5) 364 176 36.46 17.53
Composite (H = 10) 447 223 50.87 16.73

To further clarify the level of explainability of the proposed method, we finally analyze
some examples of classification rules (created for the UniBS data-set). In Figure 3, we show
a generic strong fuzzy partition that has been used for each variable in the experiment. The
fuzzy partition consists of seven fuzzy sets, labeled with linguistic values ranging from
Very Low (VL) to Very High (VH).

Given such fuzzy sets, the following are a few examples of classification rules:

R1: IF f _Sµ is VL THEN Y is Skype
R2: IF f _N is L THEN Y is Amule
R3: IF r_SM is H AND r_TM is M THEN Y is Mail
R4: IF f _N is H AND f _V is VH AND r_V is H AND r_Sm is L AND f _SM is F ML AND
r_SM is H AND r_Sµ is H AND f _Sσ is VH AND r_Sσ is VH AND f _TM is H THEN Y
is Mail
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It is clear, that such rules, being linguistic rules, can be easily read and understood by
an operator.

For the sake of completeness, we highlight that both UniBS and UPC are data sets
that exhibit some level of imbalance. Therefore, we have applied a set of re-balancing
techniques, but the obtained results did not show appreciable improvements. This is
probably due to the fact that the level of unbalancing is not very high. Indeed, as can be
seen from the tables and the confusion matrices discussed above, we have verified that
poor results on specific classes are not due to the imbalance level but rather to the adopted
feature extraction procedure and/or to classification model selected. Due to space reasons
and to their scarce relevance, we have not reported all the results achieved adopting a
re-balancing step of the training set.

Figure 3. The fuzzy partition adopted in the experiments.

5. Conclusions and Future Work

The development of “explainable” classification methods is attracting a lot of research
efforts in several fields, such as network monitoring. This is highly justified by the newly
emerged requirements in terms of fairness or unbiasedness, privacy, reliability, robust-
ness, causality, and/or trust, which make the standard methods inadequate. For this
reason, in this paper, we have proposed a traffic classification tool based on multi-objective
evolutionary fuzzy classifiers.

Our proposal has been validated and evaluated over two well-known publicly avail-
able traffic data-sets (namely, UniBS and UPC) and has demonstrated optimal performance
both in term of accuracy end explainability. Indeed, the achieved results show that our
method is able to outperform the de facto standard method (i.e., SVM) both in terms of
accuracy and explainability. Moreover, the proposed method is also able to offer a better
accuracy–explainability trade-off than C4.5 classifier, in which a very high accuracy is paid
in terms of very low level of explainability.

The main limitation of the proposed approach, based on XAI models for internet traffic
classification, regards the fact that it may suffer from the “concept drift issue”. Indeed,
if a new set of internet applications appears in the monitored network, the system will
not be able to identify it. This is due to the fact that the traffic flows associated with the
new applications have never been seen by the XAI models during the training stage. This
means that the models should be retrained or an incremental learning algorithm should be
adopted for updating in real time the parameters of the models (i.e., the rules). This issue,
not trivial at all, represents a hot research topic that will be considered in future works.
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