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Abstract: Chemotherapy and radiation are often accompanied by complications such as intestinal
mucositis. The aim of this study was to assess by immunohistochemical assay the consequences of
epirubicin-based therapy applied to onco-hematological patients, on the mucosal cells that undergo
apoptosis and on the tight junction proteins, immediately before and after a short time of chemother-
apy administration. We assessed the protein expression and distribution of the pro-apoptotic Bax,
anti-apoptotic Bcl-2 and effector Caspase-3 as key proteins in apoptosis pathways and the changes in
immunopositivity of Claudin-1 and ZO-1 tight junction proteins. Results show that the Bcl-2 family
is involved in intestinal damage via Caspase-3 dependent apoptosis of epithelial cells. Additionally,
the intestinal mucositis activates other injurious pathways through a dramatic drop in Claudin-1 and
ZO-1 expressions, contributing for a while to a structural and functional integrity disruption of the
intestinal epithelium.

Keywords: onco-hematological patients; epirubicin; colon; apoptosis; tight junction

1. Introduction

Chemotherapy and radiation are often accompanied by complications such as intesti-
nal mucositis. This is represented by the disturbance of the intestinal mucosa integrity and
is clinically manifested by diarrhea, painful inflammation and ulceration, and in severe
cases, hemorrhage, sepsis, ischemia and the formation of strictures [1]. This seems to reflect
the high sensitivity of the gastrointestinal tract epithelium to cytotoxic therapies due to
the high turnover rate of these cells [2]. Injury to the intestinal epithelium leads to dis-
ruption of the integrity of the surface mucosal barrier and allows changes in permeability
to various substances and the translocation of bacterial products from the lumen, which
contributes to morbidity and mortality. Therefore, gastrointestinal toxicity frequently limits
the use of radiation and chemotherapy for the treatment of patients with a wide variety of
malignancies [2].

The maintenance of intestinal homeostasis is closely related to the integrity of the
epithelial layer renewal. The intestinal epithelial monolayer is composed of different
types of specialized epithelial and goblet cells, each with a distinct function. Goblet
cells secrete mucous and resistin-like molecule-β, which are necessary for the defense
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and repair of the epithelial layer and in maintaining epithelial homeostasis [3,4]. This
structural and functional integrity allows the permeability of essential ions and water
but restricts the entry of pathogens and bacterial toxins [5]. The transport of molecules
across the epithelial layer occurs through passive diffusion, the carrier-mediated pathway
and the paracellular pathway between the spaces of adjacent cells. The barrier function
of the epithelium is provided by the epithelial tight junction proteins, which seals the
paracellular space between the apical part of two consecutive epithelial cells and restricts
the transport of hydrophilic molecules [6–9]. The tight junction is composed of several
proteins, including occludens; claudins; zonula occludens (ZO); and cingulin, tricellulin
and junctional adhesion molecules, which have a complex network between them, as well
as with the cytoskeleton. These proteins have specific roles: occludens provide structural
integrity to the tight junction [10], claudins are responsible for the regulation of paracellular
space [11] and ZO are essential for the connection of other tight junction proteins to the
cytoskeleton [12,13]. Any alteration in the tight junction structure can be detrimental to the
structural and functional integrity of the intestinal barrier.

Apoptosis plays an important role in determining the architecture of the intestinal
epithelium and is also part of the stress response triggered by the toxicant. It appears as
a single process, being triggered on several pathways which depend on the position of
the cell along the crypt, its level of differentiation and the type of stimulus involved [14].
Under normal conditions, the integrity and normal functioning of the gut is ensured by the
apoptosis rate of the gastrointestinal epithelial cells paired with the rate of mitosis [15]. In a
previous study, we induced epirubicin-based mucosal barrier injuries of the gastrointestinal
tract in mice and found that the small intestine is much more susceptible to damage-induced
apoptosis by the intrinsic pathway, followed by the colon and stomach [16], but up to date,
there have not been any patho-clinical observations of intestinal changes that follow a
standard antineoplastic epirubicin-based protocol applied to onco-hematological patients.

The aim of this study was to assess by immunohistochemical assay the consequences
of epirubicin-based therapy applied to onco-hematological patients, on the mucosal cells
that undergo apoptosis and on the tight junctions’ proteins, immediately before and after a
short time of chemotherapy administration. This immunohistochemical analysis may be
important for clinicians in correlating clinical signs with the molecular causes that led to
the temporary disruption of the intestinal barrier and in determining when the intestinal
epithelium begins to recover, which may be of interest for further therapeutic protocols.

2. Materials and Methods
2.1. Oncohematological Patients—Clinical Evaluation and Colonic Biopsies

The study was performed in the Hematology Clinic of the Arad Clinical Emergency
County Hospital on 30 onco-hematological patients subject to 182 applications of standard
antineoplastic epirubicin-based protocol. The experimental protocol was approved by
the Bioethics Commission of the hospital. All data were collected between June 2015 and
September 2016. Of the onco-hematological patients, 9 were biopsied after cumulating
6–8 cycles of chemotherapy, 48 h and 3 weeks after the last epirubicin administration. The
control was represented by healthy volunteers.

2.2. Immunohistochemistry

Five µm paraffin sections of colon biopsies were cut, dewaxed in xylene and rehy-
drated through a graded series of alcohols. Slides were washed 2 × 5 min in PBS prior
to being subjected to heat-mediated antigen retrieval in citrate buffer (pH 6.5). The en-
dogenous peroxidase activity was blocked and slides were incubated overnight at 4 ◦C
with the primary antibodies: rabbit polyclonal ZO-1 (ab214228), mouse monoclonal Bax
(ab 5714), mouse monoclonal Bcl-2 (ab692), mouse monoclonal Claudin-1 (sc-166338) and
mouse monoclonal Caspase-3 (sc-271759) (1:100 dilution) on the experimental section,
and PBS only on the negative section. Immunoreactions were visualized employing a
Novocastra Peroxidase/DAB kit (Leica Biosystems, Nussloch, Germany) according to the
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manufacturer’s instructions. The protein expression of Bcl-2, Bax, Caspase-3, ZO-1 and
Claudin-1 was quantified by the percentage of positive cells in 5 random fields by using a
multi-functional cell image analysis software (cellSens Dimension, Olympus Life Science
Solutions), thoroughly analyzing the histological section with a 20× objective.

2.3. Statistical Data Analysis

Statistical analysis was conducted with 1-way ANOVA using Prism software (Graph-
Pad Inc., La Jolla, CA, USA) followed by Tukey’s Multiple Comparison Test. A value of
p < 0.05 was considered to be statistically significant.

3. Results
3.1. Effect of Epirubicin-Based Chemotherapy on the Expression of Tight Junction Proteins

Maintaining the integrity of the intestinal barrier and the permeability of the intestinal
epithelium is dependent on the structure of the tight junction proteins, as seen in ZO-1 and
Claudin-1. ZO-1 was well expressed in control slides (Figure 1) and reduced in both of the
sigmoid segments from the onco-hematological patients 48 h following epirubicin-based
chemotherapy (Figure 2). After 3 weeks of chemotherapy cessation, the expression of ZO-1
remained below the control (Figure 3). Claudin-1 was immunopositive in control slides
(Figure 4) and significantly reduced 48 h after epirubicin administration (Figure 5) whereas
after 3 weeks was almost restored (Figure 6). The weakest immunopositivity was recorded
for ZO-1 under epirubicin treatment.
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3.2. Effect of Epirubicin-Based Chemotherapy on the Expression of Apoptosis Markers

The pro-apoptotic Bax immunostaining was negative in control (Figure 7) and markedly
expressed 48 h following epirubicin-based chemotherapy (Figure 8). After 3 weeks of
chemotherapy cessation, the expression of Bax was slightly reduced but still over the
control (Figure 9). Similar, caspase-3 was negative in control (Figure 10) and significantly
immunopositive at 48 h (Figure 11), whereas staining was decrease 3 weeks after chemother-
apy (Figure 12).
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Figure 12. Caspase-3 immunostaining in the proximal (a) and distal (b) sigmoid colon of the onco-hematological patients
3 weeks following epirubicin-based chemotherapy.

On the contrary, the anti-apoptotic marker Bcl-2 was immunopositive in control
(Figure 13), decreased 48 h following epirubicin-based chemotherapy, being present only
in the chorion cells (Figure 14). After 3 weeks of chemotherapy cessation, the expression of
Bcl-2 is still weak compared to control (Figure 15).
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Figure 14. Bcl-2 immunostaining in the proximal (a) and distal (b) sigmoid colon of the onco-hematological patients 48 h
following epirubicin-based chemotherapy.
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4. Discussion

Epirubicin is an anthracycline-class antitumor agent that is used in the treatment of
several types of cancer, including breast cancer, ovarian, lung cancer and oncohematologic
disorders. The antitumor mechanism of epirubicin refers to its ability to intercalate, result-
ing in a complex formation that interferes with DNA and RNA synthesis [17]. It can also
interfere with gene regulation expression by inhibiting polymerase activity [18]. However,
it is a nonspecific antitumor drug, and like other chemotherapeutics, causes high DNA
damage and selectively targets rapidly proliferating cells such as cancer cells and normal
cells with a high self-renewal potential, including those in the gastrointestinal tract [19].

In this respect, we aimed to assess by immunohistochemical assay the consequences of
epirubicin-based therapy on the mucosal cells that undergo apoptosis and the injury of the
tight junctions, immediately before and after a short time of chemotherapy administration.

The integrity of the intestinal barrier is assured by tight junction, a complex of
membrane-bound proteins, occludens and claudins and their junctional adhesion molecule,
zonula occludens proteins (ZO)-1, -2 and -3 [20,21]. Recently, clinical and preclinical
studies reported altered tight junction protein expression and subsequent altered intesti-
nal permeability in the consecutive administration of Irinotecan or in combination with
5-Fluorouracil [22,23]. Studies have shown a decrease in key tight junction (TJ) proteins,
such as ZO-1, in experimental models of intestinal inflammation [24]. Moreover, its deple-
tion corresponds to an increase in intestinal permeability and a decrease in transepithelial
resistance [24,25]. Our results showed that the expression of essential proteins in the tight
junctions, such as Claudin-1 and ZO-1, is altered 48 h after epirubicin administration
and is not completely restored even 3 weeks after administration, suggesting that the
integrity of the intestinal barrier is affected. As a consequence, after chemotherapy, the
passage of solutes across the epithelial barrier is impaired due to an increase in paracellular
permeability [26].

The Bcl-2 family members are key proteins that regulate the intrinsic apoptotic path-
way [27]. Expression of genes that modulate the apoptosis process, such as Bcl-2 (which
promotes survival) and Bax (which promote apoptosis), balance cell survival or death
after damage [28]. In the present study, we investigate the susceptibility to damage of the
intestinal mucosa by epirubicin administration to oncohematological patients. We showed
that the expression of the Bcl-2 family (pro-apoptotic Bax and anti-apoptotic Bcl-2) was
unbalanced, observing a colonic higher immunopositivity for Bax, detrimental to Bcl-2.
Moreover, this finding is in accordance with our preclinical studies, where we found the
same pattern in all gastrointestinal tracts of mice [16]. As well, Caspase-3 was highest
expressed at 48 h after epirubicin-based chemotherapy to the oncohematological patients
and remain expressed 3 weeks after cessation. Other results show alleviation of epithelial
mucositis after administration of NSC321205, the protective effects being mediated by a
decrease in Caspase-3 activity and the consequent inhibition of Bax expression [29], which
demonstrate that apoptosis is an important event in gastrointestinal mucositis induced by
chemotherapy, as well.

5. Conclusions

In this study, we assessed the key molecules involved in apoptosis and tight junction
intestinal damage and their role in epirubicin-induced intestinal mucositis. The results
showed that the Bcl-2 family is involved in intestinal damage via Caspase-3 dependent
apoptosis of epithelial cells. Additionally, the intestinal mucositis activates other injurious
pathways through a dramatic drop in Claudin-1 and ZO-1 expressions, contributing for a
while to a structural and functional integrity disruption of the intestinal epithelium.
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