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Abstract: High precision and multi information prediction results of bearing remaining useful life
(RUL) can effectively describe the uncertainty of bearing health state and operation state. Aiming
at the problem of feature efficient extraction and RUL prediction during rolling bearings operation
degradation process, through data reduction and key features mining analysis, a new feature vector
based on time-frequency domain joint feature is found to describe the bearings degradation process
more comprehensively. In order to keep the effective information without increasing the scale of neu-
ral network, a joint feature compression calculation method based on redefined degradation indicator
(DI) was proposed to determine the input data set. By combining the temporal convolution network
with the quantile regression (TCNQR) algorithm, the probability density forecasting at any time
is achieved based on kernel density estimation (KDE) for the conditional distribution of predicted
values. The experimental results show that the proposed method can obtain the point prediction
results with smaller errors. Compared with the existing quantile regression of long short-term
memory network(LSTMQR), the proposed method can construct more accurate prediction interval
and probability density curve, which can effectively quantify the uncertainty of bearing running state.

Keywords: smart manufacturing; remaining useful life prediction; reliability; features compression
and computing; quantile regression

1. Introduction

With the development of sensor technology, signal data shows explosive growth.
Under such circumstances, effective information extraction and information value analysis
become the key links for the efficient use of big data to promote the development of man-
ufacturing industry. In Smart Manufacturing technology, accurate remaining useful life
(RUL) prediction provides decision guidance for the formulation of appropriate preven-
tive maintenance and replacement strategies. On the premise of ensuring the operational
reliability of mechanical equipment, it can avoid resource waste due to over frequency main-
tenance or other serious consequences caused by mechanical parts failure. The efficiency
of prediction and maintenance decision making will be improved through the mining
and analysis of key features of the bearings operation status monitoring data. Therefore,
the prediction of RUL of mechanical equipment parts (such as gears and bearings) has been
paid more and more attention by scholars. As an essential part of rotating machinery,
the performance degradation or failure of rolling bearings directly affects the performance
and operation reliability of mechanical equipment. Prognostics Health Management (PHM)
of rolling bearings is a process of monitoring and predicting current or future degradation
based on historical operational degradation data, designed to assist personnel in making
reasonable maintenance decisions to prevent or avoid bearing failure. At present, most
sensor-based PHM technologies are mainly based on data-driven statistical models that de-
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termine rules in a probabilistic manner [1,2] and artificial intelligence algorithms that rely
on machine learning tools [3]. Some experts and scholars have put forward the rolling
bearing RUL prediction method based on nonlinear degradation and model [4,5].

At the same time, under the background of rapid development of technology, mechan-
ical equipment status monitoring data shows a trend of massive growth, which provides
information basis for real-time acquisition and advance prediction of equipment operation
status information. However, when a significant measurement error is introduced due
to the complex and changeable operating environment of the equipment, environmental
interference, abnormal sensor or system disturbance, some isolated singularities deviating
from expected values may occur in the original monitoring data. During the operation
of the equipment, due to the occurrence of faults or defects, the monitoring data will
also appear abnormal. Obviously, such data contains important information, which can-
not be processed in the same way as noise data, anomalous sensor data, and anomalous
data caused by environmental interference. Therefore, in obtaining the running state
of the equipment, noise processing, and key features mining analysis become the essential
work of predicting the operating state of the material and carrying out PHM tasks.

Because of the problem that the high dimension original monitoring data often contain
different types of noise signals, it is necessary to extract sufficient information from the con-
taminated original monitoring data and restore the pure data to achieve the effective-
ness of degradation indicators. In recent years, key features mining analysis technology
has made rapid development in the field of deep learning. Many degradation indicators
construction methods and neural networks have achieved satisfactory performance in
different scenarios, vibration signal feature extraction technology based on wavelet trans-
form [6,7], wavelet packet decomposition technology [8] has been frequently used in health
indicator construction task, and has been proved to be effective. Based on the idea of deep
learning, as an unsupervised learning method, autoencoder, is widely used in dimension-
ality reduction and information retrieval tasks in the field of PHM because of its robust
feature extraction and generalization ability [9–11]. For the past few years, some experts
and scholars have proposed to use autoencoder, or improved version of autoencoder, such
as stacked sparse autoencoder [12], stacked denoising autoencoder [13,14], convolutional
autoencoder [15], and to reconstruct sensor readings and automatically extract degrada-
tion characteristics to obtain unsupervised degradation indicator values to identify the
severity of equipment degradation. The long short-term memory network (LSTM) [16],
convolutional neural network (CNN) [17], deep convolution neural network (DCNN) [18],
Convolution and LSTM Hybrid Deep Neural Networks [19], recursive gating unit (Gru)
neural network [20], and recurrent convolutional neural network [21] are combined to real-
ize the task of PHM.

The above research work provides a useful reference for the effective learning of the
degradation state characteristics of bearing operation. In particular, literature [22] realized
the effective prediction of bearings RUL based on deep autoencoder and deep neural
networks. On this basis, we will focus on the dimension, purity and efficiency of data.
In practical engineering applications, the actual operation data and forecast model pa-
rameters of the bearing have a substantial uncertainty, so the traditional point prediction
results will inevitably have errors, which is difficult to reflect the uncertainty of bear-
ings degradation state. In the establishment of maintenance strategy based on reliability,
if able to quantify the uncertainty of prediction results, they can run for maintenance
decision-making and risk assessment to provide more abundant information. The probabil-
ity prediction offers an effective way to quantitatively balance the risk, which can better
describe the possible fluctuation range, uncertainty, and risk of the RUL in the process
of future operation degradation, so it has more research value.

For the probability density prediction, most studies adopt nonparametric modelings,
such as quantile regression (QR) [23], kernel density estimation(KDE) [24], etc. Which
can directly calculate the distribution function or quantile. Taylor [25] introduced a more
flexible model in 2000, namely, the quantile regression neural network (QRNN); how-
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ever, the shallow structure of QRNN lacks enough ability to simulate the complex time
characteristics of time series model. With the continuous development of deep learning,
some deep learning models have been gradually applied to the research of time series
data. On this basis, considering the correlation between RUL and time, the previous time
information can be associated with the current task, the LSTM network model [26] that can
learn long-term dependence relationship is constructed. Compared with LSTM and other
networks, CNN has a natural advantage in large-scale parallel data processing. Temporal
convolution network (TCN) [27] is an improvement of one-dimensional CNN for time
series problems, literature [27] shows that TCN has the advantages of faster prediction
speed and higher accuracy in most scenarios. At present, there is little research on TCN
in the field of engineering reliability, and there is no report on the research of fusion of TCN
and neural network in the probability density prediction of RUL.

This study mainly focuses on the problems such as the current running state of the mo-
tor rolling element bearings and RUL, which cannot truly represent the abnormal monitor-
ing data caused by various reasons during the equipment condition monitoring process.
In this paper, a degradation indicator (DI) construction method based on data reduction
and key features mining analysis is proposed. The QR was combined with TCN to improve
the performance of the prediction model. Firstly, time domain and frequency domain
features are compressed by stacked denoising autoencoder (SDAE). Through redefinition
and combination of correlation, redundancy, and monotonicity, the sensitivity measure-
ment standard StdDI of DI is further proposed. The optimal features are selected as optimal
DI set OptDI . Then bearings DI in set OptDI and its corresponding RUL are taken as in-
put and output variables of temporal convolution network quantile regression (TCNQR)
model. The relationship between input variables and response variables under different
quantiles is obtained, based on the above results, the probability density function of the pre-
dicted bearing RUL is obtained by KDE, which provides more abundant information than
traditional point prediction results.

The main contributions of this paper are summarized as follows:

(1) The original features are compressed and reconstructed based on the SDAE compres-
sion method to obtain low-dimensional representative features and retain sufficient
information on the premise of not increasing the size of the neural network.

(2) The redundancy, correlation, and monotonicity measures were incorporated into the
DI selection criteria. The sensitivity standard of DI is redefined to further reduce
the dimension of input feature variables on the premise of ensuring the efficiency
of DI set.

(3) Combining TCN with QR, a probability density prediction method based on TCNQR
is proposed to obtain the predicted value of bearings RUL probability density, ob-
tain more comprehensive and effective information of bearings degradation state,
and further reflect the uncertainty of bearings RUL, so as to guide the equipment
maintenance decision of actual production and manufacturing activities and avoid
large errors and economic losses.

The rest of the paper is organized as follows: Section 2 introduces the basic theory
of SAE and QR. The detailed implementation process of the construction of bearings DI set
and the TCNQR prediction model are presented in Section 3. The performance of the pro-
posed method was verified using the motor rolling element bearings datasets from Xi’an
Jiaotong University (Shaanxi, China) and compared with other methods in Section 4.
Finally, conclusions are drawn in Section 5.
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2. Basic Theory
2.1. Basic Theory of SAE

Equipment condition monitoring data often has noise signals in the data due to the
working environment or operating conditions, which leads to “impure” data. To realize
the accurate analysis of the data, we need to “clean” the data, extract the effective features,
and restore the pure data. In practical application, principal component analysis (PCA),
as a classical method to improve the signal-to-noise ratio (SNR) and linear dimension
reduction, is limited in subspace feature extraction [28], and the determination of principal
component weight is often subjective, so it is not suitable for the understanding of nonlinear
features. However, Hinton [29] in 2006 proposed a low dimensional expression method
of learning high-dimensional features by training deep “autoencoder” network, which
is essentially a signal compression model based on neural network. Autoencoder(AE)
compression embodies its advantages in feature compression and provides a new direction
for the research in this field. The simplified network structure of shallow AE is shown
in Figure 1.

Figure 1. Simplified network structure of autoencoder (AE).

The AE is a neural network that reconstructs the input signal from the target expression.
The purpose is to obtain a dimension reduction feature expression H = {h(1), h(2), h(3), . . . }
of the data through training based on the input unlabeled data X = {x(1), x(2), x(3), . . . }.
The AE encodes the input vector X to the compression feature of the hidden layer through
activation function mapping to express H:

H = f(θ)(x) = s(Wx + b) (1)

The feature expression H of the hidden layer is reconstructed by mapping and decod-
ing as follows:

x̂ = gθ′(H) = s(W ′H + b′) (2)

where, θ = (W, b) and θ′ = (W ′, b′) are coding model parameters and decoding model
weight parameters respectively; W and W ′ are encoding weight matrix and decoding
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weight matrix respectively; b and b′ are bias vectors; s function is the activation function,
and the general expression is s(u) = sigmoid(u) = 1/(1 + exp(−u)).

The reconstruction result x̂ cannot reproduce the input x completely and accurately.
Our goal is to find the minimum reconstruction error of parameters θ and θ′, and to use
loss function to represent the training effect and to minimize the loss function. At this time,
the common characteristics of the input information x and the reconstruction information
x̂ are extracted to the maximum. Generally, there are square error loss function and cross
entropy loss function, which are respectively expressed as:

L(x, x̂) =
1
n

∥∥∥∥x− x̂
∥∥∥∥2

(3)

L(x, x̂) = −
n

∑
i=1

[xilg(x̂) + (1− xi)lg(1− x̂)] (4)

The optimization function is expressed as:

(θ∗, θ∗
′
) = argmin

1
n

n

∑
i=1

L(xi, x̂i) = argmin
1
n

n

∑
i=1

L(xi, gθ′ [ fθ(xi)]) (5)

Considering that there will be noise information in the actual operation process
of bearings, this paper uses the de-noising autoencoder (DAE) to add noise to the original
features, that is, the original input vector x is added with noise to get x̃ , the unit is randomly
selected according to a certain proportion and forced to be set to 0, and then the de-noised
data x̃ is trained for encoding and decoding. At this time, the loss function is consistent
with the traditional AE loss function, and the optimization function is as follows:

(θ∗, θ∗
′
) = argmin

1
n

n

∑
i=1

L(xi, x̂i) = argmin
1
n

n

∑
i=1

L(xi, gθ′ [ fθ (x̃i)]) (6)

The cost function is:

JDAE(W, b) =
1
m

m

∑
i=1

(
1
2

∥∥∥∥hW,b(x̃i)− Hi

∥∥∥∥2
)

(7)

where hW,b(x̃i) is the activation value of neurons in the hidden layer.
The combination of DAE is stacked into a deep learning hierarchical structure, that is,

multiple DAE are cascaded to complete the task of feature extraction layer by layer, and rep-
resentative features with lower dimension are obtained. Its essence is to take the damaged
information with noise as the input signal, so that the reconstructed signal has a certain
robustness to the noise in the input signal. The stacked denoising autoencoder (SDAE)
takes the hidden layer output of each layer as the input of the next layer, and obtains
the parameter sum of each layer. In this paper, Hinton’s layer by layer greedy learning
algorithm is used to construct a SDAE network. The main idea of the algorithm is to train
only one layer of the network at a time, that is, to train a DAE with only one hidden layer
at a time. When the DAE of this layer reaches the optimization, the next DAE will be trained.

Build the three-layer SDAE model, the input layer nodes is n, hidden layer nodes is m,
the original input data x is de-noised according to the proportion coefficient λ to get x̃. Ac-
cording to Equations (1)–(6), the hidden layer H of the first layer is obtained, and the hidden
layer output of the first layer network is obtained according to formula (7) of the mini-
mized cost function , that is, the model parameters θ1 = (W, b) are obtained. According
to the layer by layer greedy training algorithm, the hidden layer outputs of the second
and third layer networks are obtained in turn.
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The model parameters W and b are obtained by updating the weight once in each
iteration using the gradient descent method. The process is as follows:

(1) Let ∆ W1 = 0, ∆ b1 = 0
(2) Calculate ∇w(l)L(x, x̂),∇b(l)L(x, x̂)
(3) ∆Wl = ∆Wl +∇w(l)L(x, x̂)
(4) ∆bl = ∆bl +∇b(l)L(x, x̂)
(5) Wl = Wl − α( 1

m ∆ Wl), bl = bl − α( 1
m ∆ bl), where α is the learning rate.

2.2. Basic Theory of Quantile Regression

The essence of quantile regression (QR) [30] is to estimate the different conditional
quantiles of response variables by taking different values of τ , so as to obtain the regression
prediction model under all quantiles. The calculation formula is:

QY(τ|X|) = α0(τ) + α0(τ)X1 + α0(τ)X2 + · · ·+ αk(τ)Xk = X · α(τ) (8)

where, α(τ) = [α0(τ), α1(τ), . . . , αk(τ)]
′ is the model parameter related to quantile τ,

the appropriate α(τ) needs to be solved by optimizing the following formula :

min
N

∑
i=1

ρτ(Yi − Xiα(τ)) = min ∑
i|Yi≥Xiα(τ)

τ(Yi − Xiα(τ)) + min ∑
i|Yi<Xiα(τ)

(τ − 1)(Yi − Xiα(τ)) (9)

where, N is the number of samples, ρ is the optimization function.

ρτ(u) =

{
τu, u ≥ 0,

(τ − 1)u, u < 0.
(10)

After obtaining the estimated value of α(τ), the estimated value of the response
variable under τ quantile can be obtained according to Equation (8).

3. Methodology

To formulate a reasonable and effective maintenance plan, it is necessary to take
the RUL as the reference. Bearing as the spare part of mechanical equipment, its RUL
prediction is mainly divided into the following four steps:

(1) bearing operation state data acquisition;
(2) Representative feature extraction of bearing running state information;
(3) Predictive modeling;
(4) RUL prediction.

Figure 2 is the data-driven based RUL prediction.

Figure 2. Data-driven based RUL prediction.

Based on the original bearings vibration signal data, different features are extracted.
Data reduction and key features analysis techniques are used to drive the construction of DI
set. that is, the SDAE model is used to reduce the dimension of time-domain and frequency-
domain features, the initial representative feature set FSDAE are extracted from the time-
domain and frequency-domain features based on the SDAE compression method; the fea-
tures in FSDAE are de-redundant, and the de-redundant feature set DE MICFF is obtained
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based onmaximum information coefficient (MIC) method. The optimal DI set OptDI which
can reveal the degradation state of the bearing is constructed based on the sensitivity
standard StdDI proposed in this paper. Then, the elements in DI set OptDI are input
into the TCNQR network to predict the RUL probability density of the bearing. Finally,
the prediction results are compared and analyzed. The structure of the bearings RUL
prediction model proposed is shown in Figure 3.

Figure 3. The structure of the bearings RUL prediction model proposed.

3.1. Feature Extraction

The time-domain feature represents the change of bearings vibration signal with
the passage of time. Although the time-domain features of bearings vibration signal cannot
provide enough degradation information to predict the bearings RUL, it describes the at-
tenuation trend of bearings and reveals whether the running state of bearings is stable. For
example, according to the amplitude change of vibration signal and other time-domain
features, the bearing can be peliminarily judged whether damage occurs, but different time
domain features have different ability to characterize the health status of bearing operation,
so it is particularly important to select appropriate time-domain features in bearing running
condition monitoring. Frequency variation can display the noise information of bearing
vibration signal, and the influence of noise signal can be eliminated by processing the fre-
quency domain features of bearings vibration signal. Therefore, the time and frequency
domain characteristics of bearings running signal are selected as the initial research object.

3.2. Feature Compression

In order to select efficient features, this paper adopts the SDAE to compress the features
in the time domain and frequency domain.

The SDAE network is used to realize feature compression. Due to the large number
of time-domain and frequency-domain features, it is difficult to combine different time-
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domain and frequency-domain features to predict the bearing RUL. However, the SDAE
network can realize feature compression, ensure the similarity between the decoding results
and the input data, and restore the original features to the maximum extent. In the training
stage of SDAE network, the input and output are both time domain and frequency domain
feature vectors extracted from the original training set. We put the features compressed by
SDAE into feature subset FSDAE as the basis for the construction of the optimal DI set OptDI .

3.3. Feature Fusion

Through the SDAE compression features, to a certain extent, can improve the efficiency
of features, and the characteristics of advantage can be found, but because of the exis-
tence of redundancy, the optimal feature attributes together is not necessarily the optimal
and sensitive feature subset. The sensitive features that can represent the running state
of the bearing should be monotonically related to the degradation process of the bearing
and have low redundancy with other features, since irrelevant and redundant features will
affect the prediction efficiency and accuracy, eliminating those features that cannot provide
sufficient fault information has become the main task in the feature selection stage.

For the measurement of correlation, most studies use the method of Person linear cor-
relation coefficient [31,32] to measure the correlation, so as to select the features with higher
contribution rate. However, the nonlinear relationship between variables is often ignored,
resulting in the unreliability of measurement results, because the complex relationship
between general variables cannot be modeled by a single function. The MIC [33] solves
the above problems very well. The MIC is suitable for measuring the linear and nonlinear
relationship between variables in the measurement data, and mining the non functional
dependency relationship between variables.

Based on these goals, MIC is used to measure the relationship between features
and degradation trend and the correlation between features.

The MIC is calculated mainly by mutual information (MI) and meshing method.
MI is used to measure the degree of correlation between variables. Given variable A =
{ai, i = 1, 2, . . . n} and variable B = {bi, i = 1, 2, . . . n}, where n is the number of samples,
the mutual information (MI) is defined as follows:

MI(A, B) = ∑
a∈A

∑
b∈B

p(a, b) log
p(a, b)

p(a)p(b)
(11)

where P(a, b) is the joint probability density of A and B, and P(a) and P(b) are the boundar
probability densities of A and B, respectively.

Suppose set D = {(ai, bi), i = 1, 2, . . . n} is a set of finite ordered pairs. It defines
a division G, which is used to divide the value range of variable A into x segments
and divide the value range of variable B into y segments. G is a grid with a size of x× y.
Calculate MI(A, B) within each grid partition obtained, since the same grid can be divided
several ways. The maximum value of MI(A, B) under different division methods is chosen
as the MI value of a division G.

The maximum mutual information formula of D under a division is defined as
MI∗(D, x, y) = max MI(D|G ), where D|G denotes data D are divided by G. The maxi-
mum information coefficient (MIC) uses MI to indicate the quality of the grid; a feature
matrix is formed by maximum normalized MI values under different divisions. The feature
matrix is defined as M(D)x,y and the formula is :

M(D)x,y =
MI∗(D, x, y)
log min{x, y} (12)

MIC is defined as:

MIC(D) = max
xy<B(n)

{M(D)x,y} (13)
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where n is the sample size of the sample and B(n) is a function of sample size and represents
the upper limit of the grid x× y. Generally, ω (1) ≤ B(n) ≤ o

(
n1−ε

)
, 0 < ε < 1. In this

paper, the MIC is used to measure the correlation between features and degradation trend
as well as features and features. In essence, it is a normalized maximum MI with the value
interval of [0, 1].

Definition 1 (The correlation-MICFR). Suppose feature set F = { f1t, f2t, . . . , fmt; R1t, R2t,
. . . , Rmt}, m is the feature number, t is the time series, Rmt is the RUL corresponding to the feature
fm at time t. The correlation between any feature fi and the RUL Ri is defined as MICFi ,Ri and de-
noted as MICFR, the larger the value of MICFR is, then fi is the strong correlation feature. On the
contrary, fi is a weak correlation feature; If the value of MICFR is 0, fi is an independent feature.

Definition 2 (The redundancy-MICFF). The redundancy ( a kind of correlation) between any
feature fi and feature f j is defined as MICFi ,Fj , denotation as MICFF, the higher the value of MICFF,
the stronger the substitutability between fi and f j, namely the stronger the redundancy; the value
of MICFF is 0, indicating that fi and f j are independent of each other.

Calculating the redundancy MICFi ,Fj between features in feature subset FSDAE, the MIC−
FF matrix will be obtained that can measure the correlation between features. Find-
ing the minimum values for each column in the MIC− FF matrix and combining these
minimum values into a set mFF = {mFF0, mFF1, . . . , mFFn}, where each column corre-
sponds to one feature, and there are n columns in this matrix. The maximum value will
as the FF− threshold. Counting the number of elements in each column that are less than
the threshold value, combining the numbers into a set NFF = {NumFF0, NFF1, . . . , NFFn},
sorting the numbers to find the median. If the number of values is better than the median,
the features corresponding to this column will be the elements of the De-redundant feature
subset DE MICFF. Similarly, the correlation MICFR is obtained for the elements in subset
DE MICFF, so as to obtain the degree of influence of those features on the degradation state
after the redundancy is removed.

Definition 3 (The monotonicity-MonF−DT ). In order to measure the performance of the feature
more comprehensively, monotonicity is used as one of the measures. We will measure the monotonic-
ity of features and degradation tendency, denoted as MonF−DT .

MonF−DT =| Fs>0
L−1 −

Fs<0
L−1 |, Fs is the different feature sequence, L is the sample length

of the full life cycle, and when MonF−DT = 1, the feature and degradation tendency are com-
pletely monotonous.

Definition 4 (The Standard-StdDI). Both feature measures MICFR and MonF−DT are limited
within the range of [0, 1]. They are positively correlated with the performance of candidate features
and are suitable as feature selection measures. The linear combination of the above two indexes
is taken as the selection standard of bearing degradation index, denoted as StdDI .

StdDI = MICFR+MonF−DT
2 ,based on the MICFR value and MonF−DT value of all features

in feature subset DE MICFF, the StdDI values of all features in feature subset DE MICFF are obtained.
If StdDI > 0.5, the feature will be selected into the optimal DI set OptDI .

Optimal DI Set Construction

A subset of FSDAE is composed of low-dimensional feature expression based on SDAE
feature compression method. We will further de-redundant the features in the subset FSDAE.

Based on the MIC feature selection method [34], a de-redundancy feature subset
DE MICFF can be obtained by de-redundancy operation.

After the de-redundant feature subset DE MICFF is obtained, we will calculate the corre-
lation and monotonicity of the features in the DE MICFF subset, and measure the sensitivity
of the DI based on the proposed StdDI standard, which ultimately constitutes the optimal
DI set OptDI . The steps for obtaining the set OptDI are shown in Algorithm 1.
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Algorithm 1 Optimal DI construction method.

Input: The de-redundant feature subset DE MICFF, feature subset DE MICFF =
{ f1, f2, . . . , fm, R}, real RUL value R, m is the number of features in the subset DE MICFF.

Output: optimal DI set OptDI .
1: for fi ∈DE MICFF do
2: Calculate MICFR values and MonF−DT values separately, obtaining the MIC−Mon

matrix,
3: for Every value in every row of the MIC−Mon matrix do

4: Calculate the StdDI value based on StdDI =
MICFR+MonF−DT

2 ,
5: if StdDI > 0.5 then,
6: Select the features in subset DE MICFF to form the optimal DI set OptDI .
7: end if
8: end for
9: end for

3.4. Quantile Regression of Temporal Convolution Network (TCNQR)

Based on the results of literature [27], TCN has faster prediction speed and higher
prediction accuracy. In this paper, quantile regression (QR) was combined with TCN,
and the RUL probability density prediction of bearings was realized based on the optimal
DI construction method.

The optimization problem of quantile regression (QR) will be introduced into the TCN
to realize the bearing RUL probability density prediction. By optimizing the following
objective function, the parameters of the TCNQR model are estimated.

Yi = g(Xi, W, b) (14)

Xi is the input data constructed by the above DI construction method. The RUL
prediction can be expressed as Yp

i = g(Xi, Ŵ, b̂), Ŵ and b̂ are the optimal estimate of the
weight parameter and the bias parameter.

The essence of TCN is the optimization of CNN for time series problems. By adjusting
parameters such as convolution kernel, number of convolution layers and expansion
coefficient, the global perception of sequence data with specified length is realized, it can
be expressed as:

F(s) = (X ∗ f )(s) =
o−1

∑
i=0

f (i) · Xs−d·i (15)

where, X is the input time series; ∗ is the convolution operation; o is the size of the
convolution kernel; d is the dilation factor; D is the expansion coefficient.

Further, in order to simplify the calculation of parameters and accelerate the con-
vergence speed of the algorithm, TCN rewrited the weight parameter W as a joint rep-
resentation of modulus m and direction V through weight normalization [27], as shown
in Equation (16).

W =
m
‖V‖V (16)

To avoid too much information loss in the process of feature extraction, TCN replaces
the convolutional layer with the residual block, and the input data passes through 1× 1
convolution processing, reaches the specified dimension, it is added with the feature
data extracted by the dilated causal convolution [27] to serve as the final output of this
layer. As shown in the Figure 4, the two dilated causal convolution layers and their
corresponding weight normalization, spatial dropout [35] (which added after each dilated
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convolution for regularization), activation function and residual connection link, and finally
formed a new residual block, which is the basic unit of deep TCN.

Figure 4. Schematic diagram of residual blocks.

In this paper, combining the QR theory and TCN algorithm, Quantile Regression
of temporal convolution network (TCNQR) algorithm is proposed for bearings RUL pre-
diction problem. The QR loss function is as follows:

Loss = min
W,b

N

∑
i=1

ρτ(Yi −Yp
i ) = min

W,b
∑

i|Yi≥g(Xi ,Ŵ,b̂)

τ|Yi − g(Xi, Ŵ, b̂)|

+min
W,b

∑
i|Yi<g(Xi ,Ŵ,b̂)

(1− τ)|Yi − g(Xi, Ŵ, b̂)| (17)

The value range of τ is 0 to 1. Through constant optimization and adjustment of W
and b, equation (17) can be minimized. In TCNQR, equation (14) is rewritten as:

Q̂Y(τ | X) = g(X, Ŵ(τ), b̂(τ)) (18)

where Q̂Y(τ | X) is the optimal estimate of Y when input data is X in the case of determin-
ing quantile τ.

3.5. Kernel Density Estimation (KDE)

Kernel density estimation (KDE) [36] is a method to estimate the probability density
function of unknown variables from the data itself [37]. Taking the above conditional
quantile as the input value of KDE and selecting the appropriate window width for proba-
bility density prediction, the following quantile function can be obtained. Zi = Q̂Y(τ | X),
i = (1, . . . , n), n is the number of quantiles.

Assuming that Z1, Z2, . . . , Zn is an independent quantile function derived from the esti-
mated probability distribution, then its kernel density is estimated as: fh(Z) = 1

nh ∑n
i=1 K( Z−Zi

h ),
h is the window width, and K(·) is the kernel function.
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For the selection of kernel function, there are Gaussian kernel function, matrix ker-
nel function and trigonometric kernel function. In this paper, Gaussian kernel function
is selected, and the expression is: K(u) = 1√

2π
exp[− u2

2 ], the value range of h is 1.8− 2.0.

3.6. Prediction Accuracy Measures

In this paper, the mean absolute error (MAE) and root mean square error (RMSE)
are used as the evaluation indexes of deterministic point prediction results, and the pre-
diction interval coverage (PICP) and Mean prediction interval width (MPIW) are used
as the reliability and clarity evaluation indexes of probabilistic prediction results [38].

(1) Mean absolute error (MAE)

MAE =
1
n

n

∑
i=1
|Yi −YP

i |

(2) Root mean square error (RMSE)

RMSE =
∑n

i=1(Yi −YP
i )

2

∑n
i=1 Y2

i
,

n is the number of prediction points, Yi is the real RUL of the sample, YP
i is the pre-

dicted value.
(3) Reliability

Prediction interval coverage probability (PICP) is usually used to evaluate the ac-
curacy of prediction interval. It is composed of upper bound and lower bound
of coverage target value.

PICP =
1
n

n

∑
i=1

Ci,

A larger PICP value means that more target values YP
i fall within the constructed

prediction interval. n is the number of prediction points, Ci is the coverage of the pre-
diction interval, Ci = 1, if YP

i ∈ [li, ui], otherwise, Ci = 0. ui and li are the upper
and lower bounds of the target value YP

i respectively, and the optimal value of PICP
is 100%, which means that all the target values YP

i fall within the prediction interval,
that is, the coverage rate is 100%.

(4) Clarity
Mean prediction interval width (MPIW) shows the average width of prediction
interval [39].

MPIW =
1

nD

n

∑
i=1

(ui − li).

where D is the difference between the maximum value and the minimum value
of the target values YP

i , and the target with D is used to normalize the average
width. The bandwidth of the prediction interval should be as small as possible, which
determines the amount of information in the prediction interval. Therefore, the width
of prediction interval can be used as a standard to compare the prediction results.

4. Experiment and Analysis

The bearings run-to-failure data acquired from accelerated degradation tests were
used to demonstrate the effectiveness of the proposed method. The proposed method
was compared with other methods.

4.1. Data Description

The bearings testbed is shown in Figure 5. Detailed information about the platform
and experiments can be found in [40].
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As tabulated in Table 1, 15 rolling element bearings were tested under three different
operating conditions. The first two bearings and the last bearing in every operating
condition were regarded as a training set and the others were used as a testing set.

The change trend of the original time domain and frequency domain characteristics
with the monitoring time is shown in Figure 6. The amplitude of vibration signal varies
with time, which indicates that vibration signal plays an important role in the evaluation
of bearings performance degradation.

Figure 5. Bearing testbed.

Table 1. Operating Conditions of the Tested Bearings.

Operating
Condition

Rotating Speed
(rpm)

Radial Force
(kN) Bearings Dataset

Condition A 2100 12

BearingA_1
BearingA_2
BearingA_3
BearingA_4
BearingA_5

Condition B 2250 11

BearingB_1
BearingB_2
BearingB_3
BearingB_4
BearingB_5

Condition C 2400 10

BearingC_1
BearingC_2
BearingC_3
BearingC_4
BearingC_5
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Figure 6. The change trend of time domain and frequency domain features with monitoring time.

4.2. Experiment
4.2.1. Data Preprocessing

The original vibration signal data usually contains rich degradation information.
In order to effectively characterize the degradation state, it is necessary to process the
vibration signal properly, such as feature extraction and transformation.

In the bearing vibration signal data, in order to avoid information loss, we extract
multiple features from time domain and frequency domain to form the initial feature set.
In addition, to improve the convergence speed and prediction accuracy of the prediction
model, all characteristics are normalized and set between [0,1].

When bearing failure occurs in mechanical equipment, both time-domain and frequency-
domain signals will change. Vibration signal data has many time-domain and frequency-
domain characteristics, and different features have different representational capabilities
for bearing health state. Some time-domain features even have almost no representational
capabilities. Therefore, we need to select the appropriate time domain and frequency
domain characteristics to achieve efficient prediction of bearings RUL.

The initial features are extracted from the original vibration signals, the time-domain and
frequency-domain features in both horizontal and vertical directions are calculated, and the
total number of features in both directions is 50, the time-domain feature and frequency-
domain features were calculated using the feature parameters listed in Table 2 [41]. F0− F11
and F25− F36 are the time-domain features in horizontal direction and vertical direction,
respectively; F12− F24 and F37− F49 are the frequency-domain features in horizontal
direction and vertical direction, respectively. The research content of this paper includes 24
kinds of time-domain features and 26 kinds of frequency-domain features.

As the detailed characteristic parameters in Table 2: The time domain characteristic
parameters F0, F2− F4, and F11 reflect the amplitude and energy of vibration in time
domain; F1 and F5− F10 reflect the time series distribution of the signal. The frequency
domain characteristic parameter F12 reflects the vibration energy of bearing in frequency
domain; F13− F15, F17, and F21− F24 represent the concentration of the spectrum; F16
and F18− F20 reflect the change of dominant frequency band position.
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Table 2. The feature parameters.

Feature
(Horizontal)

Feature
(Vertical)

Time-Domain
Feature Parameters

Feature
(Horizontal)

Feature
(Vertical)

Frequency-Domain
Feature Parameters

F0 F25 f0 = ∑N
n=1 x(n)

N
F12 F37

f12 =

K
∑

k=1
s(k)

K

F1 F26
f1 =√

∑N
n=1 (x(n)− f0)

2

N−1

F13 F38 f13 = ∑K
k=1 (s(k)− f12)

2

K−1

F2 F27
f2 =(

∑N
n=1

√
|x(n)|

N

)2 F14 F39 f14 = ∑K
k=1 (s(k)− f12)

3

K
(√

f13

)3

F3 F28 f3 =

√
∑N

n=1 (x(n))2

N
F15 F40 f15 = ∑K

k=1 (s(k)− f12)
4

K( f13)
2

F4 F29 f4 = max|x(n)| F16 F41 f16 =

K
∑

k=1
f̃ks(k)

∑K
k=1 s(k)

F5 F30 f5 = ∑N
n=1 (x(n)− f1)

3

(N−1) f 3
2

F17 F42 f17 =

√
∑K

k=1 ( f̃k− f16)
2
s(k)

K

F6 F31 f6 = ∑N
n=1 (x(n)− f0)

4

(N−1) f 4
1

F18 F43 f18 =

√
∑K

k=1 f̃ 2
k s(k)

∑K
k=1 s(k)

F7 F32 f7 =
f4
f3

F19 F44 f19 =

√
∑K

k=1 f̃ 4
k s(k)

∑K
k=1 f̃ 2

k s(k)

F8 F33 f8 =
f4
f2

F20 F45 f20 = ∑K
k=1 f̃ 2

k s(k)√
∑K

k=1 s(k)∑K
k=1 f̃ 4

k s(k)

F9 F34 f9 =
f3

1
N ∑N

n=1 |x(n)|
F21 F46 f21 =

f17
f16

F10 F35 f10 =
f4

1
N ∑N

n=1 |x(n)|
F22 F47 f22 =

∑K
k=1 ( f̃k− f16)

3
s(k)

K f17
3

F11 F36 f11 = ∑N
n=1 |x(n)|

2 F23 F48 f23 =
∑K

k=1 ( f̃k− f16)
4
s(k)

K f17
4

F24 F49 f24 =
∑K

k=1 ( f̃k− f16)
1
2 s(k)

K
√

f17

where x(n) is the time-domain signal series,
for n = 1, 2, · · · , N,

N is the number of each sample points.

where s(k) is the frequency-domain signal series,
for k = 1, 2, · · · , K,

K is the number of spectral lines.
f̃k is the frequency value of the k-th spectral line.

4.2.2. Construction of Bearing Optimal Degradation Indicator Set

In this paper, the SDAE feature compression method is used to compress and extract
low dimensional features from 24 time-domain features and 26 frequency-domain fea-
tures in horizontal and vertical directions. In this experiment, different output features
are used to test. Before the original time-domain and frequency-domain features are in-
put into the SDAE network, the input data are normalized to ensure the effectiveness
of the compression [22]. It can be seen from Figure 7 that the decoding error decreases
with the increase of the number of features. However, when the number of features is
35, the average decoding error of bearings from three working conditions tends to be
flat. To retain decoding information as much as possible, the first 35 features are selected,
that is, the network inputs 50-dimensional time domain and frequency domain vectors,
and outputs 35-dimensional compressed time domain and frequency domain features.
It is called the SDAE compression feature set FSDAE.
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Figure 7. Visualization of training process-SDAE.

Through SDAE compression, 35 features are first extracted and a feature set FSDAE
is constructed. Then the redundancy of 35 features under three working conditions are
measured by using the MIC method. Taking the bearings of working condition A as an
example, the MIC between features and features MICFF will be calculated to construct
de-redundant feature subset DE MICFF. Finally, we got 22 features as shown in the Figure 8,
Figure 8 shows the average redundancy value of 22 features in the de-redundant feature
subset DE MICFF.

Figure 8. The average MICFF values of the features in the subset DE MICFF.
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At last, the correlation and monotonicity of elements in feature subset DE MICFF are
calculated, the correlation between features and degradation trend MICFR, and the mono-
tonicity MonF−DT between features and degradation trend obtained by monotonicity
measurement method MonF−DT . In order to get the optimal feature set OptDI , the index
StdDI is used to select features, and 0.5 is taken as the threshold, as shown in Figure 9. Fea-
tures higher than 0.5 will become members of the optimal feature set OptDI , and features
lower than 0.5 will not be retained. Therefore, there are 14 features in the final optimal
feature set OptDI . The MICFR value, MonF−DT value, and StdDI value of the features
in the final optimal feature set OptDI are shown in Figure 10.

Figure 9. The StdDI calculation results of subset DE MICFF.

Figure 10. Features in the final optimal feature set OptDI under working condition A.

In the same process, the bearings degradation indicator set in working condition B
and working condition C are constructed with the same method and the specific parameters
of the features in the constructed optimal degradation indicator set are shown in Figure 11, in
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which Figure 11a represents the composition of the degradation indicator set under working
condition B, and Figure 11b represents the composition of the degradation indicator set
under working condition C.

(a)

(b)

Figure 11. Features in the final optimal feature set OptDI . (a) Features in the final optimal feature set
OptDI under working condition B, (b) Features in the final optimal feature set OptDI under working
condition C.

4.2.3. Train Prediction Model

After obtaining the set OptDI , the prediction model is trained. In the prediction
stage, the feature vectors of the test data set are input into the trained TCNQR network,
and the predicted RUL values will be output . The prediction results will be evaluated
based on the prediction accuracy measures in Section 3.6.

In the TCNQR network, the number of residual blocks and the size of the convolution
kernel will affect the computation amount and computation speed of the neural network,
and the appropriate dropout rate can effectively solve the problem of neural network
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over fitting, the network is built by using Keras deep learning framework, the activation
function is the default Relu function. Using Adam optimization algorithm, we design inde-
pendent adaptive learning rates for different parameters. The number of iterations is 100,
the quantile interval is 0.01, then a TCNQR network was constructed. The optimal structure
and parameters of the TCNQR model under each quantile are determined by training
samples, based on the trained model, the quantiles of the predicted bearing at all quantiles
are obtained, which are substituted into the Gaussian kernel density estimation function
to estimate the probability density curve of the predicted bearing RUL.

4.3. Results and Analysis
4.3.1. Comparison of Point Prediction Results

To reflect the advantages of constructing bearing DI set by the method proposed in this
paper, different DI construction methods were applied to the bearings under three different
working conditions. Each bearing in the test set was run 10 times; we obtained the average
prediction accuracy of 3 bearings under the every operating condition. Figure 12 (a)− (c)
depict the average prediction accuracy and the number of features in the DI set of operating
condition A, operating condition B, and operating condition C, respectively. As shown
in Figure 12, the proposed method extracts fewer features than the other feature selection
methods, and has relatively high accuracy. This is mainly because the proposed method
measures redundancy, correlation and monotonicity on the basis of dimension reduction,
which ensures the sensitivity robustness of the degradation index set based on dimension
reduction features.

The median of TCNQR prediction result can be regarded as estimating the RUL of bear-
ing as a certain value or at a certain point, in order to further quantify the effectiveness
of the prediction results, we take MAE and RMSE as the evaluation indexes of the predic-
tion results, the results were compared with the predicted results of TCNQR. We predicted
the bearings under different operating conditions in the test set 10 times, and calculated
the MAE and RMSE of the three bearings under each operating condition, compared the
RUL prediction results based on the PCA construction method, SDAE construction method,
de-redundant construction method and the DI construction method proposed in Table 3.

According to the comparison results in Table 3, it is found that the proposed method
has obvious advantages in the error of RUL deterministic prediction results under these
three different working conditions, on the one hand, the feature selection method we pro-
posed in the same prediction model has a lower error, which proves the effectiveness
of the DI construction method proposed in this paper. On the other hand, under the same
DI construction method, TCNQR prediction model has better prediction performance.
The results show that the proposed method achieves the goal of optimizing the prediction
model from the perspective of data analysis.

Taking the bearing_3 of different conditions as case, taking the median of density
function as the result of deterministic point prediction, and the influence of DI construction
on the prediction results is considered. In order to increase the readability of the comparison
graph, three sets of degradation indicators with fewer features were selected to compare
the predicted results with the real RUL. The prediction results of TCNQR prediction
model are shown in the Figure 13. Figure 13a–c are the deterministic prediction results
of three different bearing _3 under working condition A, condition B, and condition C,
respectively. It can be seen that the prediction results of the method proposed in this
paper is closest to the real RUL value, this is more clearly shows the effectiveness of the DI
method proposed in this paper.
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(a)

(b)

Figure 12. Cont.
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(c)

Figure 12. Average prediction accuracy and number of features selected under three operating
conditions. (a) average prediction accuracy and the number of features selected under condition A,
(b) average prediction accuracy and the number of features selected under condition B, (c) average
prediction accuracy and the number of features selected under condition C.

(a)

Figure 13. Cont.
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(b)

(c)

Figure 13. Deterministic point prediction results based on different DI method. (a) deterministic
point prediction results of bearing 3 under working condition A, (b) deterministic point prediction
results of bearing 3 under working condition B, (c) deterministic point prediction results of bearing 3
under working condition C.
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Table 3. Comparison of prediction accuracy at motor speeds of 2100 rpm, 2250 rpm and 2400 rpm using different DI set.

Working Condition DI Set
The Prediction Results

MAE (LSTMQR) RMSE (LSTMQR) MAE (TCNQR) RMSE (TCNQR)

Condition A 2100
rpm

Initial feature set
PCA feature set

FSDAE

DE MICFF
OptDI

2.928
2.407
1.706
1.411
0.729

3.207
2.683
1.976
1.694
0.903

2.801
2.473
1.391
1.317
0.584

3.034
2.650
1.589
1.533
0.783

Condition B 2250
rpm

Initial feature set
PCA feature set

FSDAE

DE MICFF
OptDI

2.643
2.296
1.781
1.803
0.657

2.916
2.602
1.940
2.117
0.851

2.509
2.217
1.445
1.283
0.579

2.733
2.406
1.690
1.466
0.747

Condition C 2400
rpm

Initial feature set
PCA feature set

FSDAE

DE MICFF
OptDI

2.727
2.279
1.502
1.412
0.701

2.985
2.549
1.737
1.689
0.884

2.648
2.335
1.277
1.182
0.458

2.811
2.560
1.492
1.369
0.619

4.3.2. Comparison of KDE Prediction Results

To verify that the method proposed in this paper can more effectively predict the ran-
dom uncertainty characteristics of the RUL, based on the above contents, the probability
density prediction results of bearing A_4 are obtained by TCNQR. Taking three operation
moments (75 min, 90 min and 105 min) of bearing A_4 as an example, the probability
density curve of bearing RUL is obtained. The real RUL values corresponding to the above
there operation moments are 47 min, 32 min and 17 min. The prediction results are shown
in the Figure 14. Figure 14d–f are the KDE prediction results of 75 min, 90 min and
105 min, respectively.

As can be seen from the above figure, the density of the predicted value of the proposed
method is concentrated in a range smaller than the real value (at three different moments),
which meets the demand for early warning in practical engineering applications. Compared
with PCA method, the prediction curve of De-redundant method is more concentrated
and closer to the real RUL value. Of course, the peak value of the probability density curve
of the RUL prediction result of the proposed method is the closest to the real RUL value,
indicating that the probability density forecasting method of bearing RUL based on the
TCNQR model and KDE is better than other methods.

In order to verify the effectiveness of the proposed method, the RUL interval pre-
diction of three bearings under different working conditions was carried out, the PICP
value and MPIW value of each model at the confidence level of 90% were recorded,
and the results were compared in Table 4.

Table 4. Reliability and clarity comparison of prediction results at three different moments.

Moment Evaluation
Indexes

DI Construction Method

PCA-DI Set PCA-DI Set FSDAE - DI
Set

FSDAE -DI
Set

OptDI -DI
Set

OptDI -DI
Set

(LSTMQR) (TCNQR) (LSTMQR) (TCNQR) (LSTMQR) (TCNQR)

30 min PICP
MPIW

84.93%
64.22%

87.17%
63.98%

90.71%
63.06%

91.49%
60.72%

93.43%
60.17%

95.16%
58.44%

60 min PICP
MPIW

87.12%
62.91%

89.74%
62.13%

90.13%
59.28%

92.35%
58.90%

93.39%
56.13%

95.02%
53.06%

100 min PICP
MPIW

87.03%
62.15%

90.19%
59.74%

89.28%
59.87%

93.04%
55.39%

95.87%
58.62%

96.25%
41.06%
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(a)

(b)

Figure 14. Cont.
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(c)

Figure 14. KDE prediction results at different operating moment. (a) deterministic KDE prediction
results at the moment of 75 min, (b) deterministic KDE prediction results at the moment of 90 min,
(c) deterministic KDE prediction results at the moment of 105 min.

Table 4 shows the prediction results at different time points, among which the RUL
prediction results at three different moments are shown. Sometimes the PICP value of PCA
method and FSDAE method is less than 90%, it is less than the given confidence degree,
which indicates that the method can not guarantee the accuracy of the prediction results.
In terms of accuracy, the PICP values of de-redundant method and DI method proposed
in this paper are all greater than 90% at most times, especially the DI method proposed
in this paper has higher prediction accuracy. From the perspective of MPIW value analysis,
the MPIW value of PCA method and de-redundant method are both larger than the DI
construction method proposed in this paper. It can be seen that the method proposed in this
paper can obtain a relatively narrow prediction range on the premise of meeting the accu-
racy. Through the horizontal comparison between LSTMQR and TCNQR prediction model,
it can be seen that the PICP value of TCNQR is larger than LSTMQR, and the MPIW value
of TCNQR is significantly smaller, which further shows that TCNQR has better prediction
performance in probability density prediction of time series problems.

5. Conclusions

The performance of rolling bearings DI set will affect the prediction accuracy of the bear-
ing RUL to a large extent. In this paper, the SDAE feature compression method is introduced
to compress complex multi-dimensional degradation information. The optimal feature set
OptDI is obtained based on the redefined bearing DI standard StdDI . The influence of DI
on bearing RUL prediction is further quantified. Combining TCN with QR, the TCNQR
method based on kernel density estimation is used to realize the bearing RUL prediction.
Through experiment validation, the proposed method was compared with different DI
construction methods and prediction models. The results showed that the method could
not only improve the prediction accuracy, but also obtain the probability density function
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of the RUL of bearings operation degradation at any time. Through the method proposed
in this paper, a higher prediction accuracy and a narrower prediction range can be obtained,
and an optimal decision can be made for employees when making maintenance plans,
thus reducing resource waste and production downtime and other consequences caused
by bearing failure due to over frequency maintenance.
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