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Abstract: Neural networks have been widely used and implemented on various hardware platforms,
but high computational costs and low similarity of network structures relative to hardware structures
are often obstacles to research. In this paper, we propose a novel neural network in combination
with the structural features of a recently proposed memory-based programmable logic device,
compare it with the standard structure, and test it on common datasets with full and binary precision,
respectively. The experimental results reveal that the new structured network can provide almost
consistent full-precision performance and binary-precision performance ranging from 61.0% to 78.8%
after using sparser connections and about 50% reduction in the size of the weight matrix.

Keywords: approximate computing; memory reconfigurable logic device; binary neural network

1. Introduction
1.1. Neural Networks and Hardware Implementation

In many practical application scenarios, a large number of tasks do not have a complete
logical description and do not require 100% absolutely correct implementation, such as
tasks in the fields of visual recognition and natural language processing. High-speed and
as accurate as possible results are clearly more attractive in these tasks than slow traditional
manual processing that is close to full correctness.

A neural network is a machine learning (ML) technique that is inspired by and
resembles the human nervous system and the structure of the brain. It consists of processing
units organized in input, hidden, and output layers. The nodes of adjacent layers are
connected to each other in a specific form and each has a weight value. The inputs are
multiplied by their respective weights and added together at each node. The sum is
transformed by an activation function and is then fed as input to the subsequent layers.
The result of the final output layer is used as the solution to the problem. As one of the most
widely used machine learning techniques in recent years, the neural network has achieved
results on many complex cognitive tasks that match or far exceed human performance,
making it a huge influence in a wide range of fields [1,2].

With the rapid growth of mobile and embedded devices in recent years, many im-
plementations on hardware platforms have become feasible. Most implementations of
neural networks in hardware involve two core components: storage and computing. The
main part of the storage is the weight matrix of the neural network, the main body of
which is a large number of floating point numbers, while the operations are dominated
by matrix multiplication. Previously, a part of the work has been focused on limiting the
accuracy of neural networks, such as ternary weight networks (TWN) [3], binary neural
networks (BNN) [4], in favor of making them better deployment on hardware platforms
with restricted computing power. The BNN series networks has gained more attention
and extended research due to the great simplification of operations and its similarity to
hardware circuit logic. Another part of the work demonstrates that accuracy-constrained
neural networks can operate efficiently on hardware platforms, such as [5,6].
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1.2. Memory Based Reconfigurable Logic Device

Recently, a kind of memory based reconfigurable logic device (MRLD) [7], taking mul-
tiple look-up tables (MLUT) as the core component structure, has demonstrated attractive
benefits, such as low production cost, low power, and small delay, and programmable
function to implement designed circuit logic. It is regarded as an promising alternation to
FPGA in some respects. Its structure is shown in Figure 1.

Figure 1. The structure of MRLD.

MRLD is an MLUT array constructed with a special internal connection structure.
MLUTs are basic reconfigurable elements that consist of synchronous SRAM and asyn-
chronous SRAM, with m-bit address inputs and m-bit data outputs forming a pair of
interconnects. For an MLUT, the m-bit address input comes from the data outputs of its
neighboring MLUTs, and the m-bit outputs are connected to the address inputs of these
MLUTs. Each MLUT can operate as a memory block or a logical wiring block.

Compared to logic and switch block independent FPGAs, the MRLD has the following
advantages: each MLUT can be used as a logic block or wiring element by configuring
the corresponding truth table in the SRAM; the address input/data output of the MLUT
will be the input and output of the configured logic circuit (or wiring element). Since the
logic blocks and wiring elements are configured in the SRAM, there is no longer a need
for as many interconnect resources as in an FPGA, making it possible to have high density
reconfigurable devices with small latency and low power.

1.3. Motivations and Contributions

When deploying neural networks to MRLD-like programmable logic hardware, there
are two most critical issues: storage cost and architecture conversion. Some works on
limiting the numerical accuracy of neural networks have been presented, but how to
structurally reorganize to cut the complexity and storage expense of the network is still a
meaningful problem to be solved.

Based on the starting point of solving the above problem, we propose a new neural
network based on the MRLD structure named MLUTNet. In MLUTNet, we adopt a network
topology similar to the MRLD structure to partition the middle layer of the network in
order to reduce the storage expense of neural network deployment on hardware platforms
effectively. The contributions of this paper are as follows:
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• We propose MLUTNet, a novel neural network with an atypical structure. MLUTNet
combines the advantages of two aspects: the efficient learning performance of neural
networks and the similar structure of MRLD, which makes MLUTNet easy to imple-
ment on MRLD or other similar logical storage devices without much extra effort;

• We conducted experiments and compared the results with their MLUTNet versions
on three different popular datasets using standard and binary neural networks as the
baselines, respectively. Compared to a fully connected neural network of the same
size, MLUTNet saves over 50% of the weight matrix storage space and also reduces
the size of individual weight matrices efficiently, with acceptable performance loss in
accuracy on the dataset;

• The method is simple and easy to implement with good scalability; the MLUTNet
version of a particular network can be substituted for the original network at no
additional cost to meet the need to reduce the size of the network. This is very friendly
for subsequent extension studies.

1.4. Organization of the Paper

The paper is organized as following:

• Section 2 presents the background about neural networks and the techniques used in
this paper;

• Section 3 presents an explanation of the proposed MLUTNet and its operation principle;
• Section 4 shows the experimental results and analysis;
• Section 5 concludes and summarizes.

2. Backgrounds
2.1. Low-Precision Neural Networks

The neural network, is a popular structure used in approximate computing and
machine learning. In a neural network, the basic operation that occurs layer by layer can
be expressed as the following equation:

z = σ(w× a + b) (1)

where Equation (1) represents deep neural network mechanism. Variables z, w, a, and
b represent the output tensor, the weight tensor, the activation tensor generated by the
previous network layer and the bias tensor, respectively. σ is the non-linear activation
function. The main component of the forward propagation process is matrix multiplication.
The backward propagation, on the other hand, is a chain law operation that calculates
the gradient of each weight parameter relative to the final loss function. This leads to a
problem of computational cost.

Assuming full precision for all parameters, the computational expense of a large
number of matrix multiplications would be a non-negligible obstacle for implementation in
hardware. Therefore, many works on low-precision neural networks have been proposed,
the most representative of which is the binarized neural network (BNN) [8].

Compared with the full-precision general neural networks, the BNN makes two major
changes: (1) 1-bit representation is utilized to replace the full-precision parameters. To
guarantee correct gradient descent process, the gradient values and not-well-trained weight
values are still calculated and stored in full-precision; but after the training process, the
weight values are stored in 1-bit binary value; (2) Complex floating multiplication opera-
tions of weight values and activation values are replaced by XNOR-Bit-count operations,
as the Equation (2). This could save significant amount of resource of computation in
hardware implementation.

a = popcount
(

xnor
(

ab, wb
))

(2)

As a result, although the BNN inevitably suffer from the performance degradation,
because of largely saving the parameter complexity and computing cost, it is still regarded
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as a promising technique for deploying deep models on resource-limited devices. Many
related works have flourished, for example, the XNORNet [9] succeeds to extend it to the
convolutional neural network structure.

2.2. Optimizer and Learning Rate Scheduler

For the training of neural networks, the settings of optimizer and learning rate sched-
uler are crucial. Compared with the universal stochastic gradient descent (SGD) method,
RMSProp [10] achieves a better balance between convergence speed and accuracy, and has
a stronger ability to get out of the saddle points.

The learning scheduler is usually set to an exponential decay type. Several works
have investigated the effect of learning rate variation on network performance. One of
the representative works is the cosine annealing + Warm-Up [11]. The learning rate is
increased or decreased periodically according to the cosine function and each period is
longer than the previous one, depending on the proportion of the warm-up parameter. The
study shows that the cosine annealing learning scheduler is more likely to achieve better
results on many datasets.

3. MLUTNet
3.1. Network Definition

Assuming an end-to-end approach to train directly on full precision neural networks,
i.e., using the input-target data pairs of data as training data and then mapping the trained
neural networks to MRLD, we will face many potential problems. (1) The hidden layers of
standard neural networks are usually fully connected, the size of individual weight matrix
is large, and the number of connections grows exponentially with the size of the weight
matrix. From the SRAM storage point of view, it is unrealistic to achieve a reasonable
mapping on MRLD without limiting the size of the weight matrix and the number of
connections. (2) The parameter storage and arithmetic processes inside the standard neural
network are executed at full precision by default. However, most programmable logic
devices support limited precision, and the operational expenses increase dramatically
when the precision is higher. Therefore, it is important to use a neural network model with
limited precision to find a balance between accuracy and cost. (3) The non-linear activation
functions commonly used in neural networks, such as Sigmoid and tanh, usually require
proprietary resources for implementation on programmable logic devices and can only be
approximated with limited accuracy. Although the expense of a single operation is not
significant, considering that each parameter of the hidden layer weights is involved in the
activation operation, a more sensible measure is to switch to other activation functions that
are more friendly to hardware mapping.

To address the above issues, we use the following measures to improve them. For
(1), we import the methods of splitting the hidden layer and neighbor-only connections.
Since MRLD devices are composed of multiple MLUTs as basic cells, each MLUT can
be regarded as a small SRAM array with data storage or logic wiring or both. We split
the originally larger hidden layers according to the MRLD topology, perform the com-
putation and parameter update separately, and merge them into the final result after the
computation is completed. For the connections between the split weight matrices, we
utilize neighbor connections to reduce the number of connections and also play a role
in preventing over-fitting. For (2), we import the idea of low precision neural network,
BNN, as the comparative alternative to the full-precision standard neural network. BNN
uses a 1-bit representation for the weights and XNOR-bit operation instead of the usual
multiplication operation. Compared with full-precision multiplication, both the software
training cost and the hardware computation cost can be effectively reduced. For (3), we
use the ReLU function [12] and Htanh functions as activation functions instead of the
traditional Sigmoid and tanh. Benefiting from their simple numerical logic, both can be
implemented by linear combinations of logic gates.
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ReLU(x) = max(0, x) (3)

Htanh(x) = max(−1, min(1, x)) (4)

3.2. Training and Connection of MLUTNet

Based on the above analysis, we propose a new artificial neural network structure,
MLUTNet. Figure 2 shows an illustration of the conversion and comparison of a single
hidden layer neural network with MLUTNet.

(a) NN

(b) MLUTNet

Figure 2. One NN and MLUTNet.

In addition to having the learning potential of a standard neural network, the weight
matrix separated structure and sparse connection design employed by MLUTNet make
it more friendly for subsequent mapping and implementation on MRLD and similar
hardware. Based on the trained MLUTNet, the weight matrix can be mapped to MLUT
units and wired on the MRLD depending on the network connectivity. If the split matrix
still exceeds the unit storage limit of the device, then it needs to be stored separately
in multiple memory units while increasing the cost of data exchange in the network
implementation. It means that there will be multiple MLUTs that are combined as a larger
generalized “Big-MLUT” within which the weight matrix is stored and data are exchanged.

A key point of interest is how each sub-layer should be connected to the next sub-layer
between adjacent hidden layers. A plain and natural idea is to use full connectivity in
the same way that neurons within a hidden layer are connected to each other. However,
unfortunately, this approach is not feasible. On the one hand, it is difficult or impossible
to fully interconnect the MLUT units storing the weight matrix due to the limitation of
the number of connections within the hardware and cost considerations. On the other
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hand, for MLUTNet, full interconnection between sub-layers does not necessarily enhance
performance, but may cause degradation of network performance by reducing the sparsity
of the network, as reflected in the experimental data in Section 4.

Considering the need to fit the structure of MRLD as closely as possible and to reduce
the obstacles for subsequent implementations, we use neighborhood connection, as shown
in Figure 3. The connections between sub-layers will be dropped by some determined
logic (e.g., red connection are dropped in the odd number of layers and blue ones in even
layers). If a sub-layer has input from more than one sub-layer, the input it receives is
summed up as the new input. This connection method has several advantages: firstly,
sparse neighbour-only connections make the network structure as similar as possible
to the MRLD topology, reducing barriers to subsequent implementation; furthermore,
sparse inter-layer connections reduce the possibility of over-fitting; and finally, a smaller
number of connections reduces the computational and memory overhead of the network.
The disadvantage is that each sub-layer can only affect its neighboring sub-layers, so the
network needs to be deep enough to ensure learning capability.

(a) Full (b) Neighbourhood

Figure 3. Full connection and neighbourhood connection.

As a result of the above discussion, the network logic of MLUTNet was finalized as
follows. Layers of the network are split into multiple sub-layers, and no connection is
created between sub-layers of the same layer. The activation function is attached after each
sub-layer. During the training process of the network, the training of sub-layers in the
same layer is run in parallel. In the input layer, the input data matrix is cut equally along
the Y-axis and used as the output of the sub-layers of the input layer, respectively. At the
output layer, the outputs of the two sub-layers are combined along the Y-axis and used as
the final output.

To make the process more understandable, we illustrate the process with a segment
of actual MNIST data going through MLUTNet. As shown in Figure 4, the test data are
a gray-scale image with an initial dimension of 28× 28 and the content is a handwritten
number whose label is a one-dimensional vector of size 10. This vector is one-hot, i.e., only
one element is 1 and the rest is 0. The x-axis coordinate of element 1 represents the content
of the image, i.e., which of the numbers 0 to 9 is the image. Suppose we use a batch size of
100 for each training, i.e., the initial dimension of the data is 100× 28× 28. After binarizing
the data, the size of the input data is 100× 784. When entering the input layer, the input
data are divided into two matrices of size 100× 392. It is then multiplied with the weight
matrix of size 392× 392 in the hidden layer. In the output layer, we will finally get two
matrices of size 100× 5 and merge them into the final result of 100× 10. For more specific
process details, the MLUTNet generic training flow written according to the algorithm
format is shown in Algorithm 1.
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Figure 4. Dataflow in MLUTNet on MNIST.

Algorithm 1 Training of MLUTNet.

Require: the number of network layers L, the number of sub-layers each layer S, weights
of network W, activation values a, gradient values g, learning rate η

Ensure: updated weights Wt+1, updated learning rate ηt+1

1: {Forward propagation}
2: for k in range(1, L) do
3: for m in range(1, S) do
4: (if Binary) Wk,m ← Binarize(Wk,m)

5: ak,m ← ab
k−1,mWk,m

6: (if Binary) ak,m ← Binarize(ak,m)
7: end for
8: end for
9: {Backward propagation}

10: for k in range(L, 1) do
11: for m in range(1, S) do
12: gak−1,m ← gak,mWk,m

13: gWk,m ← g>ak,m
ak−1,m

14: end for
15: end for
16: {Updating parameters}
17: for k in range(1, L) do
18: Wt+1

k ← Update(Wk,m, η, gWk,m)

19: ηt+1 ← Scheduler(η)
20: end for

4. Experimental Results

We configure four types of network models, standard neural network(NN), binary
neural network (BNN), MLUTNet neural network (MLUTNet), and binary MLUTNet
(B-MLUTNet) neural network. The experimental results are operated under the following
hardware environment: Intel i7-6700HQ, NVIDIA GTX 1060 and 16 GB RAM. The related
codes are implemented by PyTorch framework.

Details configurations about the models are briefly described as follows. The ratio
of training dataset to validation dataset is set as 80%:20%. RMSProp optimizer is used
as the optimizer for the experiments. The epochs of the experiments are set to 40. The
initial learning rate is 0.001. The learning rate scheduler is set to exponential decay mode
and cosine annealing mode, respectively, the exponential decay mode halves the learning
rate every 10 epochs, the cosine annealing mode period is set to 5, and the “Warm-up”
multiplier parameter is set to 2.



Appl. Sci. 2021, 11, 6213 8 of 12

4.1. Performance on MNIST Series Datasets

The experiments conducted on three MNIST series datasets: MNIST [13], K-MNIST [14],
and fashion MNIST [15]. In these datasets, the contents of images in datasets are graphics
of handwritten numbers, Japanese hiragana characters from ancient books, and fashion
items, respectively. The images are gray-scale images with the resolution of 28× 28. The
accuracy convergence process and the corresponding confusion matrices for each group of
experiments are exhibited in Figures 5 and 6.
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(a) MNIST full-precision
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(b) KMNIST full-precision
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(c) F-MNIST full-precision
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(d) MNIST binary-precision
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(e) KMNIST binary-precision
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Figure 5. Performance on MNIST series datasets.

(a) MNIST MLUTNet (b) KMNIST MLUTNet (c) F-MNIST MLUTNet

(d) MNIST B-MLUTNet (e) MNIST B-MLUTNet (f) MNIST B-MLUTNet

Figure 6. Confusion matrices of MLUTNet.
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By reviewing the experimental results, some conclusions can be revealed. (1) In the
full precision case, MLUTNet exhibits comparable performance to the standard NN on all
three datasets. With enough epochs, the accuracy of the test dataset for each case converges
steadily to approximately the same level. (2) In the binary accuracy case, MLUTNet has
different degrees of performance loss compared to the standard BNN. It is the largest in
KMNIST with 35.3% and the smallest in MNIST with 20.6%. (3) The performance of the
decay scheduler is more stable, but cosine annealing shows better performance in F-MNIST.
The full-accuracy MLUTNet with cosine annealing scheduler achieves a lead of about
0.71% over the NN with a decay scheduler; the binary-precision MLUTNet with Cosine
annealing scheduler improves the accuracy by 9.03% over using the decay scheduler.

4.2. Performance on CIFAR-10 and STL-10 Datasets

In the CIFAR-10 dataset, images are divided into 10 categories. Each image is an RGB
image with three color channels and a resolution of 32× 32. In the STL-10 dataset, the
resolution of the images is further improved to 96× 96.

The experimental results on the CIFAR-10 dataset and the STL-10 dataset are shown
in Figure 7. At full precision, the NN and MLUTNet achieve about 57% accuracy on
the CIFAR-10 dataset and about 45% accuracy on the STL-10 dataset, which is a normal
performance for standard structured neural networks. The confusion matrices are shown
in Figure 8. However, at binary precision, BNN and binary MLUTNet cannot learn and
converge smoothly due to the limited structural complexity.
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Figure 7. Performance on CIFAR-10 and STL-10 dataset.

(a) CIFAR-10 MLUTNet (b) STL-10 MLUTNet

Figure 8. Performance on CIFAR-10 and STL-10 dataset.

4.3. Sparsely Connection Verification

We conducted a set of comparative experiments regarding the way neighboring sub-
layers are connected in MLUTNet. In the experiments, MLUTNet and Binary-MLUTNet
are connected according to fully connected and sparsely connected, respectively, and tested
under the same dataset, and the results are shown in Figure 9.

The fully connected MLUTNet does not show any significant advantage while increas-
ing the computational effort, while the fully connected B-MLUTNet causes a significant
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decrease in accuracy instead. We speculate that this is because the sparsely connected
sub-layers somehow avoids premature over-fitting.
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Figure 9. Comparison of fully connection and sparsely connection.

4.4. Results Summary

A summary of the optimal results of different accuracy models under each model is
shown in Table 1. The run-time of models are shown in Figure 10.

Table 1. Optimal accuracy performance.

NN MLUTNet BNN B-MLUTNet

MNIST 0.9877 0.9883 0.9759 0.7693

K-MNIST 0.9347 0.9348 0.909 0.5552

F-MNIST 0.9053 0.9092 0.7909 0.5382

CIFAR-10 0.5813 0.5775 N/A N/A

STL-10 0.4305 0.4186 N/A N/A

Figure 10. Models operation time.
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On all four datasets, using the results of the standard NN as the baseline, Figure 11
shows the correct rate performance ratio of MLUTNet. The results show that the final
accuracy performance of MLUTNet in full-precision is comparable to that of the standard
NN model, and the size of the former’s weight matrix is about half that of the latter; in
binary-precision, depending on the dataset, respectively, the accuracy performance of
MLUTNet ranges from 61% to 78.8% that of the standard BNN model.

Figure 11. Correct Rate Performance Ratio of MLUTNet and NNs.

The experimental results demonstrate the effectiveness of MLUTNet. Under full-
precision, MLUTNet achieves comparable performance to standard NN using a smaller
scale weight matrix and fewer inter-layer connections; under binary-precision, MLUTNet
suffers from the accuracy impact caused by the reduced weight matrix, and the final
accuracy is reduced compared to standard BNN.

5. Conclusions

In this paper, we propose MLUTNet, an innovative neural network structure, by
combining the structural features of MRLD devices. In MLUTNet, we import and effectively
utilize measures, such as binarized weights, scale reduction in the weight matrix, and
sparse connection, to significantly reduce the computing expense and porting cost of the
network and maintain a relatively acceptable performance.

The experimental results reveal that MLUTNet achieves essentially equivalent or
slightly better accuracy on test datasets. Moreover, on binary-precision networks, although
cutting the weight matrix brings a greater additional precision impact, MLUTNet also
achieves 78.8%, 61.0%, and 68.0% of the performance of the standard NN model on the
three datasets of the MNIST series, respectively.

In summary, we have verified the effectiveness of MLUTNet in full-precision on
general datasets, and further improving the performance and stability through optimization
measures will be the focus of our next step. In addition, in this paper, due to the limitation
of the standard NN’s own structure, it cannot learn and converge smoothly on the CIFAR-10
dataset with binarization accuracy. Therefore, further extension of the MLUTNet structure
to convolutional neural networks will also be a target of our future research.
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