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Abstract: Apples are an important component of the diet and are used in the food industry in the
production of food products and beverages. The aim of the study was to determine the changes
in the biochemical composition and physicochemical properties of apples stored in a controlled
atmosphere. We studied the biochemical composition (sugars, ascorbic acid, soluble solids, and
titratable acidity) and physicochemical properties (color coordinates, peel, and flesh firmness) in
the apple samples before placing them in the controlled atmosphere chambers and at the end of
the experiment 8 months later. The total content of sugars and soluble solids was found to increase
in the samples of apples stored in I to VIII conditions. The study showed a decrease in titratable
acidity in apple samples of all cultivars stored in I to VIII conditions. The values of C*, L*, a*, and b*
co-ordinates of apple colors were evaluated. Apple samples stored in VI conditions were the lightest
color, and their lightness was close to that of fresh fruit. The firmness of apple peel samples of the
‘Sampion’ cultivar stored in I and III–VI conditions increased. The study is valuable and proves
that, under the studied conditions, it is possible to extend the time of the provision of apples to the
consumers with minimal changes in their chemical composition and nutritional value.

Keywords: apple peel; apple flesh; postharvest; controlled atmosphere; quality

1. Introduction

Apples are among the most consumed fruits in the world [1], their annual amount
grown reaching about 89.33 million tons [2]. ‘Gala’, ‘Delicious’, and ‘Fuji’ red apple
cultivars have been found to be the most widely consumed in the world [3]. Apples are an
important component of the diet and are used in the food industry in the production of
food products and beverages. The market value of apples depends on the entirety of their
external (color and size) and internal (taste, texture, smell, and nutritional value) quality
parameters [4,5].

Due to the different organoleptic and physical properties of apples, four apple idio-
types are distinguished: “American/European dessert apples” (regular shape, beautiful
appearance, solid color, large size, and sweet-and-sour taste), “European refreshing apples”
(juicy and with a solid or two-tone skin color), “Asian dessert apples” (very sweet and
juicy, with firm flesh and a long shelf life), and “juicy firm and crisp high-quality apples”
(juicy and crisp with a high content of sugars and organic acids) [3].

In order to meet the consumers’ needs and to enrich the diet with quality apples
with a known chemical composition that ensures the high nutritional value of the apples,
it is important to prepare them properly and to choose optimal storage conditions that
would minimize changes in the chemical composition, as well as organoleptic and physical
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properties of the apples, thus minimizing the reduction of their market value [6]. In the
healthy food chain, apples are an important source of biologically active compounds. It
has been found that one of the most important biologically active compounds that have
an effect on the prevention of various diseases and determine the nutritional value of
apples are phenolic [7,8] and triterpene compounds [9]. Apples also contain organic acids
(ascorbic, malic, citric, maleic, pyruvic, and shikimic acids), sugars (glucose, fructose,
sucrose, and xylitol) [10,11], vitamins [12], macronutrients (K, Na, Mg, Ca, and P) and trace
elements (Fe, Zn, Mn, and Cu) [13], and fibrous materials [14].

Recently, in order to minimize changes in the organoleptic and physical properties
of apples, to provide the consumers with a quality product, and to prolong the shelf life
of the apples, the fruit have been stored under controlled atmospheric conditions [6,15].
Scientific literature describes storage conditions when apples are stored in low oxygen
(about 1 kPa) [16] or ultra-low oxygen (ULO) (0.5 and 0.7–0.8 kPa) [17], high carbon dioxide
(2–3 kPa) [18], and low temperature (0.5–1.0 ◦C) and high relative humidity (94–96%) [19]
conditions. In fruit stored in ULO and low oxygen conditions, the cells undergo changes
in cellular metabolism [18], ethylene production [20], and enzymatic activity [21]. The
above-mentioned factors of cellular metabolism affect the resistance of the fruit to diseases
caused by various strains of fungi [22], and allow for minimizing changes in the chemical
composition and organoleptic and physical properties of the apples, thus ensuring the
provision of the consumers with apples that are suitable for consumption and have a high
nutritional value and long shelf life [23].

The quality of apples depends on the organoleptic and physical characteristics, which
are important in assessing the market value of the fruit. Scientific literature describes a
procedure where the quality of the apples is assessed by performing a color co-ordinate
analysis [24,25], the determination of the content of soluble solids and sugars [26,27], and
the assessment of the values of titratable acidity [16,27] mechanical strength (firmness and
elasticity) indices [28]. Color and size are important quality parameters that determine the
market value of apples, as well as the consumers’ choice [3,29]. Anthocyanins are biologi-
cally active compounds that determine the pink hues of the apples and their commercial
appearance and primary choice [5,30]. Guan et al. pointed out that the repetitive purchase
and consumption of fruit depends on their taste, aroma, and texture [31]. Cichowska and
Aprea provided data indicating that the sweet taste of fruit is determined by sugars and
soluble solids, while the sour taste depends on the organic acid complex [32,33]. The fruit
firmness index is an important quality parameter to assess the texture of apples [34]. The
evaluation of quality parameters for the chemical composition and organoleptic character-
istics of apples is relevant in order to provide the consumers with quality apples in which
changes in the nutritional value have been minimized.

Scientific literature presents only fragmentary research results on changes in physical
and organoleptic properties (color co-ordinates, peel, and flesh firmness), and biochemical
composition (sugars, ascorbic acid, soluble solids, and titratable acidity) of apples grown
in Lithuania when storing them in a controlled atmosphere of various compositions.
The physical and organoleptic parameters of apples stored in a controlled atmosphere
determined in this study are valuable and prove that the conditions studied allow for
providing consumers with apples for a longer period of time, minimizing changes in their
chemical composition and nutritional value.

The aim of the study was to determine the changes in the biochemical composition and
physicochemical properties of different apple cultivars stored in a controlled atmosphere
of different compositions.

2. Materials and Methods
2.1. Plant Materials

In this study, we used 10 different apple cultivars: ‘Alva’, ‘Auksis’, ‘Connel Red’,
‘Cortlend’, ‘Ligol’, ‘Lodel’, ‘Noris’, ‘Rubin’, ‘Sampion’, and ‘Spartan’. Apples were grown
at the Institute of Horticulture (Babtai), a branch of the Lithuanian Research Center for
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Agriculture and Forestry (co-ordinates: 55◦60′ N, 23◦48′ E) with equal conditions, agrotech-
nical treatments, soil, fertilization, and disease control measures. The study was conducted
during 2019–2020.

2.2. Chemicals and Solvents

All solvents, reagents, and standards used were of analytical grade. Sodium hydroxide
and 2,6-dichlorophenolindophenol sodium salt solution were obtained from Sigma-Aldrich
Chemie GmbH (Darmstadt, Germany).

2.3. Controlled Atmosphere Conditions during Apple Storage

Apples picked from different locations of the fruit tree crown were used in the study.
Apple samples were stored in eight Besseling Systems controlled atmosphere (CA) cham-
bers (Besseling Group, Osterblokker, Netherlands) with different gas compositions for
eight months, ensuring a constant set gas composition for all eight months. The stable gas
composition was controlled, and the CO2 released during fruit respiration was adsorbed
and maintained at a constant level by the Combi analysis and adsorption system (Besseling
CA Systems B.V.) with software CMB-E-2010-v14.x-1. Different controlled concentrations
of oxygen, carbon dioxide, and nitrogen, constant temperature, relative humidity, and
removal of endogenous ethylene were continually maintained in the controlled atmosphere
chambers to prevent further fruit ripening during the storage (Table 1). Ethylene was
removed by means of a scrubber-heated catalyst system MINI AD-SORBER (Besseling CA
Systems B.V.) where ethylene is oxidized to yield CO2 and water vapor. The composition
of the controlled atmosphere in the chambers was measured every 30 min, and these
conditions were accordingly continuously maintained with a maximum gas composition
error of 0.3%. One sample consisted of 8 kg of apples. This weight was chosen because
more apples would not fit in the chamber (10 varieties * 8 kg = 80 kg per chamber). Prior to
and after the 8-month storage, the biochemical changes and physicochemical properties
were evaluated in the apple samples.

Table 1. Composition of controlled atmosphere chambers.

Variant Amount of
Oxygen (O2), %

Amount of Carbon
Dioxide (CO2), %

Amount of
Nitrogen (N2), %

Relative
Humidity, % Temperature, ◦C

I 21 0.03 78.97

95 ± 3 +1.5 ± 0.5

II 5 1 94
III 5 3 92
IV 5 5 90
V 5 7 88
VI 1 3 96
VII 10 3 87
VIII 20 3 77

2.4. The Evaluation of Sugars

The amounts of monosaccharides, sucrose, and total sugars were determined accord-
ing to the Association of Official Analytical Chemists [35].

2.5. The Determination of Soluble Solids

Soluble solids were quantified with a digital refractometer PR-32 (Atago Co., Ltd.,
Fukaya, Japan).

2.6. The Evaluation of Titratable Acidity

Titratable acidity was evaluated by titrating with 0.1N NaOH solution to pH 8.2, and
was expressed as a percentage of citric acid equivalent [35].
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2.7. The Determination of Ascorbic Acid

Ascorbic acid was measured by titration using 2,6-dichlorophenolindophenol sodium
salt solution [36].

2.8. The Determination of the Content of Soluble Solids

The content of soluble solids was determined gravimetrically using a moisture an-
alyzer PMB 53 (Adam Equipment Inc., Maidstone Road, Milton Keynes, UK) by drying
apple samples to a constant weight at 105 ◦C temperature, the sensitivity of the change in
mass being up to 0.01 g.

2.9. Fruit Color Measurement

The color coordinates of the apple samples in the uniform contrast color space CIE
L*a*b* were measured with a MiniScan XE Plus spectrophotometer (Hunter Associates
Laboratory, Inc., Reston, VA, USA) as described in [37]. The parameters evaluated during
reflected-color measurements were L*, a*, and b* (brightness and red and yellow co-
ordinates according to the CIE L*a*b* scale, respectively), and color saturation (the chroma
value) was calculated (C = (a*2 + b*2)1/2) [38]. The values L*, a*, b*, and C* were measured
in NBS units. The NBS unit is a unit of the U.S. National Bureau of Standards and meets
one color resolution threshold, i.e., the smallest difference in a color that can be captured
by a trained human eye. Prior to each series of measurements, the spectrophotometer was
calibrated with a light trap and a white standard with the following color co-ordinates in
the XYZ color space: X = 81.3, Y = 86.2, and Z = 92.7. The value of L* indicated the ratio
of white to black, the value of a* indicated the ratio of red to green, and the value of b*
indicated the ratio of yellow to blue. Five fruits of each cultivar were taken for the analysis.
The color co-ordinates were processed by the Universal SoftwareV.4-10.

2.10. Fruit Firmness Measurement

The firmness of apple peel and flesh was evaluated using a texture analyzer TA.XTPlus
(Stable Micro Systems, Godalming, UK) and a P/2 probe. Measurements of the firmness of
apple peel and flesh began with the probe touching the surface of the sample. Subsequently,
when applying a force of 2 g, the probe entered the sample to a depth of 10 mm at the speed
of 1 mm/s. Five fruits of each cultivar were taken for the analysis and were measured three
times. The data of the fruit firmness analysis were processed using the Texture Exponent
software (Stable Micro Systems, Godalming, UK).

2.11. Statistical Analysis

The study of the data was performed by using the software Microsoft Office Excel 121
(Microsoft, Redmond, WA, USA) and SPSS, version 25.0 (SPSS Inc., Chicago, IL, USA). The
results of three consecutive test results and standard deviations were presented. Univariate
analysis of variance (ANOVA) was applied to determine whether the differences between
the compared data were statistically significant. The hypothesis about the equality of
variances was verified by applying Levine’s test. If the variances of independent variables
were found to be equal, Tukey’s multiple comparison test was used. The differences were
regarded as statistically significant at p < 0.05. To find relationships, the Pearson correlation
coefficient was calculated.

3. Results and Discussion
3.1. Changes in Chemical Composition Before and after Storage in CA
3.1.1. Variability of the Composition of Sugars, Sucrose, and Ascorbic Acid

The shape, size, color tone, and other characteristics of the quality of apples are
important factors of their market value. Apples of attractive color, optimal size, and intact
surface are likely to be selected first [34], while their organoleptic properties, such as
taste, smell, and texture, determine whether the apples will be bought again [3,31]. The
sweet or sour taste of apples is one of the main organoleptic properties that determine the
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satisfaction of the consumers’ taste and the consumption of these fruit in the diet [31,33].
Cichowska and Aprea argued that the sweet taste of the fruit is determined by the complex
of sugars and soluble solids in the apples. The sugars found in apples are sucrose, glucose,
fructose, and sorbitol, and the complex of soluble solids consists of sugars and organic acids.
These groups of organic substances determine the particularities of sweet or sour flavors of
the apples [32,33]. We did not find any published research findings on the organoleptic
properties of apples grown in Lithuania that were used in our study. In order to preserve
good commercial values and a quality product for a longer period of time, it is important
to study the changes in organoleptic properties (sweetness and acidity) in apples stored in
a controlled atmosphere of various compositions.

Changes in total sugar and sucrose levels were detected during the experiment. Before
the storage, the total sugar content in the samples of different apple cultivars varied from
9.15 to 11.14%, and sucrose content ranged from 2.00 to 3.24% (Table 2). The highest total
amount of sugars (11.14%) was found in apple samples of the ‘Rubin’ cultivar, and the
highest sucrose content (3.24%) was found in samples of the ‘Sampion’ cultivar (Table 2).
Similar results for ‘Fuji’ apples were obtained by Watkins et al. in their study, where they
found that the total sugar content in samples of ‘Fuji’ apples may exceed 20.00% [39].

Table 2. Variability of the total sugar and sucrose content in apple samples before and after storage in CA.

Before
Storage I II III IV V VI VII VIII

Cultivar TS,
%

CS,
%

TS,
%

CS,
%

TS,
%

CS,
%

TS,
%

CS,
%

TS,
%

CS,
%

TS,
%

CS,
%

TS,
%

CS,
%

TS,
%

CS,
%

TS,
%

CS,
%

‘Alva’ 10.09 2.75 13.55 3.77 12.63 3.16 12.87 3.59 13.02 3.24 13.02 3.24 13.04 2.98 13.17 3.05 12.78 2.85

‘Auksis’ 10.31 3.15 13.44 3.32 13.42 3.64 13.00 3.74 12.75 3.24 13.58 3.18 13.45 2.78 12.79 2.52 13.35 2.22

‘Connel
Red’ 10.90 2.43 12.88 3.28 13.99 3.47 13.45 3.20 13.44 2.96 13.03 3.10 14.13 3.19 13.31 2.91 13.62 2.42

‘Cortlend’ 9.42 2.22 13.97 3.72 14.54 3.60 14.16 3.22 13.16 3.29 13.27 3.76 12.80 2.34 13.07 2.40 13.21 2.41

‘Ligol’ 9.15 2.07 12.04 3.79 12.32 3.74 11.82 2.75 12.46 3.54 12.34 2.96 13.69 3.44 13.50 2.28 13.18 2.91

‘Lodel’ 10.22 2.68 14.13 3.73 14.55 3.33 14.12 2.99 12.76 3.16 13.18 3.00 13.34 2.40 13.74 2.54 12.82 2.09

‘Noris’ 10.12 2.00 13.02 3.42 12.94 3.28 13.43 3.18 13.32 2.80 12.75 3.24 12.77 2.99 12.91 2.85 12.62 3.24

‘Rubin’ 11.14 3.02 12.76 3.16 14.66 3.72 15.07 3.94 14.27 3.05 14.14 2.88 14.25 3.58 13.61 2.61 13.92 2.52

‘Sampion’ 10.86 3.24 13.83 3.90 12.87 3.61 12.78 2.84 12.47 3.42 12.77 3.11 12.19 2.91 12.70 1.90 13.31 2.85

‘Spartan’ 10.74 3.00 12.74 3.54 12.72 3.80 12.34 3.42 12.87 3.59 12.45 3.65 12.99 3.82 12.76 3.16 12.79 2.61

Abbreviation: TS—total sugar content; CS—content of sucrose.

The samples of the studied apple cultivars stored for 8 months in the conditions of
chambers I–VIII demonstrated a general upward trend of sugar content (Table 2). The
largest increase in total sugar content (from 9.42% to 14.16%) was found in apple samples
of the ‘Cortlend’ cultivar stored in chamber III conditions (Table 2). The smallest change
in total sugar content (from 10.74 to 12.19%) was found in apple samples of the ‘Sampion’
cultivar stored in chamber VI conditions (Table 2). Studies by Jan and Rab showed that
the total sugar content in apple samples increased during storage and ranged from 9.67 to
12.47% [40]. The increase in the total sugar content in apple samples during storage is
explained by the ripening process of the fruit and the hydrolysis of starch molecules [40].

An upward trend of sucrose content was found in apple samples of the studied
cultivars stored in the conditions of chambers I, II, and IV (Table 2). The largest increase in
sucrose content (from 2.07 to 3.74%) was observed in apple samples of the ‘Ligol’ cultivar
stored in chamber II conditions (Table 2). Significant reductions in sucrose content were
observed in apple samples of ‘Auksis’, ‘Connel Red’, ‘Lodel’, ‘Rubin’, ‘Sampion’, and
‘Spartan’ cultivars stored in chamber VIII conditions (Table 2). Zhu et al. stated that the
sucrose content in apple samples decreases during storage because sucrose decomposes
into fructose and glucose, which explains the upward trend in sugar content during apple
storage [41].
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Ascorbic acid found in apple samples has strong antioxidant properties. Ascorbic
acid, as a powerful antioxidant, protects DNA, proteins, lipids, and other macromolecular
structures from the damaging effects of free radicals [42]. Ascorbic acid found in apple
samples is used not only for the prevention of various chronic diseases, such as cancer [42],
but also for assessing the quality of apples [40]. In our study, we determined the variability
of ascorbic acid content in apple samples stored under controlled atmosphere conditions.

The amount of ascorbic acid was found to vary from 7.20 mg/100 g to 8.80 mg/100 g
in apple samples before storage (Table 3). The maximum content of ascorbic acid was
8.80 mg/100 g in apple samples of the ‘Sampion’ cultivar (Table 3). Jan and Rab stated that the
ascorbic acid content in apple samples ranged from 12.80 mg/100 g to 14.20 mg/100 g [40].

Table 3. Variability of the quantitative composition of ascorbic acid in apple samples before and after storage in CA.

Before Storage I II III IV V VI VII VIII

Cultivar mg/100 g
‘Alva’ 7.20 6.40 6.40 6.00 6.40 6.00 6.00 6.40 6.40

‘Auksis’ 7.20 6.40 6.00 6.00 6.40 6.00 5.60 6.00 6.00
‘Connel Red’ 8.00 7.20 7.20 6.00 5.60 6.40 6.40 6.40 6.40

‘Cortlend’ 7.20 6.00 6.00 5.60 6.00 6.40 6.00 6.40 6.00
‘Ligol’ 7.20 6.40 6.40 6.40 6.80 6.40 6.40 6.00 6.80
‘Lodel’ 8.00 6.40 7.20 6.40 7.20 6.40 6.40 6.80 6.40
‘Noris’ 8.00 5.60 6.00 6.00 6.00 5.60 6.40 6.80 6.40
‘Rubin’ 7.20 6.40 6.00 6.00 6.00 6.00 6.40 6.00 6.40

‘Sampion’ 8.80 8.00 8.00 8.00 6.40 7.20 7.20 7.20 8.00
‘Spartan’ 8.00 6.80 6.40 6.40 6.40 6.80 6.00 6.40 7.20

We found that the content of ascorbic acid decreased in apple samples of all the
studied cultivars stored in the conditions of chambers I–VIII (Table 3). The smallest change
in the content of ascorbic acid (from 8.80 mg/100 g to 8.00 mg/100 g) was observed in
apple samples of the ‘Sampion’ cultivar stored in the conditions of chambers I–III and
VIII (Table 3). A significant reduction in ascorbic acid content (from 8.00 mg/100 g to
5.60 mg/100 g) was found in apple samples of ‘Connel Red’ and ‘Noris’ cultivars stored
in chamber IV and V conditions, respectively (Table 3). Jan and Rab, in their studies,
found that ascorbic acid levels in apple samples decreased during storage and ranged
from 14.18 mg/100 g to 8.68 mg/100 g [40]. Oyetade et al., in their study, also found that
ascorbic acid content decreased in apple samples during their storage, which confirms the
results of our study [43].

3.1.2. Evaluation of Soluble Solids and Titratable Acidity

The content of soluble solids and titratable acidity are some of the most important indi-
cators of apple quality [27]. The acidity of apples is an important indicator of organoleptic
properties that influence the perception of fruit taste. The sour taste of apples depends on
the complex of organic acids (malic, citric, tartaric, etc.) [3], while the sweet taste of apples
depends on the content of soluble solids [33]. The evaluation of the content of soluble
solids and the qualitative indicators of titratable acidity allow for assessing the quality and
commercial value of apples.

Our study showed that the content of soluble solids in apple samples before storage
varied from 12.40 to 14.00%, and titratable acidity ranged from 0.24 to 0.61% (Table 4).
The highest content of soluble solids (14.00%) was found in apple samples of the ‘Rubin’
cultivar, and the highest titratable acidity (0.61%) was found in apple samples of ‘Cortled’
and ‘Noris’ cultivars (Table 4). Łysiak et al. pointed out that the content of soluble solids in
the samples of apples grown in Italy, the Netherlands, and Poland was 12.08%, 12.11%, and
14.69 to 14.74%, respectively [44]. In a study by Jan and Rab, the highest titratable acidity
of 0.56% was found in apple samples of ‘Mondial Gala’ and ‘Royal Gala’ cultivars [40].
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Table 4. Variability of the content of soluble solids and titratable acidity in apple samples before and after storage in CA.

Before
Storage I II III IV V VI VII VIII

Cultivar SS,
%

TA,
%

SS,
%

TA,
%

SS,
%

TA,
%

SS,
%

TA,
%

SS,
%

TA,
%

SS,
%

TA,
%

SS,
%

TA,
%

SS,
%

TA,
%

SS,
%

TA,
%

‘Alva’ 13.00 0.50 15.00 0.37 14.20 0.37 14.00 0.37 14.50 0.34 14.40 0.41 14.50 0.37 14.60 0.34 14.00 0.37

‘Auksis’ 13.00 0.50 14.80 0.40 15.00 0.42 14.40 0.42 14.00 0.37 14.80 0.40 14.80 0.37 14.00 0.34 14.80 0.33

‘Connel
Red’ 13.60 0.24 14.60 0.21 16.00 0.20 14.80 0.17 15.20 0.18 14.40 0.21 15.50 0.18 14.60 0.17 15.40 0.21

‘Cortlend’ 13.50 0.61 15.40 0.45 15.80 0.40 16.00 0.42 15.80 0.46 14.60 0.50 14.60 0.48 15.00 0.45 15.00 0.48

‘Ligol’ 12.40 0.32 13.50 0.18 14.00 0.18 14.30 0.18 14.00 0.21 14.20 0.18 15.00 0.16 14.80 0.20 15.00 0.16

‘Lodel’ 13.20 0.45 15.60 0.34 16.80 0.36 16.00 0.36 14.40 0.34 15.20 0.37 15.00 0.34 17.20 0.32 15.20 0.34

‘Noris’ 13.50 0.61 14.60 0.50 14.70 0.45 15.20 0.45 16.00 0.48 14.00 0.52 14.20 0.48 14.20 0.45 14.20 0.49

‘Rubin’ 14.00 0.50 15.00 0.40 17.60 0.37 16.60 0.40 16.20 0.37 16.60 0.42 16.00 0.37 16.80 0.36 16.50 0.34

‘Sampion’ 12.60 0.27 15.00 0.16 14.70 0.18 13.80 0.18 13.80 0.16 14.00 0.21 14.00 0.18 14.00 0.17 14.40 0.18

‘Spartan’ 12.80 0.48 14.00 0.37 14.20 0.34 13.60 0.42 14.00 0.34 14.00 0.37 14.40 0.34 14.00 0.37 14.00 0.33

Abbreviation: SS—content of soluble solids; TA—titratable acidity.

An upward trend in the content of soluble solids was observed in apple samples
stored in the conditions of chambers I–VIII (Table 4). The greatest increase in the content
of soluble solids was observed in apple samples of ‘Lodel’ and ‘Rubin’ cultivars stored
in chamber II conditions (from 13.20 to 16.80% and from 14.00 to 17.60%, respectively)
(Table 4). Riveria et al., in their study, found that the content of soluble solids in apple
samples during storage increased from 9.93 to 13.08%, which confirms the results of our
study [45]. Jan and Rab determined that the amount of soluble solids increased during apple
storage because starch or other polysaccharides in cell walls were hydrolyzed as the amount
of water in the cells decreased [40]. Scientific literature provides data on the decreasing
trend of the content of soluble solids during storage of fruit samples. The downward trend
can be explained by the biosynthesis of anthocyanins in apple skin. During anthocyanin
biosynthesis, sugars in apples are used in the anthocyanidin glycosidation processes, which
results in a decrease in the total content of soluble solids [46].

A decreasing trend of titratable acidity was observed in apple samples stored in
chambers I to VIII (Table 4). The greatest decrease in titratable acidity (from 0.61 to 0.40%)
was observed in apple samples of the ‘Cortled’ cultivar stored in chamber II conditions
(Table 4). Data from scientific literature indicating that the titratable acidity in apple
samples decreased during storage and varied from 0.69 to 0.37% confirm the results of
our study [40]. During the storage of apple samples, the decrease in titratable acidity is
influenced by metabolic processes, especially respiration. Organic acids are important
components of metabolic processes [47,48]. Musacchi et al. indicated that the percentage of
titratable acidity can vary from 1.00% in samples of fresh apples to 0.40% during storage [3].
Sudheeran et al., in their studies, found that elevated levels of sugars and decreased
amounts of organic acids positively correlated with a better fruit quality and taste [49].

3.2. Changes in Organoleptic Characteristics of Apple before and after Storage in CA
3.2.1. Changes in Apple Peel Color

Color is an important indicator of the appearance of apples and partly determines
the choice of the consumers. Therefore, it is important to determine the particularities of
the storage conditions that would minimize color changes and changes in the quality of
the apples [4,50]. Consequently, it is expedient to assess color changes of apple samples
under controlled atmosphere storage conditions with the aim of keeping the fruit suitable
for consumption and of an attractive commercial appearance for as long as possible. To
determine color changes in apple samples under controlled atmosphere storage conditions,
we performed the analysis of color co-ordinates using the CIE L*a*b* scale.

The composition of the controlled atmosphere was found to influence the color
changes of the apples. The highest values of the red co-ordinate (a*) were found for
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apple samples of ‘Alva’ (40.93 NBS), ‘Lodel’ (40.45 NBS), and ‘Sampion’ (42.32 NBS) cul-
tivars stored in chamber VII conditions, and they did not differ statistically significantly
from the values of the red co-ordinate before storage (Figure 1, Panel a). The study showed
that the rich yellow color remained in apple samples of ‘Auksis’ (16.51 NBS), ‘Connel Red’
(17.82 NBS), ‘Ligol’ (13.73 NBS), and ‘Rubin’ (19.72 NBS) cultivars stored in chamber VI
conditions (Figure 1, Panel b).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 19 
 

for consumption and of an attractive commercial appearance for as long as possible. To 
determine color changes in apple samples under controlled atmosphere storage condi-
tions, we performed the analysis of color co-ordinates using the CIE L*a*b* scale. 

The composition of the controlled atmosphere was found to influence the color 
changes of the apples. The highest values of the red co-ordinate (a*) were found for apple 
samples of ‘Alva’ (40.93 NBS), ‘Lodel’ (40.45 NBS), and ‘Sampion’ (42.32 NBS) cultivars 
stored in chamber VII conditions, and they did not differ statistically significantly from 
the values of the red co-ordinate before storage (Figure 1, Panel a). The study showed that 
the rich yellow color remained in apple samples of ‘Auksis’ (16.51 NBS), ‘Connel Red’ 
(17.82 NBS), ‘Ligol’ (13.73 NBS), and ‘Rubin’ (19.72 NBS) cultivars stored in chamber VI 
conditions (Figure 1, Panel b). 

 
Figure 1. Variability of co-ordinates measured in NBS units in apple peel before and after storage in CA: (a) redness (a*) 
co-ordinate; (b) yellowness (b*) co-ordinate. 

Dobrzański 2002 et al. found that, after 5 months of storage in controlled atmosphere 
chambers, the red co-ordinate (a*) in ‘Sampion’ apple peel varied from 10 NBS to 53 NBS, 
and the yellow co-ordinate (b*) from 5 NBS to 43 NBS, which confirms the results obtained 
in our study [50]. Telias et al. pointed out that, recently, consumers tend to choose light 
red apples more often, while dark red apples are becoming less popular [51]. Researchers 
studied color changes in apples, which are determined by the pigments in the apple skin. 
Sethi and Deun found that the color of apple skin is determined by the ratio of the quali-
tative and quantitative composition of anthocyanins and flavonols. When anthocyanins 
predominate, apple skin tends to have pink hues, while the predominance of flavonols 
gives apple skin yellowish shades [52,53]. The dark red color of apples is determined by 
the ratio of the quantitative composition of anthocyanins to chlorophyll. Apples with a 
higher content of chlorophyll than anthocyanins in the skin have a dark red color, while 
a light red color of the apple skin means that the content of anthocyanins is higher than 
that of chlorophyll [30]. In a study conducted in 2008, Iglesias et al. found that anthocyanin 
content strongly correlated with red (a*) and yellow (b*) co-ordinate values [5]. Bars-
Cortina et al., in their study, found that red-fleshed apple samples expressed higher levels 
of MdMYB10 promoters responsible for anthocyanin synthesis than white-fleshed apple 
samples did [54]. 

There is evidence in scientific literature that apples show a change in color during 
storage due to browning, which reduces the quality and commercial value of the apples 
[50]. Based on the color values of lightness (L*) and chroma (saturation) (C*) co-ordinates, 
we evaluated color changes in apple samples under controlled atmosphere storage condi-
tions. The analysis of apple color saturation showed that apple samples of ‘Alva’ (46.90 

Figure 1. Variability of co-ordinates measured in NBS units in apple peel before and after storage in CA: (a) redness (a*)
co-ordinate; (b) yellowness (b*) co-ordinate.

Dobrzański 2002 et al. found that, after 5 months of storage in controlled atmosphere
chambers, the red co-ordinate (a*) in ‘Sampion’ apple peel varied from 10 NBS to 53 NBS,
and the yellow co-ordinate (b*) from 5 NBS to 43 NBS, which confirms the results obtained
in our study [50]. Telias et al. pointed out that, recently, consumers tend to choose light
red apples more often, while dark red apples are becoming less popular [51]. Researchers
studied color changes in apples, which are determined by the pigments in the apple skin.
Sethi and Deun found that the color of apple skin is determined by the ratio of the quali-
tative and quantitative composition of anthocyanins and flavonols. When anthocyanins
predominate, apple skin tends to have pink hues, while the predominance of flavonols
gives apple skin yellowish shades [52,53]. The dark red color of apples is determined by
the ratio of the quantitative composition of anthocyanins to chlorophyll. Apples with a
higher content of chlorophyll than anthocyanins in the skin have a dark red color, while
a light red color of the apple skin means that the content of anthocyanins is higher than
that of chlorophyll [30]. In a study conducted in 2008, Iglesias et al. found that antho-
cyanin content strongly correlated with red (a*) and yellow (b*) co-ordinate values [5].
Bars-Cortina et al., in their study, found that red-fleshed apple samples expressed higher
levels of MdMYB10 promoters responsible for anthocyanin synthesis than white-fleshed
apple samples did [54].

There is evidence in scientific literature that apples show a change in color during
storage due to browning, which reduces the quality and commercial value of the apples [50].
Based on the color values of lightness (L*) and chroma (saturation) (C*) co-ordinates, we
evaluated color changes in apple samples under controlled atmosphere storage conditions.
The analysis of apple color saturation showed that apple samples of ‘Alva’ (46.90 NBS),
‘Lodel’ (47.44 NBS), ‘Noris’ (45.33 NBS), and ‘Sampion’ (46.16 NBS) cultivars stored in
Chamber VI conditions had statistically significantly the purest color (Figure 2, Panel a). The
most mixed color was found in apple samples of ‘Ligol’ (35.31 NBS), ‘Rubin’ (38.98 NBS),
and ‘Spartan’ (18.35 NBS) cultivars stored under chamber V conditions (Figure 2, Panel a).
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The peel color of apple samples of ‘Alva’ (44.92 NBS), ‘Lodel’ (44.47 NBS), and ‘Noris’
(43.09 NBS) cultivars was found to be statistically significantly brightest under chamber
VI conditions, and its brightness was close to that of fresh fruit (Figure 2, Panel b). Peel
color of apple samples of ‘Ligol’ (32.38 NBS), ‘Rubin’ (33.24 NBS), and ‘Spartan’ (24.95 NBS)
cultivars stored under chamber V conditions was the darkest and the furthest away from
that of fresh apples (Figure 2, Panel b).

The lightness index (L*) describes the degree of freshness of the fruit, and the lower
the L* value, the darker the fruit, the more prone they are to turning brown, and the further
their condition is from that of the fresh fruit [34]. Dobrzanska 2002 et al. pointed out that
apples of the ‘Sampion’ cultivar ranged in brightness (L*) from 40 to 70 NBS when stored
for 5 months in controlled atmosphere chambers, as confirmed by the results obtained
in our study [50]. Liu et al. found that the lightness index (L*) values for ‘Granny Smith’
(56.90 NBS) and ‘Golden Delicious’ (60.42 NBS) cultivars were higher than those for ‘Pink
Lady’ (49.02 NBS) and ‘Starkrimon’ (41.54 NBS) cultivars [29]. Our results confirm that
non-red apples of different cultivars had higher values of the lightness index (L*) and
lower co-ordinates of redness (a*) and yellowness (b*) compared to samples of red apples.
In 2012, Iglesias et al. found that the anthocyanin content was inversely proportional to
the lightness index (L*) [55]. Studies have shown that during the browning of apples,
the values of the lightness index (L*) decreased, and the values of the redness (a*) and
yellowness (b*) co-ordinates increased [4,29].

Determination of the values of apple color co-ordinates C*, L*, a*, and b* is important
in assessing changes in fruit quality indices during storage [34]. Apples tend to brown
during storage due to aging of the tissues, resulting in the loss of their original color and
commercial appearance [4,53]. The browning of apples is determined by temperature, pH
value, changes in the qualitative and quantitative composition of phenolic compounds,
and a decrease in the mechanical resistance of apple skin due to damage to the surface of
the apples [4]. It has been found that color changes in apple samples can cause changes in
apple texture [34], and, thus, it was expedient to perform an analysis of changes in apple
peel and flesh firmness under controlled atmosphere conditions.

3.2.2. Changes in Apple Peel and Flesh Firmness

Consumers seek to obtain fruit with good appearance and optimal texture and firm-
ness [39]. Overripe and mechanically damaged fruits soften, and, thus, the fruit firmness
index is important as a fruit quality criterion that allows the selection of good quality fruit
suitable for consumption [34]. Determining the firmness index of the fruit is important in



Appl. Sci. 2021, 11, 6215 10 of 18

assessing the mechanical firmness of apples during both storage and transportation [34].
The values of firmness indices of the peel and flesh of apples of different cultivars were
determined at the beginning of the experiment and after 8 months of storage in a controlled
atmosphere of various compositions.

The evaluation showed that the firmness of apple peel before storage varied from
165.7 ± 41.3 N cm−2 to 310.3 ± 39.8 N cm−2 in different cultivars (Table 5). Apple peel of
‘Connel Red’ and ‘Ligol’ cultivars was found to be the firmest, at 310.3 ± 39.8 N cm−2 and
307.9± 38.4 N cm−2, respectively (Table 5). The evaluation also showed that, before storage,
apple samples of the ‘Connel Red’ cultivar had the firmest flesh (82.9 ± 15.9 N cm−2)
(Table 5). Watkins et al. pointed out that the firmness of ‘Granny Smith’ apples varied from
80 N cm−2 to 98 N cm−2, while, in apples of the ‘Golden Delicious’ cultivar, it was up to
53 N cm−2 [39].

The peel of ‘Spartan’ apples kept under chamber VIII conditions was found to have
softened by 38.25% (Table 5). Meanwhile, the flesh of ‘Spartan’ apples stored in chamber I
conditions softened by as much as 47.40% (Table 5). Apple peel samples of the ‘Sampion’
cultivar stored in chamber I and III-VI conditions were found to have increased firmness
compared to that before the storage (Table 5). The results of our study were confirmed by
Afzadi et al., who found that apple samples may soften by 32.00 to 47.00% during storage,
but also presented data showing that the firmness of the apple samples of ‘Antonovka
Kamenitschka’ and ‘Antonovka Pamtorutka’ cultivars increased, respectively, from 95.1 to
107.9 N cm−2 and from 92.2 to 101.0 N cm−2 during storage [56].

Jan and Rab pointed out that the firmness of apples during storage depended on the
characteristics of the apple cultivar [40]. As fruit shelf-life increases, apples soften due to
changes in the pectin content of the cells [57], decreased water content, and intensified
respiration [47]. Mechanical damage to carrot roots has been found to increase ethylene
production, which intensifies sugar use during the respiration process [58]. During this
process, the fruit becomes less sweet and a bitter taste appears. The bitter taste changes the
organoleptic properties of the apples and reduces their commercial value.

In scientific literature, we did not find any research results on the strength of the
correlation between changes in the chemical composition of apples and the firmness
indices in samples of apples grown in Lithuania, stored in a controlled atmosphere of
different compositions. We calculated Pearson’s correlation coefficients between changes in
the content of soluble solids and the firmness values in apples during storage. The content
of soluble solids in apple samples weakly (r = 0.072 and r = 0.291) and moderately strongly
(from r = 0.300 to r = 0.365) positively correlated with the firmness values of apples before
storage (Figure 3).
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Table 5. Variability of the firmness indicators in apple peel and flesh samples before and after storage in CA.

Before Storage I II III IV V VI VII VIII

Peel, N
cm−2

Flesh, N
cm−2

Peel, N
cm−2

Flesh, N
cm−2

Peel, N
cm−2

Flesh, N
cm−2

Peel, N
cm−2

Flesh, N
cm−2

Peel, N
cm−2

Flesh, N
cm−2

Peel, N
cm−2

Flesh, N
cm−2

Peel, N
cm−2

Flesh, N
cm−2

Peel, N
cm−2

Flesh, N
cm−2

Peel, N
cm−2

Flesh, N
cm−2

Cultivar Mean ± SD
‘Alva’ 278.2 ± 22.7 70.3 ± 6.6 229.2 ± 12.3 56.1 ± 4.5 257.8 ± 28.7 59.5 ± 8.8 235.7 ± 16.6 66.7 ± 9.1 247.7 ± 26.5 59.5 ± 6.1 251.7 ± 20.8 61.1 ± 7.7 239.4 ± 32.3 61.5 ± 5.0 263.0 ± 16.0 58.2 ± 7.5 251.8 ± 12.0 58.9 ± 8.8

‘Auksis’ 170.0 ± 40.1 47.7 ± 10.2 128.4 ± 19. 40.0 ± 6.8 179.2 ± 12.2 40.4 ± 6.6 150.6 ± 6.8 41.2 ± 2.9 155.8 ± 5.7 40.1 ± 3.6 121.9 ± 31.6 37.3 ± 1.9 162.2 ± 42.3 48.9 ± 11.5 155.5 ± 13.2 39.8 ± 3.5 128.7 ± 10.4 41.5 ± 9.4
‘Connel Red’ 310.3 ± 39.8 82.9 ± 15.9 283.1 ± 19.9 79.6 ± 11.2 310.1 ± 36.9 72.7 ± 25.4 280.9 ± 39.7 87.1 ± 25.4 316.8 ± 34.1 78.3 ± 7.3 295.1 ± 54.9 78.7 ± 17.1 302.3 ± 14.7 70.8 ± 13.6 301.8 ± 14.7 79.3 ± 9.3 241.5 ± 22.6 68.6 ± 10.3

‘Cortlend’ 215.0 ± 26.9 52.6 ± 2.2 174.5 ± 10.1 39.5 ± 2.5 188.2 ± 19.3 43.5 ± 4.8 190.7 ± 9.7 44.9 ± 4.9 179.1 ± 18.2 45.4 ± 5.9 174.6 ± 9.2 48.4 ± 7.4 170.6 ± 15.2 41.6 ± 3.9 182.5 ± 12.8 38.8 ± 0.9 164.0 ± 31.9 42.6 ± 4.9
‘Ligol’ 307.9 ± 38.4 62.2 ± 5.3 275.2 ± 42.4 46.9 ± 2.7 303.1 ± 42.5 57.5 ± 8.4 314.2 ± 34.6 53.8 ± 10.9 295.8 ± 17.6 48.6 ± 2.4 309.5 ± 23.3 52.5 ± 5.2 275.7 ± 25.5 50.4 ± 4.3 291.6 ± 27.7 49.2 ± 4.4 275.5 ± 31.3 47.0 ± 5.9
‘Lodel’ 231.4 ± 31.0 44.2 ± 2.9 174.3 ± 21.9 36.8 ± 8.6 235.6 ± 58.5 43.5 ± 13.8 210.8 ± 37.1 45.3 ± 6.8 193.8 ± 18.3 40.7 ± 2.2 192.8 ± 29.6 37.5 ± 2.9 184.9 ± 8.1 33.9 ± 2.7 222.2 ± 44.8 35.3 ± 10.4 170.2 ± 21.2 30.9 ± 2.8
‘Noris’ 275.2 ± 35.7 59.9 ± 10.5 223.1 ± 21.3 50.7 ± 4.5 218.3 ± 60.4 59.6 ± 15.7 219.1 ± 33.6 48.3 ± 10.5 235.5 ± 42.3 56.85 ± 6.48 242.0 ± 43.3 56.4 ± 10.5 267.2 ± 44.7 61.4 ± 9.1 234.9 ± 49.1 55.1 ± 8.2 203.9 ± 42.8 46.9 ± 7.1
‘Rubin’ 224.4 ± 31.4 63.7 ± 2.9 204.3 ± 12.6 58.8 ± 5.2 229.2 ± 33.4 58.1 ± 7.3 202.9 ± 44.5 56.6 ± 5.0 216.7 ± 27.1 57.9 ± 10.9 210.2 ± 12.5 57.6 ± 5.1 193.0 ± 18.9 54.2 ± 5.9 227.4 ± 14.8 58.8 ± 5.2 210.5 ± 37.9 58.9 ± 8.9

‘Sampion’ 165.7 ± 41.3 37.1 ± 6.6 175.5 ± 7.9 32.8 ± 5.1 160.2 ± 24.5 31.4 ± 5.6 175.4 ± 18.8 29.4 ± 5.6 166.6 ± 12.0 28.3 ± 4.2 168.0 ± 28.4 34.9 ± 5.2 173.1 ± 32.8 31.8 ± 7.2 146.5 ± 25.6 26.6 ± 3.4 156.8 ± 21.5 32.1 ± 6.1
‘Spartan’ 289.5 ± 51.0 61.6 ± 16.4 217.2 ± 37.8 29.2 ± 7.6 235.2 ± 43.2 36.3 ± 11.3 226.4 ± 44.9 38.5 ± 13.8 225.2 ± 34.8 37.3 ± 8.9 198.9 ± 26.6 36.7 ± 7.5 264.0 ± 51.9 47.8 ± 16.5 234.7 ± 44.8 31.1 ± 5.9 178.8 ± 25.1 47.7 ± 11.6
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We analyzed the strength of the correlation between the content of soluble solids and
the changes in the firmness values in apples stored under chambers I to VIII conditions.
The analysis showed that, under chamber I storage conditions, the amount of soluble
solids in apple samples moderately strongly (from r = −0.504 to r = −0.689) negatively
correlated with the values of apple firmness registered under the conditions of storage
chambers I–VIII (Figure 3). The negative correlation shows that, as the content of soluble
solids increased during apple storage, the apple samples softened and their firmness values
decreased. The results of the evaluation revealed that the content of soluble solids in
apple samples in the conditions of storage chamber VI weakly (from r = 0.262 to r = 0.282)
and moderately strongly (from r = 0.326 to r = 0.418) positively correlated with apple
firmness values registered under chamber I–V and VII–VIII storage conditions (Figure 3).
The positive correlation showed that, in apple samples stored in the conditions of chamber
VI, the values of the firmness indices increased with the increase of the content of soluble
solids. The obtained results are confirmed by the data of other authors’ studies, which
show that the content of soluble solids positively correlated with the values of the firmness
indices of apples [60,61].

3.3. Evaluation of Apple Weight Loss and Quality during Storage

Depending on the apple cultivar, apples differ not only in organoleptic and physical
properties or chemical composition, but also in fruit mass [62]. The mass of apples has been
found to determine their quality during storage [63]. The postharvest losses are determined
by storage conditions, fruit firmness, apple mass, pH, the composition of soluble solids, and
other parameters. In our study, we evaluated the weight loss of damaged and depreciated
apples during storage in a controlled atmosphere.

The weight loss of apple samples stored in chambers V and VI was the lowest com-
pared to apple samples kept in chambers I–IV and VII–VIII (Table 6). The weight loss
of ‘Ligol’ apples stored in chamber V and VI conditions was found to be the lowest (at
1.60% and 1.40%, respectively) (Table 6). Apple samples of ‘Alva’ and ‘Cortlend’ cultivars
stored in chambers I to II and VIII showed maximum weight losses of 8.30, 8.20, and 8.20%,
respectively (Table 6).



Appl. Sci. 2021, 11, 6215 13 of 18

Table 6. Variability in quality and weight loss in apples during storage in CA.

I II III IV V VI VII VIII

Cultivar WL,
%

QL,
%

WL,
%

QL,
%

WL,
%

QL,
%

WL,
%

QL,
%

WL,
%

QL,
%

WL,
%

QL,
%

WL,
%

QL,
%

WL,
%

QL,
%

‘Alva’ 8.30 17.10 8.20 12.60 3.90 13.00 4.70 13.80 3.40 12.60 3.90 14.50 5.10 10.50 5.20 14.60
‘Auksis’ 5.20 35.80 4.70 31.60 5.10 26.20 7.00 37.60 4.10 34.30 4.70 37.90 5.00 33.50 5.00 33.90

‘Connel Red’ 6.70 16.60 4.90 16.10 4.40 18.70 4.20 19.40 4.40 28.10 3.60 31.30 8.00 35.30 5.60 39.30
‘Cortlend’ 7.20 18.70 8.00 12.70 3.20 14.80 3.00 13.30 1.90 3.50 2.50 16.70 6.10 17.60 8.20 12.20

‘Ligol’ 5.40 19.90 5.10 16.70 2.40 3.00 2.70 22.70 1.60 5.00 1.40 10.90 3.20 11.00 4.80 11.50
‘Lodel’ 6.40 12.30 6.30 11.80 5.30 16.10 7.50 9.30 5.00 9.30 3.60 13.90 5.40 15.30 6.60 15.00
‘Noris’ 5.50 25.30 5.30 8.50 3.00 13.90 4.20 16.70 2.30 16.10 2.20 15.70 4.80 15.10 5.20 16.90
‘Rubin’ 6.00 16.20 6.50 10.50 2.90 18.40 4.90 18.50 2.50 9.70 2.00 18.20 7.90 19.30 6.30 25.70

‘Sampion’ 4.20 13.00 7.50 7.60 3.40 10.40 3.90 8.70 2.20 8.60 2.60 8.50 4.50 8.10 4.90 8.60
‘Spartan’ 8.00 8.70 5.60 3.90 4.20 8.30 4.40 4.70 3.50 11.00 3.70 7.20 4.90 7.30 5.10 6.90

Abbreviation: WL—weight loss; QL—quality loss (e.g., the apples rotten, lost their original color, browned).

Studies carried out by Jan and Rab showed that the weight of ‘Red delicious’ apples
decreased by at least 2.22% during storage, with a greatest loss of 2.91% detected in apple
samples of the ‘Golden Delicious’ cultivar. The researchers found that, with increasing
shelf life of apples to 4 months and 5 months, the percent weight loss of apples increased
by 4.05 and 4.53%, respectively [40]. In our study, apples were stored for a longer period of
8 months, resulting in twice the loss of apple weight.

Apple samples of ‘Spartan’, ‘Ligol’, and ‘Cortlend’ cultivars kept in chambers II, III,
and V were found to have the lowest quality losses of 3.90, 3.00, and 3.50%, respectively
(Table 6). The largest percentage of apples that sustained quality loss were stored in
chamber I and VIII conditions (Table 6). The evaluation showed that, during the storage
of apples of the ‘Auksis’ cultivar under the conditions of chambers I to VIII, their quality
decreased from 26.20 to 37.90% compared to that of apples of other cultivars (Table 6). The
results of the study also showed that the quality of ‘Connel Red’ apples stored in Chamber
VIII conditions decreased by as much as 39.30% (Table 6). Shah et al. estimated that, during
postharvest operations, the quality of apples decreased by about 17.00% [64]. Ilyas et al.
found that during 22-week cold storage, apple quality decreased by 22.00% [65].

Apple weight loss depends on the apple cultivar, apple skin structure, the chemical
composition of the wax layer, intensified respiration, and water mass loss [66]. Water loss
results in a decrease in turgor pressure in apple tissue cells, and this influences the process
of apple softening [47,67]. The softening of the fruit causes changes in the original shape
of the fruit and a decrease in quality. Kowitcharoen et al. found that the decrease in cell
turgor pressure in tomato (Lycopersicon esculentum Mill.) fruit resulted in their softening
and weight loss [67].

The widespread consumption of apples in the world is determined by the totality of
external (color and size) and internal (taste, texture, smell, and nutritional value) quality
parameters of apples [4,5,34]. The sweet or sour taste of apples determines the satisfaction
of the consumers’ taste and the consumption of apples in the diet [31,33]. Cichowska and
Aprea claimed that the sweet and sour taste of the fruit is determined by the complex of
sugars and soluble solids in the apples [32,33]. During storage, the metabolic processes in
the apples cause variation in the content of sugars and organic acids, which determines
changes in organoleptic properties. Apple samples stored for 8 months in chambers I to VIII
showed a general upward trend in the content of sugars and soluble solids, as confirmed
by foreign researchers in their studies. Jan and Rab indicated that, during storage, the mass
of water in apple tissue cells decreased and starch hydrolysis occurred [40]. Choosing the
optimal conditions for the storage of apples in a controlled atmosphere may help affect
the increase or decrease in sugar content in the fruit, thus allowing for creating the supply
of apples with a lower sugar content and a high nutritional value. A decreasing trend
of titratable acidity and ascorbic acid content was observed in apple samples stored in
chambers I to VIII. Oyetade et al. found that mechanical damage to apple skin could reduce
ascorbic acid content by 8.00 to 25.00% [43]. In order to preserve the maximum ascorbic
acid content in apples during storage, optimal storage conditions should be selected, which
would minimize changes in ascorbic acid content. Ascorbic acid is an important component
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of oxidation–reduction (redox) reactions in the human body, and is needed in the diet to
prevent chronic diseases.

Apple color is an important indicator of the commercial appearance of apples, which
determines the consumers’ choice. In our study, it was important to identify the char-
acteristics of the storage conditions that would minimize color changes during storage.
Analysis of CIE L*a*b* color co-ordinates of the samples of different apple cultivars stored
in a controlled atmosphere showed that the red co-ordinate predominated in the samples
of ‘Alva’, ‘Lodel’, and ‘Sampion’ cultivars stored in chamber VII (10% of O2, 3% of CO2,
and 87% of N2). Dobrzański et al., indicated that the yellow co-ordinate predominated
in apple samples of the ‘Sampion’ cultivar grown in Poland. Apple color was found to
be determined by the cultivar and climatic conditions of its growth [34], the location of
the fruit in the fruit tree crown [68–70], and the qualitative and quantitative ratio of the
pigments [71,72]. As the light intensity and ambient temperature increase, the amount
of carotenoids that determine the yellow color increases in the fruit, while, in lower tem-
peratures and in the acidic medium, apples produce more anthocyanins that produce the
red color of the fruit [71]. During storage, apples tend to change color because organic
cells release organic acids from the vacuoles in the fruit cells, which interact with enzymes
that hydrolyze pigments [24,73]. Dobrzanska and Li found that, during apple storage,
apple browning was influenced by temperature, pH value, changes in the qualitative
and quantitative composition of phenolic compounds, and a decrease in the mechanical
resistance of apple skin [4,50]. Our study showed that the color lightness of the apple
samples of ‘Alva’, ‘Lodel’, and ‘Noris’ cultivars kept under low oxygen (1%) and high
carbon dioxide (3%) conditions was close to that of fresh fruit. Our study showed that the
storage conditions determined the color of the apples, as well as its saturation and intensity,
and allowed for maximizing apple storage duration with minimal changes in color and
commercial appearance.

Determining the firmness index of fruit is important in assessing the mechanical
resistance of apples during both storage and transportation [34]. We investigated the
firmness of apple peel and flesh during their storage. We found that the firmness of
‘Sampion’ apple peel samples stored in chambers I and III–VI increased compared to that
recorded before storage. There was also an increase in the firmness of the flesh of apple
samples of ‘Auksis’, ‘Noris’, ‘Connel Red’, and ‘Lodel’ cultivars stored in chamber III and
VI conditions. Afzadi et al. found that the firmness of ‘Antonovka Kamenitschka’ and
‘Antonovka Pamtorutka’ apple samples during storage increased from 95.1 to 107.9 N cm−2

and from 92.2 to 101.0 N cm−2, respectively [56]. Storage conditions affecting the firmness
of apple peel and flesh may in part reduce changes in physical properties and prolong the
shelf life of apples.

The characteristics of apple cultivars determine not only the organoleptic and physical
properties or the chemical composition, but also the mass of the fruit [62]. In our study,
we evaluated changes in apple fruit mass during storage. The study showed that apple
samples of ‘Spartan’, ‘Ligol’, and ‘Cortlend’ cultivars stored in chamber II (5% of O2, 1% of
CO2, and 94% of N2), III (5% of O2, 3% of CO2, and 92% of N2), and V (5% of O2, 7% of CO2,
and 88% of N2) conditions were found to have the lowest quality losses of 3.90, 3.00, and
3.50%, respectively. Jan and Rab found that increasing the storage of apples to 4 months or
5 months increased the percent weight loss of apples by 4.05 or 4.53%, respectively [40]. In
our studies, apples were stored for a longer period of 8 months, and, thus, twice the loss of
apple weight was found. The results also showed that the mass of the apples determined
their quality during storage.

During the study, we found that the organoleptic and physical properties, as well
as the chemical composition of apples, varied between samples of different cultivars and
depended on the composition of the atmosphere used during the storage. By choosing
the optimal conditions of a controlled atmosphere, it is possible to minimize changes in
the chemical composition and physical and organoleptic properties of the apples, which
determine their quality and commercial value.
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4. Conclusions

The study showed that the organoleptic and physical properties, as well as the chem-
ical composition, of apple samples stored for 8 months under controlled atmospheric
conditions changed. The total content of sugars and soluble solids was found to increase in
the samples of apples stored in chamber I to VIII conditions. The highest increase in the
total content of sugars was observed in apple samples of the ‘Cortlend’ cultivar stored in
chamber III (3% of CO2, 5% of O2, and 92% of N2) conditions. The content of soluble solids
increased in apple samples of ‘Lodel’ and ‘Rubin’ cultivars stored under chamber II (1% of
CO2, 5% of O2, and 94% of N2) conditions. The study also showed a decrease in titratable
acidity in apple samples of all cultivars stored in chamber I to VIII conditions.

The values of C*, L*, a*, and b* co-ordinates of apple colors were evaluated. Maximum
values of the red co-ordinate (a*) were found in apple samples of ‘Alva’, ‘Lodel’, and ‘Sam-
pion’ cultivars stored in chamber VII (3% of CO2, 10% of O2, and 87% of N2) conditions.
Apple samples of ‘Alva’, ‘Lodel’, and ‘Noris’ cultivars stored in chamber VI conditions
(3% of CO2, 1% of O2, and 96% of N2) were found to have statistically significantly the light-
est color, and their lightness was close to that of fresh fruit. We evaluated the parameters of
the firmness of apple peel and flesh, and the changes in these parameters during storage in
a controlled atmosphere of various compositions. The firmness of apple peel samples of
the ‘Sampion’ cultivar stored in chamber I and III–VI conditions increased compared to
that registered before storage. The firmness of the apple flesh of ‘Auksis’, ‘Noris’, ‘Connel
Red’, and ‘Lodel’ cultivars also increased during storage in chamber III and VI conditions.
We analyzed the strength of the correlation between the content of soluble solids and the
changes in the firmness values of apples under storage conditions in chambers I to VIII.
The content of soluble solids in apple samples under chamber I storage conditions (0.03%
of CO2, 21% of O2, and 78.97% of N2) moderately strongly correlated (from r = −0.504
to r = −0.689) with the firmness values of apple samples stored under chamber I–VIII
conditions. Under chamber VI (3% of CO2, 10% of O2, and 87% of N2) conditions, the
content of soluble solids in apple samples weakly (from r = 0.262 to r = 0.282) or moderately
strongly (from r = 0.326 to r = 0.418) positively correlated with the firmness values of apples
under the storage conditions of chambers I–V and VII–VIII.

The physical and organoleptic parameters of apples stored in a controlled atmosphere
determined during the study are valuable and prove that under the studied conditions, it
is possible to extend the time of the provision of apples to the consumers with minimal
changes in their chemical composition and nutritional value.

Author Contributions: Conceptualization, V.J.; methodology, P.V.; formal analysis, A.B. and J.V.;
investigation, A.B. and J.V.; resources, P.V. and J.V.; data curation, A.B. and J.V.; writing—original
draft preparation, A.B.; writing—review and editing, M.L., P.V., J.V., and V.J.; visualization, A.B.;
supervision, V.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets generated for this study are included in the article.

Acknowledgments: The authors wish to thank the Lithuanian Research Centre for Agriculture and
Forestry for the support of this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yanrong, L. Triterpenes and phenolic compounds in apple fruit (Malus domestica Borkh). Acta Univ. Agric. Suec. Agrar. 2016, 5,

13–24.
2. Food and Agriculture Organization. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QL (accessed on

23 January 2021).

http://www.fao.org/faostat/en/#data/QL


Appl. Sci. 2021, 11, 6215 16 of 18

3. Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hotric. 2018, 234, 409–430. [CrossRef]
4. Li, X.; Wu, X.; Bi, J.; Liu, X.; Li, X.; Guo, C. Polyphenols accumulation effects on surface color variation in apple slices hot airdrying

process. LWT—Food Sci. Technol. 2019, 108, 421–428. [CrossRef]
5. Iglesias, I.; Echeverrı, G.; Soria, Y. Differences in fruit colour development, anthocyanin content, fruit quality and consumer

acceptability of eight ‘Gala’ apple strains. Sci. Hortic. 2008, 119, 32–40. [CrossRef]
6. Mditshwa, A. Recent developments on dynamic controlled atmosphere storage of apples—A review. Food Packag. Shelf Life 2018,

16, 59–68. [CrossRef]
7. Lanauskas, J.; Kviklys, D.; Liaudanskas, M.; Janulis, V.; Uselis, N.; Viškelis, J.; Viškelis, P. Lower nitrogen nutrition determines

higher phenolic content of organic apples. Hortic. Sci. 2017, 44, 113–119.
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