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Abstract: Background: Post-prostatectomy incontinence (PPI) is a major complication that can
significantly decrease quality of life. Approximately 20% of patients experience consistent PPI
as long as 1 year after radical prostatectomy (RP). This study develops a preoperative predictive
model and compares its diagnostic performance with conventional tools. Methods: A total of 166
prostate cancer patients who underwent magnetic resonance imaging (MRI) and RP were evaluated.
According to the date of the RP, patients were divided into a development cohort (n = 109) and a
test cohort (n = 57). Patients were classified as PPI early-recovery or consistent on the basis of pad
usage for incontinence at 3 months after RP. Uni- and multi-variable logistic regression analyses were
performed to identify associates of PPI early recovery. Four well-known machine learning algorithms
(k-nearest neighbor, decision tree, support-vector machine (SVM), and random forest) and a logistic
regression model were used to build prediction models for recovery from PPI using preoperative
clinical and imaging data. The performances of the prediction models were assessed internally and
externally using sensitivity, specificity, accuracy, and area-under-the-curve values and estimated
probabilities and the actual proportion of cases of recovery from PPI within 3 months were compared
using a chi-squared test. Results: Clinical and imaging findings revealed that age (70.1 years old for
the PPI early-recovery group vs. 72.8 years old for the PPI consistent group), membranous urethral
length (MUL; 15.7 mm for the PPI early-recovery group vs. 13.9 mm for the PPI consistent group),
and obturator internal muscle (18.2 mm for the PPI early-recovery group vs. 17.5 mm for the PPI
consistent group) were significantly different between the PPI early-recovery and consistent groups
(all p-values < 0.05). Multivariate analysis confirmed that age (odds ratio = 1.07, 95% confidence
interval = 1.02–1.14, p-value = 0.007) and MUL (odds ratio = 0.87, 95% confidence interval = 0.80–0.95,
p-value = 0.002) were significant independent factors for early recovery. The prediction model using
machine learning algorithms showed superior diagnostic performance compared with conventional
logistic regression (AUC = 0.59 ± 0.07), especially SVM (AUC = 0.65 ± 0.07). Moreover, all models
showed good calibration between the estimated probability and actual observed proportion of cases
of recovery from PPI within 3 months. Conclusions: Preoperative clinical data and anatomic features
on preoperative MRI can be used to predict early recovery from PPI after RP, and machine learning
algorithms provide greater diagnostic accuracy compared with conventional statistical approaches.

Keywords: prostate cancer; machine learning; incontinence; prediction

1. Introduction

Post-prostatectomy incontinence (PPI) is a significant functional complication that
can negatively affect a patient’s quality of life following radical prostatectomy (RP) [1–3].
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Although improved surgical techniques have been introduced, the incidence of PPI re-
mains high, particularly during the early postoperative period [1]. Approximately 20%
of patients experience consistent PPI as long as 1 year after RP [4]. In addition to sur-
gical techniques, various demographic and anatomical factors reportedly influence PPI
recovery [5–13]. Advanced age, high body mass index (BMI), a large prostate size and
shape, the presence of comorbidities, a history of transurethral resection of the prostate
(TURP), or a history of lower urinary tract symptoms have been associated with delayed
continence recovery [14,15]. Surgical factors, including surgery type and neurovascular
bundle-sparing, are also associated with recovery rates from PPI [16]. Regarding anatomic
features, previous studies have reported that preoperative membranous urethral length
(MUL), which is related to urethral sphincter function, is strongly associated with PPI
after RP [6,7,17]. Other anatomical pelvic structures around the urethra and postoperative
bladder neck sparing have shown potential as predictors for recovery from PPI [5,18,19].
While multiple related factors are known, a complex relationship among them makes it
difficult to predict an individual’s likelihood of recovery from PPI, and there is a paucity of
reports on predictive models for recovery from PPI following RP [16,20].

In recent years, machine learning approaches have become popular tools for construct-
ing prediction models in medicine, primarily in complex multi-variable systems [21,22].
Magnetic resonance imaging (MRI) is now a standard method for detecting significant
prostate cancer using the Prostate Imaging–Reporting and Data System [23]. The diagnostic
value of MRI means it can be used to delineate the anatomic pelvic structure around the
urethra, preoperatively.

Here, we describe a system to predict early recovery from PPI using machine learning
algorithms and compared its diagnostic performance with that of conventional logistic
regression (LR) using only preoperative clinical data and preoperative anatomical features.

2. Materials and Methods
2.1. Patients

This study was approved and exempted from informed consent by the Institutional
Review Board of Kangnam Sacred Heart Hospital (2021-03-004). We reviewed the records
of 284 consecutive patients pathologically diagnosed with prostate cancer between July
2016 and December 2019. Of these patients, we identified 185 who underwent preoperative
MRI and RP at our institution. After excluding 19 patients who met the following exclusion
criteria: inadequate imaging quality for assessment (n = 6), inadequate clinical follow-up
period (n = 8), and unavailable information of consistent status (n = 5), 166 patients were
enrolled in our study. According to the date of RP, the 166 patients were divided into
development and test cohorts; the 109 patients who underwent RP from July 2016 to
August 2018 were assigned to the development cohort to generate a prediction model, and
the 57 patients who underwent RP from September 2018 to December 2019 were assigned
to the test cohort [24].

Clinical and demographic characteristics of all study participants, such as age, initial
prostate-specific antigen (PSA) level, history of TURP, biopsy Gleason score, BMI, and
surgery type (open, laparoscopic and robotic RP), were collected from electronic medical
records (EMRs).

2.2. Magnetic Resonance Images and Measurements

Preoperative MRI examinations were obtained using 3-T MRI scanners (Skyra, Siemens
Healthcare). An intramuscular injection of 40 mg of intramuscular butylscopolamine bro-
mide (Buscopan; Boehringer Ingelheim, Ingelheim, Germany) was administered to prevent
spasms. The MRI protocol included axial, sagittal, and coronal T2-, axial T1- and single-
shot echo-planar digital weighted imaging, apparent diffusion coefficient mapping, and
dynamic contrast enhanced imaging.

The preoperative prostate volume (PV), MUL, levator ani muscle (LAM), urethra wall
thickness (UWT), anal sphincter muscle (ASM), and obturator internal muscle (OIM) were
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measured using MRI (Figure 1). PV was calculated using the following formula: height
(cm) × length (cm) × width (cm) × π/6 [23]. MRI measurements were performed by a
board-certified radiologist (BJ) with >8 years of experience in interpreting prostate MRI
scans who was blinded to clinical information.
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2.3. Assessment of Incontinence

We investigated the patients’ continence status retrospectively from using EMRs at a
3 months’ follow-up after RP at our institution. Urinary incontinence status was assessed
based on patient-reported daily pad usage for leakage control over the past 4 weeks and
the Expanded Prostate Cancer Indexed Composite urinary assessment [25]. Patients who
did not wear pads or wore an occasional security pad were assigned to the early-recovery
group; otherwise they were assigned to the consistent PPI group. The patients who reported
wearing a security pad due to slight leakage were considered subjects who used one pad
daily and were added to the consistent group [16].

2.4. Data Split for Model Development and Testing

To show that small data are not biased, test data must not be used for learning at all, so
we divided the dataset into temporal parts to construct these datasets [26]. So, as we talked
in Section 2.1, the 166 patients were divided into two groups, development and test cohorts;
the 109 patients from July 2016 to August 2018 were assigned to the development cohort to
generate a prediction model, and the 57 patients from September 2018 to December 2019
were assigned to the test cohort. The development cohort data were used for the training
machine learning algorithm to predict PPI-recovery and test data were used for verifying
our proposed method [27].

2.5. Building Process of Prediction Models Using Machine Learning Algorithms

We developed a PPI-recovery prediction model using several established machine
learning algorithms: k-nearest neighborhood (KNN), decision tree (DT), random forest (RF)
and support-vector machine (SVM) [28,29] in Appendix A. As we mentioned in Section 2.3,
development cohort data were used for building a machine learning model. In general,
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machine learning algorithms may be able to occur overfitting problems that are optimized
for training data in the training process, so various techniques have been introduced
to prevent such methods, such as using a validation dataset. In this paper, we used an
automatic hyper parameter tuning tool in the statistical machine learning toolbox, MATLAB
2020b [30]. The automatic hyper-parameter tuning method of MATLAB 2020b alters the
hyper-parameter to find a hyper-parameter that minimizes the cross-validation loss (error)
for the prediction results of machine learning, and performs the optimization of the hyper-
parameter as well. In other words, in this paper, we used an auto hyper-parameter tuning
tool which has the same effect as utilizing the validation set to prevent overfitting, which
were to be optimized only for the development cohort datasets. The Hyper-parameter
optimization tool also uses several methods to find optimal parameters, among these
methods in this paper we utilized the grid search method. The grid search method divides
the dimension of the hyper-parameter into several grids, selecting one representative
hyper-parameter for each grid, and then selects the best performing parameter and grid. In
the same way, the best performing grid is divided into several grids to continuously find
the best grid of the selected hyper-parameter.

The final prediction model is represented by an internal performance validated by
applying to the development cohort and external performance validated by applying to the
test cohort. The below Table 1 shows the parameters optimized by the hyper-optimization
tool for each machine learning algorithm.

Table 1. Optimizable Parameters for Prediction Model.

Optimizable Hyper-Parameters

Decision Tree Maximum number of splits
Split criterion

KNN

Number of neighbors
Distance metric
Distance weight
Standardization

SVM

Kernel function
Box constraint level
Kernel scale
Standardize data

Random Forest
Maximum number of splits
Ensemble method
Number of learners

We validated the performance of our proposed prediction model using the develop-
ment cohort data and test cohort data. First, we divided the development cohort data
randomly by a ratio of 9 to 1, then performed the training with 9 part data, validated the
internal performance with 1 part data, and validated the external performance with the
test cohort data. We performed these tasks a total of 10 iterations repeatedly to analyze the
performance with the mean and standard deviation of the internal/external ROC.

2.6. Statistical Analysis

Data were compared with a Student’s t-test or a nonparametric Mann–Whitney U
test for continuous variables, and a chi-squared test Fisher’s exact test for categorical
variables, as appropriate. Uni- and multivariate LR analyses were performed to determine
the associated factors for recovery from PPI within 3 months after RP. These statistical
analyses were performed using SPSS (version 21.0; SPSS, Inc., Chicago, IL, USA). A p-value
< 0.05 was considered statistically significant. The predictive model for recovery from PPI
within 3 months after RP was developed using MATLAB 2020b with the Statistical Machine
and Deep Learning toolboxes. The accuracy, sensitivity, specificity, and area under the
receiver operating characteristic curve were evaluated to determine the performance of
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several predictive models using the various algorithms. A chi-squared test was used to
evaluate the agreement between the estimated probability and actual observed proportion
of cases of recovery from PPI within 3 months.

3. Results
3.1. Subsection Baseline Characteristics of the Development and Test Cohorts

Baseline characteristics of the 109 development patients (mean age, 71.9 ± 6.4 years)
and 57 test patients (mean age, 71.0 ± 7.3 years) are described in Table 2. Recovery from
PPI was achieved in 51.4% of the cases within 3 months after RP in the development
group, and in 35.1% of the test group, respectively. The rate of recovery from incontinence
within 3 months was significantly lower in the test group (p = 0.045). Surgical methods and
MRI measurements, including MUL and OIM, between the two groups were significantly
different (p < 0.05).

Table 2. Baseline characteristics of population.

All Population
(n = 166)

Development
Group (n = 109)

Test Group
(n = 57) p-Value

Age at surgery, year 71.6 (50, 87) 71.9 (52, 87) 71.0 (50, 87) 0.440 ‡

BMI (kg/m2) 24.2 (15.5, 32.7) 24.3 (18.5, 32.7) 24.0 (15.5, 30.5) 0.924 ‡

PSA (ng/mL) 17.9 (1.2, 426.6) 21.5 (2.7, 426.6) 11.0 (1.2, 57.4) 0.351 ‡

History of TURP, n 7 (4.2) 4 (3.7) 3 (5.3) 0.628 §

ISUP category and biopsy Gleason score 0.732 §

1, 6 (3 + 3) 23 (13.9) 13 (11.9) 10 (17.5)
2, 7 (3 + 4) 40 (24.1) 25 (22.9) 15 (26.3)
3, 7 (4 + 3) 50 (30.1) 36 (33.0) 14 (24.6)

4, 8 31 (18.7) 21 (19.3) 10 (17.5)
5, 9 22 (13.3) 14 (12.8) 8 (14.0)

Surgical approach, n <0.001 §

Open 33 (19.9) 74(67.9) 41(71.9)
Laparoscopic 18 (10.8) 29 (26.6) 4 (7.0)

Robotic 115 (69.3) 6 (5.5) 12 (21.1)

Continence at
3 months 90 (54.2) 56 (51.4) 20 (35.1) 0.045 §

Anatomic finding
on MRI

PV (mm3) 44.1 (18.7, 149.7) 44.6 (18.7, 149.7) 43.2 (19.9, 108.5) 0.656 ‡

MUL (mm) 14.7 (5.1, 24.8) 15.5 (7.9, 24.8) 13.2 (5.1, 24.2) 0.000 †

LAM (mm) 7.7 (4.3, 11.6) 7.6 (4.5, 11.3) 8.0 (4.3, 11.6) 0.154 †

UWT (mm) 10.1 (5.2, 13.6) 10.0 (5.2, 13.6) 10.4 (7.4, 13.0) 0.094 †

ASM (mm) 3.1 (1.0, 6.4) 3.0 (1.6, 6.4) 3.3 (1.0, 5.2) 0.347 ‡

OIM (mm) 17.8 (8.4, 49.5) 17.8 (9.3, 23.7) 17.8 (8.4, 49.5) 0.019 ‡

Note: Unless otherwise specified, data are means with range. Data are presented as number (%) of patients.
† p value was calculated by Student’s t-test. ‡ p value was calculated by nonparametric Mann–Whitney U test.
§ p value was calculated by Pearson chi-square test. BMI, body mass index; PSA, prostate-specific antigen; TURP,
transurethral resection of the prostate; ISUP, International Society of Urological Pathology; PV, prostate volume;
MUL, membranous urethral length; LAM, levator ani muscle; UWT, urethra wall thickness; ASM, anal sphincter
muscle; OIM, obturator internal muscle.

3.2. Comparison between PPI Early-Recovery and Consistent Group and Logistic Regression Analysis

Characteristics of PPI early-recovery and consistent groups within 3 months after RP
are provided in Table 3. Early-recovery patients within 3 months were significantly older
than the PPI consistent patients (70.1 versus 72.8 years old; p = 0.009). In the anatomic
findings from MRI, MUL (15.7 versus 13.9 mm; p = 0.002) and OIM (18.2 versus 17.5;
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p = 0.021) were significantly longer and thicker with early-recovery patients than those of
consistent patients.

Table 3. Comparison between PPI early-recovery and consistent groups.

PPI Early-Recovery
Group (n = 76)

PPI Consistent
Group (n = 90) p-Value

Age at surgery, year 70.1 (50, 87) 72.8 (56, 87) 0.009 ‡

BMI, kg/m2 24.5 (18.6, 32.2) 23.9 (15.5, 32.7) 0.208 ‡

PSA, ng/mL 17.1 (1.2, 194.8) 18.5 (2.7, 426.6) 0.203 ‡

History of TURP, n 1 (1.3) 6 (6.7) 0.087 §

ISUP category and biopsy Gleason score 0.596 §

1, 6 (3 + 3) 11 (14.5) 12 (13.3)
2, 7 (3 + 4) 19 (25.0) 21 (23.3)
3, 7 (4 + 3) 26 (34.2) 24 (26.7)

4, 8 13 (17.1) 18 (20.0)
5, 9 7 (9.2) 15 (16.7)

Surgical approach, n 0.191 §

Open 58 (76.3) 57 (63.3)
Laparoscopic 12 (15.8) 21 (23.3)

Robotic 6 (7.9) 12 (13.3)

Anatomic finding on MRI

PV (mm3) 42.4 (19.3, 149.7) 45.6 (18.7, 120.7) 0.133 ‡

MUL (mm) 15.7 (8.4, 24.8) 13.9 (5.1, 24.2) 0.002 †

LAM (mm) 7.9 (4.5, 11.3) 7.6 (4.3, 11.6) 0.169 †

UWT (mm) 10.2 (7.3, 13.6) 10.0 (5.2, 13.0) 0.297 †

ASM (mm) 3.2 (1.0, 6.4) 3.0 (1.2, 5.3) 0.274 ‡

OIM (mm) 18.2 (9.3, 23.7) 17.5 (8.4, 49.5) 0.021 ‡

Note: Unless otherwise specified, data are mean with range. Data are presented as number (%) of patients.
† p value was calculated by Student’s t-test. ‡ p value was calculated by nonparametric Mann–Whitney U test.
§ p value was calculated by Pearson chi-square test. PPI, post-prostatectomy incontinence; BMI, body mass
index; PSA, prostate-specific antigen; TURP, transurethral resection of the prostate; ISUP, International Society of
Urological Pathology; PV, prostate volume; MUL, membranous urethral length; LAM, levator ani muscle; UWT,
urethra wall thickness; ASM, anal sphincter muscle; OIM, obturator internal muscle.

Univariate logistic regression analysis showed that age (odds ratio (OR), 1.06; 95%
confidence interval (CI) 1.01–1.12; p = 0.011) and MUL (OR, 0.88; 95% CI 0.81–0.96; p = 0.003)
were significantly related with PPI recovery within 3 months. In multivariate logistic
regression analysis, both age (OR, 1.07; 95% CI 1.07–1.02; p = 0.007) and MUL (OR, 0.87;
95% CI 0.80–0.95; p = 0.002) remained significant independent predictors of PPI recovery
within 3 months after RP (Table 4).

3.3. Diagnostic Performance of the Predictive Models

The diagnostic performance of each model is provided in Table 5, Table A1 in Appendix B
and Figure 2. The AUCs were 0.63 ± 0.04 for LR, 0.73 ± 0.09 for KNN, 0.73 ± 0.09 for DT,
0.72 ± 0.03 for SVM, and 0.80 ± 0.1 for RF in the internal validation group, representing
improved performance from LR over the machine learning model. In the external validation
group, four machine learning models had AUCs of 0.60 ± 0.08 for KNN, 0.61 ± 0.07 for
DT, 0.65 ± 0.07 for SVM, and 0.61 ± 0.08 for RF. Among them, SVM yielded improved
discrimination compared with LR (0.59 ± 0.07). Chi-squared tests for all models showed
that the estimated probability of PPI within 3 months did not differ from the actual observed
proportion of recovery from PPI within 3 months (p > 0.05).
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Table 4. Univariable and multivariable analysis for recovery from PPI within 3 months.

Univariable Analysis Multivariable Analysis

OR 95% CI p-Value OR 95% CI p-Value

Age at surgery, year 1.06 1.01, 1.12 0.011 1.07 1.02, 1.13 0.007

BMI, kg/m2 0.93 0.84, 1.04 0.215

PSA, ng/mL 1.00 0.99, 1.01 0.814

History of TURP 5.36 0.63,
45.52 0.124

ISUP category and biopsy Gleason score

1, 6 (3 + 3) 0.605

2, 7 (3 + 4) 1.01 0.36, 2.83 0.980

3, 7 (4 + 3) 0.85 0.31, 2.27 0.740

4, 8 1.27 0.43, 3.76 0.667

5, 9 1.96 0.58, 6.61 0.276

Surgical approach

Open ref 0.196

Laparoscopic 1.78 0.80, 3.95 0.156

Robotic 2.04 0.72, 5.79 0.183

Anatomic finding on MRI

PV, mm3 1.01 0.99, 1.02 0.323

MUL, mm 0.88 0.81, 0.96 0.003 0.87 0.80, 0.95 0.002

LAM, mm 0.86 0.70, 1.07 0.169

UWT, mm 0.89 0.71, 1.11 0.296

ASM, mm 0.82 0.59, 1.15 0.259

OIM, mm 0.95 0.87, 1.04 0.248
BMI, body mass index; PSA, prostate-specific antigen; TURP, transurethral resection of the prostate; ISUP,
International Society of Urological Pathology; PV, prostate volume; MUL, membranous urethral length; LAM,
levator ani muscle; UWT, urethra wall thickness; ASM, anal sphincter muscle; OIM, obturator internal muscle.

Table 5. Diagnostic performance of each models.

Title 1 Sensitivity Specificity Accuracy AUC p-Value *

Internal validation cohort

KNN 72.5% ± 0.13 63.0% ± 0.17 68.3% ± 0.10 0.73 ± 0.09 0.3
DT 76.9% ± 0.09 64.0% ± 0.12 71.0% ± 0.05 0.73 ± 0.07 0.497

SVM 72.6% ± 0.06 57.7% ± 0.11 65.9% ± 0.03 0.72 ± 0.03 0.457
RF 79.0% ± 0.10 68.4% ± 0.11 74.2% ± 0.08 0.80 ± 0.10 0.552
LR 79.3% ± 0.11 49.1% ± 0.23 65.7% ± 0.05 0.63 ± 0.04 0.25

External validation cohort

KNN 62.4% ± 0.15 50.2% ± 0.16 56.1% ± 0.08 0.60 ± 0.08 0.358
DT 66.7% ± 0.13 49.4% ± 0.16 58.4% ± 0.07 0.61 ± 0.07 0.323

SVM 68.8% ± 0.12 51.3% ± 0.15 60.2% ± 0.07 0.65 ± 0.07 0.394
RF 65.1% ± 0.11 53.6% ± 0.14 59.5% ± 0.07 0.61 ± 0.08 0.464
LR 71.7% ± 0.15 40.0% ± 0.22 56.5% ± 0.07 0.59 ± 0.07 0.339

Note: Data values are presented as a mean ± standard deviation. * p-value for chi-squared test between predicted probability and actual
proportion of recovery from PPI at 3 months.
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4. Discussion

This current study presents a preoperative predictive model for early recovery from
PPI within 3 months after RP. Age, MUL, and OIM were significantly different between
the early-recovery group and the consistent group. In multivariate LR analyses, age and
MUL were significant independent factors. Based on these results, a predictive model with
LR analysis showed low to moderate diagnostic accuracy. Applying a machine learning
algorithm, the predictive models showed improved diagnostic performance with higher
AUCs compared with the model using LR, especially in the SVM algorithm. These models
showed a good calibration between the estimated probability actual proportion of cases
experiencing early recovery from PPI.

Previous studies have suggested that older age, a higher BMI, the coexistence of
medical comorbidities, a history of TURP, the presence of preoperative lower urinary tract
symptoms, decreased MUL, surgery type, PV, and sacrificed neurovascular bundles may
be risk factors for urinary incontinence after RP [14,16,17,31–33]. Among them, we focused
on the preoperative factors and the measurements of pelvic skeletal muscles using MRI.
Determining the preoperative factors related to the consistent status after RP and patients
at a high risk of incontinence would be of value to clinicians when consulting patients prior
to surgery and in explaining delays in postoperative urinary incontinence recovery. In the
current study, the probability of continence recovery within 3 months after RP increased
with MUL and decreased with age. A previous study found that maximal urethral closure
decreased by approximately 27% after RP [34]. Patients with a longer MUL were more likely
to maintain a longer intact urethra sphincter and, subsequently, a higher urethral closure
pressure after RP [35]. In other words, a longer MUL was more likely to maintain sphincter
function. Our results are consistent with previous findings of a significant relationship
between MUL and continence recovery after RP. Age has been confirmed as a significant
factor influencing a consistent status after RP [6,7,18,30,36,37]. According to a study by
Nilsson et al., a patient’s age at RP influenced the risk of incontinence in an exponential
manner, particularly in long-term urinary incontinence [37]. Another study found that an
age < 70 years was highly relevant to recovery from PPI within 3 months after RP [36]. This
finding could be due to a general loss of ability to control urination with age.

Concerning the complicated physiology of micturition involving various organs and
the nervous system, it appears to be difficult to predict the status of continence after RP. Sev-
eral intraoperative maneuvers have been also shown to affect continence states following
post-prostatectomy, including neurovascular bundle-sparing surgery [34,38,39], bladder
neck preservation [40], and novel reconstruction of tissue around the vesicourethral anasto-
mosis [41]. Additionally, the surgeons’ experience and skill are also involved in urinary
outcomes after RP [42]. Accordingly, surgical technique could be individually tailored,
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especially for high-risk patients with PPI. In addition to changing surgical techniques,
preoperative machine learning-based predictive models are useful for preoperative and
postoperative patient counseling and postoperative treatment planning. Conservative
treatments such as pelvic floor exercises, behavior modifications, pelvic floor stimulation,
and biofeedback to relieve urinary incontinence can be administered to high-risk patients at
an early stage, and unnecessary aggressive surgical correction can be avoided for patients
who can expect to recover from PPI. In the current study, when a traditional LR model was
used, the diagnostic performance of predictive PPI early-recovery yielded low to moderate
accuracy, with an AUC of 0.63 in an internal validation group and 0.59 in an external
validation group. Machine learning has been increasingly employed for precise diagnosis
and prediction of outcomes [43]. This approach offers the advantage of analyzing clinical
practice data with numerous confounding factors and associated factors that are closely
and intricately related to each other. By using machine learning algorithms, the AUC sig-
nificantly improved to 0.73 with KNN, 0.73 with DT, 0.72 with SVM, and 0.81 with RF in an
interval validation group and to 0.60 with KNN, 0.61with DT, 0.65 with SVM, and 0.61 with
RF in an external validation group, although the difference was only statistically significant
with SVM. These results suggest that a machine learning approach exhibited superior,
or at least comparable, performance compared with conventional statistical approaches
in terms of predicting early recovery from PPI. In addition, these models showed good
calibration, suggesting that these data are useful in determining early recovery from PPI
within 3 months after RP.

This study had several limitations. First, it was vulnerable to selection bias due to the
nature of its retrospective design. Other factors that can be expected to affect continence
status after RP, such as the presence of preoperative lower urinary tract symptoms, were not
evaluated. Second, this study was performed in a single institution with a small number of
patients. We found significant improvements in diagnostic performance using machine
learning algorithms in an internal validation group, but not in an external validation group,
with the exception of the SVM. This may be due to the small number of events, warranting
further study with a larger number of patients. Third, we used patient-reported daily
pad usage to assess incontinence, which is a relatively subjective metric. However, a
recent prospective multicenter study by Nitti et al. confirmed that the number of pads can
accurately measure a patient’s post-prostatectomy incontinence [44]. Finally, as there were
three surgeons in our institution during the study period, inevitable technical differences
between surgeons may have biased the results.

5. Conclusions

Preoperative clinical data and anatomic features revealed by preoperative MRI can
be used to predict early recovery from PPI after RP, and machine learning algorithms
offer superior diagnostic accuracy compared with conventional statistical approaches.
Our predictive model may be useful for personalized counseling for a post-prostatectomy
consistent status before RP.
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Appendix A

Appendix A.1 K-Nearest Neighborhood

A KNN [28] is a simple machine learning method for classification and regression.
The output value of the test data is predicted by the output value of the nearest k training
data from the test data. Figure A1 provides one example of a KNN: 1-NN and 5-NN.
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Figure A1. Example of K-NN: 1-NN and 5-NN cases.

In the 1-NN case, test data are predicted as a red circle because the nearest data point is
the red circle; however, the 5-NN case test data are as classified as blue circles because more
than half of the five closest data points are blue circles. Another important parameter in
K-NN is the distance that determines which data are the closest. The most popular distance
is measured between two data X =

(
x1 x2 · · · xn

)
and Y =

(
x1 x2 · · · xn

)
,

where ∗i are features of the data as follows:

Euclidean : dEuclidean =
√

∑(xi − yi)
2 (A1)

Malanobis : dMahalanobis =
√
(X− Y)TΣ−1(X− Y)

where Σ is covariance matrix between X and Y
(A2)

Manhattan : dManhattan = ∑|xi − yi| (A3)

In this paper, we used 5-NN with the Euclidean distance to choose data that predict
hepatic enhancement.

Appendix A.2 Decision Tree

A DT [29] is an intuitive and explainable machine learning algorithm for classification
and regression. The training method is a classification and regression tree (CART) method
that divides the data into two subsets depending on the characteristics that distinguish the
data in the training set. The CART sets a threshold for one input feature, then divides the
data into two subsets according to the threshold, and sets the input factor and its threshold
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to minimize the impurity of the two divided subsets. The cost function of the CART is
described as Equation (A4):

J(k, tk) =
mle f t

m
Gle f t +

mright

m
Gright (A4)

where k is the kth feature of input, tk is the threshold of the kth feature of input, Gle f t/right
is the impurity of the left/right subset, mle f t/right is the number of samples of the left/right
subset, and m is the whole number of the sample. The CART generates a tree structure
using a recursive method of dividing subsets. There are two impurity criterion: Gini and
Entropy, and in this paper we used the Gini method to determine the impurity of the subset
tree.

Appendix A.3 Random Forest

An RF [29] is an ensemble decision tree. An ensemble method achieves superior
performance compared with a general machine learning algorithm because it is a parallel
combination of multiple machine learning algorithms with different performances that fuse
the results of each algorithm. The structure of a random forest is provided in Figure A2.
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Figure A2. Structure of random forest.

To implement a random forest comprising a number of decision trees, we used the
bagging and pasting method. The random forest training method extracts a few data points
from a training dataset, constructs a decision tree with the extracted data, and iterates
these tasks to construct multiple trees. The training data extraction technique that allows
redundancy is called bagging, and the technique that does not allow redundancy is called
pasting. The final decision of the random forest uses primarily the major voting method,
which selects the most-selected class among the multiple trees.

Appendix A.4 Support Vector Machine

An SVM [29] is a powerful and multi-purpose machine learning algorithm that can be
used for classification, regression, and anomaly detection. Unlike a hyperplane, in which a
typical linear classifier or neural network classifies two classes, hyperplanes in an SVM
can drop the nearest samples between different classes the farthest away. The difference
between a typical classifier (neural network) and an SVM is shown in Figure A3.
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The decision function of the linear SVM is shown in Equation (A5) below:

ŷ =

{
0 when wTx + b < 0
1 when wTx + b > 0

(A5)

where x is the nth-dimension input and w and b are trainable weight and bias, respectively.
If the output value of the SVM is greater than 0, it becomes a positive class, otherwise
a negative class. In other words, the class is separated according to the value of the
linear hyperplane by the decision function, as shown in Figure A3. However, a linear
hyperplane cannot classify a class of samples when the data require nonlinear classification
performance.

As only linear classification is applicable in a basic SVM, we used a kernel SVM to
overcome this limitation. Equations (A6)–(A9) are the most widely used kernels in SVMs:

Linear : K(a, b) = aTb (A6)

Polynomial : K(a, b) =
(

γaTb + r
)d

(A7)

RBF : K(a, b) = exp(−γ‖a− b‖) (A8)

Sigmoid : K(a, b) = tanh
(

γaTb + r
)

(A9)

Appendix B

Table A1. The p-value for multiple comparisons for AUC of predictive models.

KNN DT SVM RF LR

Internal
validation

cohort

KNN 1.000 - - - -
DT 0.984 1.000 - - -

SVM 0.225 0.140 1.000 - -
RF 0.001 <0.001 <0.001 1.000 -
LR <0.001 <0.001 <0.001 <0.001 1.000

External
validation

cohort

KNN 1.000 - - - -
DT 0.854 1.000 - - -

SVM 0.002 0.002 1.000 - -
RF 0.533 0.631 0.014 1.000 -
LR 0.375 0.251 <0.001 0.121 1.000
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