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Abstract: This paper proposes a lane detection algorithm using a laser range finder (LRF) for the
autonomous navigation of a mobile robot. There are many technologies for ensuring the safety of
vehicles, such as airbags, ABS, and EPS. Further, lane detection is a fundamental requirement for an
automobile system that utilizes the external environment information of automobiles. Representative
methods of lane recognition are vision-based and LRF-based systems. In the case of a vision-based
system, the recognition of the environment of a three-dimensional space becomes excellent only
in good conditions for capturing images. However, there are so many unexpected barriers, such
as bad illumination, occlusions, vibrations, and thick fog, that the vision-based method cannot be
used for satisfying the abovementioned fundamental requirement. In this paper, a three-dimensional
lane detection algorithm using LRF that is very robust against illumination is proposed. For the
three-dimensional lane detection, the laser reflection difference between the asphalt and the lane
according to color and distance has been utilized with the extraction of feature points. Further, a
stable tracking algorithm is introduced empirically in this research. The performance of the proposed
algorithm of lane detection and tracking has been experimentally verified.

Keywords: lane detect; tracking; 3D map; real time; laser range finder; curvature

1. Introduction

There has been considerable progress in the field of vehicle safety systems in the last
few decades—from safety belts in the 60s to electrical systems such as air bags, anti-lock
brake systems (ABSs), and electric power steering (EPS) in the 90s; this progress has been
aimed at increasing passenger safety. However, these systems offer only passive safety
because they operate in response to the state of the in-vehicle system [1]. In line with
the recent development of smart technologies, considerable research has been conducted
on the implementation of intelligent and sophisticated safety systems [2]. Such a system
is referred to as an advanced safety vehicle (ASV). An ASV is a safety system designed
to alarm drivers in advance against accident-prone situations so that they can cope with
such situations actively. ASV-enabled vehicles are cutting-edge, safe vehicles equipped
with artificial intelligence involving various types of intelligent safety technologies and
thus maximizing driving safety and comfort. ASV’s representative core technologies are
a vehicle collision alarm system and a lane recognition system. The former is a vehicle-
to-vehicle distance detection sensor that alarms the driver when the distance from the
vehicle in front or behind becomes alarmingly small. The latter, commonly called a lane
departure warning system (LDWS), is a sensor detecting the vehicle leaving its lane; it
checks the lane and informs the driver of an imminent lane departure with an audible
signal. The sensors mainly used in ASV are an ultrasonic sensor to recognize obstacles
in front, a vision-based system to recognize the lane and road situations such as traffic
lights with radar, and a laser range finder (LRF). The information detected is used for
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recognizing obstacles, map building, and driving, thereby ensuring location detection,
collision avoidance, path tracking, lane recognition, etc. [3–6]. Lane recognition technology,
one of the core technologies of ASV, involves a vision-based system and a laser-sensor-
based system, among others. The vision-based system has a large capacity of extracting
road information with low-cost equipment, but its drawback is its difficult processing due
to its oversensitivity to illumination conditions, which makes it easily saturated when
there is a shadow or a change in luminosity. Furthermore, we tested the performance of a
vision-based lane recognition system in a previous study by varying the techniques, such
as Hough transform, template matching, splines, and polynomial estimation, depending
on the road conditions, but it showed vulnerability to some curved road conditions [7,8].
In order to overcome this drawback, research studies have been conducted using various
types of road modeling, taking into account road properties such as horizontal and vertical
clothoid curves [9], polynomial curves [10,11], and splines [12], but these methods are
sensitive to noise or false detection and require an elaborate control method using filters
or the like to remove noises or reduce recognition errors [13]. Further, the number of
frames should be maintained high in order to ensure a stable recognition. Such elaborate
control and frame number maintenance are considerable cost factors, and because of this
method’s sensitivity to weather conditions, particularly under foggy conditions that reduce
visibility, difficulties are encountered while judging road conditions and recognizing lanes.
Unlike the vision-based system, an LRF-based system is not influenced by illumination
changes. It can recognize lanes even in the dark because it measures distance using the
returning emitted laser signal. Moreover, it responds only to specific frequencies such that
steep upward driving does not affect it. It can easily recognize lanes even under foggy
weather conditions. These advantages keep attracting research interests to LRF-based lane
recognition [14–16]. Previous studies fused the vision-based system or global positioning
system (GPS) data with LRF data and used LRF as an auxiliary tool for lane recognition or
built 2D maps utilizing the reflectance of LRF [17–19]. When LRF is used as an auxiliary
tool, it is used for determining the position of a lane by comparing it with that recognized
by a vision-based system at a measurement point or within its scope, or simply for detecting
the location of a curb. In such cases, different sensors should be fused to build a system,
which is inevitably expensive. When a 2D map is built using a single LRF, noises should be
removed to facilitate the lane recognition, which requires the use of various complicated
filters. Moreover, it cannot easily discern obstacles [20–26]. On the other hand, when a
3D map is built using a single LRF, the criteria for lane recognition becomes clear and the
obstacles can be detected more easily. Noise removal for lane recognition becomes easier
as well by simply deleting the parts other than the lane-forming height.

In this study, road conditions were scanned using a single LRF, and a 3D road map
was built. Further, lanes were extracted from the map built by means of the feature point
extraction algorithm so that they could be recognized. Typically, road lanes are divided
by continuous lines and dashed lines. Continuous lines can be easily recognized and
tracked with a 3D road map and the feature point extraction algorithm. However, when
these lines become faded or broken over time, lane recognition becomes difficult and
accidents are more likely to occur. To prevent such accidents, we present in this paper a
lane prediction method using a curvature algorithm. This algorithm has the advantages of
simple calculation and excellent expression of simple curves. It is, therefore, suitable for
rapid processing.

The proposed method was designed to enable a lane tracking system to track a
discontinuous lane by predicting the path of the lane lying ahead based on the lane
tendencies figured out from those recognized earlier and by applying the curvature theory.
In the case of dashed lines, precise path prediction was implemented by updating the
coordinates of the dashed-line lanes along the path predicted with the curvature algorithm.
This method can be effective not only in reducing the real-time system load compared to
the lane prediction by means of a complicated prediction algorithm, but also in allocating
system resources. The rest of this paper is organized as follows: Section 2 explains the
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structure and modeling of the system used in this study. Section 3 explains the algorithm
with which a 3D road map is built with 2D data and the method for extracting feature
points. Section 4 explains how lane tendencies can be determined for the prediction of
a discontinuous lane and the prediction method using the curvature algorithm. Section
5 explains a stable tracking algorithm for implementing tracking by a mobile robot by
recognizing lane feature points acquired from the 3D road map. Finally, in Section 6, the
experimental results and conclusions of this study are presented.

2. System Structure

Figure 1 shows the configuration of the mobile robot system. This system is mainly
divided into a mobile robot platform and a data control platform. The upper part of the
dashed line represents the mobile platform, and the lower part, the data control platform.
The mobile platform is subdivided into sensor and motor controller units, on the left and
right sides of Figure 1, respectively.
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Figure 1. System configuration.

The sensor unit of the mobile platform is composed of the LRF, inertial measurement
unit (IMU), and encoder as well as the sensor controller. Sensors measure the information
necessary for building road maps and controlling the robot, and the data controller receives
the data values obtained by the sensors and ensures a stable transfer to the data control
platform. LRF is used for obtaining the road information by scanning the road using a
laser. The IMU sensor is used for obtaining information on the position and direction of the
robot. The encoder is used for measuring the rotational values of the mobile robot’s motor
and obtaining the information on distance covered and relative coordinates by means of
dead reckoning. The motor control unit of the mobile platform is composed of the motor
drive, motor, and motor controller. The motor controller interprets the control signals
received from the data control platform in order for the mobile robot to navigate stably
and the motor drive for moving the mobile robot according to the instructions from the
motor controller. The data control platform consists of a personal computer (PC)-based
program and executes functions such as creation of 3D road maps with the data transferred
from the mobile platform sensor unit, extraction of lane feature points, prediction of lanes,
and generation of control signals. Further, it transfers the generated control signals to the
mobile platform motor control unit for the mobile robot to navigate stably along the lane.
Figure 2 shows the structure of the robot built for this study. The LRF on the right-hand
side is a sensor used for obtaining road information. The sensors produced by Hokuyo Ltd.
and Sick AG are mostly widely used, and the URG-04LX of the Hokuyo Ltd. used in this
study has a relatively narrow measurement range compared to the sensor by Sick AG, but
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its minimum measurement distance is very close and its resolution makes it suitable for
building 3D maps and scanning lanes.
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Figure 2. Structure of the mobile robot.

The IMU positioned at the upper end is a module composed of an accelerator, gyro,
and compass sensors, and is used for measuring the direction and position of the robot.
Since it is considerably influenced by iron or a magnet, a sufficient distance should separate
it from the robot’s main body, motor, and the other parts. The micro controller unit
(MCU) placed at the bottom part is a sensor controller sending data to the PC and a motor
controller that transfers the instructions received from the PC to the motor drive. These
two controllers and the motor drive are positioned at the center. The components used in
the experiment are listed in Tables 1–4.

Table 1. Laser range finder: UBG-04LX.

UBG-04LX

Light Source Semiconductor laser diode (785 nm)
Laser safety Class1 (IEC60825-1)

Detection Distance
Standard Object

Accuracy Range: 60~4095 mm
Square Kent Sheet 80 mm

Detection Distance
/Scan Angle 20~4000 mm/240◦

Resolution/
Angular Resolution 1 mm/0.36◦(360◦/1024 steps)

Scan Time 100 msec/scan

Interface RS-232C (19.2, 57.6, 115.2, 500, 750 kbps)
USB 2.0 (Full Speed)

Table 2. The specifications of IMU (Inertial Measurement Unit).

IMU
(EBINU-9DOF)

Input Voltage 5 V

Current 40 mA

Data Output Velocity 1~100 Hz

Sensitivity
Gyro: 250~2000 dps
Acceleration: 2~8 g

Compasses:1.3~8.1 gauss

Resolution 0.01 degree

Size (L, W) 15 mm, 23.5 mm

Interfaces TTL Level (3.3 V) Serial Communication
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Table 3. The specifications of motor and motor driver.

Motor
(RB35GM)

Rated Voltage 12 V

Rated Torque 2.0 g-cm

Rated Speed 102 rpm

Output Power 3.14 W

Deceleration 50:1

Motor Driver
(NT-S-DCDM1210)

Input Voltage Range 12~24V

Maximum Continuous Current 5 A

PWM Frequency 14.4 Khz

Interface RS-232, I2C

Table 4. Distance and angle measurements.

Controller
(Mycortex-LM8962)

Power 3.3 V

Clock 50 Mhz

Memory 256 kB flash/64 kB SRAM

Product Features 32-Bit RISC, GPT, SSI, UART, ADC, I2C,
PWM, GPIO

3. Principles of LRF and 3D Map Building
3.1. Principle of LRF Lane Scanning

LRF measurement methods can be classified by time of flight measurement (TOF),
triangular measurement, and phase-shift comparison measurement [27]. In this study, the
phase-shift comparison measurement was used. Its advantages are a precise measurement
at a very short distance and a low error range. This method involves electrical signals
emitted by reflecting the phase and intensity of the laser, whereby the sensor measures
the distance by comparing the intensities of the initially emitted signals and the returned
signals reflected off the target using Equation (1).

L =
1
2
× θ ÷

(
f
c
× 2π

)
(1)

where L denotes the distance to the target; θ, the phase shift; f , the laser frequency; and c,
the velocity of light [15].

When a sensor is used in field environments to measure the phase shift, the intensity of
the laser returning to the sensor reflected off the target object decreases because of external
factors such as the distance of the target, angle, and optical reflection rate of the target [28].
Because diminished laser signals make the phase difference detection more difficult, the
signals should be amplified before being interpreted; however, this process is prone to
calculation errors.

Figure 3 shows a schematic representation of the laser signal processing steps. The
returning light reflected off the object is converted into electrical signals at the avalanche
photodiode (APD) and amplified with an automatic gain control (AGC) amplifier. In
this process, the closer the color of the object is to black, the less is the amount of energy
returned, resulting in weak signals as compared to objects having other colors; thus, the
signals are amplified at AGC and calculated to be located closer than other objects [29].
When this principle is applied to road scanning, a height difference in the asphalt lane
is observed.
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Figure 3. Data processing of the LRF.

Figure 4 shows the LRF-based road scan principle. As stated above, a black-colored
object scanned with LRF is considerably amplified by AGC and the LRF-to-object distance
appears to be shorter than it really is, whereas colored objects appear almost identical to
their real distances [30,31]. As a result, in a 3D road map built using the LRF data, asphalt
seems to be higher than the lane.
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3.2. 3D Map Building

The LRF sensor used by the mobile robot in this study transmits the distance and angle
data to the data control platform, which generates x and y coordinates using the angle and
distance data as expressed by Equations (2a) and (2b) and builds a 2D map [32,33].

xLRF = D× cos(θLRF) (2a)

yLRF = D× sin(θLRF) (2b)

where D denotes the LRF-to-object distance and θLRF represents the angle of the LRF
scan. LRF can scan a range of 1–240◦ and scan the surrounding area sequentially rotating
by 0.36◦.

The data coordinated by LRF do match the coordinate axis of the mobile robot. Thus,
to overcome this problem, coordinate transformation is necessary to match the standard
coordinate axis of the mobile robot. Figure 5 shows the coordinate transformation process
in which the LRF 2D scan data undergo transformation to match the coordinate axis of the
mobile robot. X0, Y0, and Z0 constitute the standard coordinates used for building maps
with the coordinate axis of the mobile robot. X1, Y1, and Z1 are the LRF coordinates. The
change in the coordinates of the mobile robot and position entails a change in the LRF’s
coordinate axis; in order to build a 3D map using the LRF-measured data, LRF data should
be coordinated to match X0, Y0, and Z0. This requires the movement, rotation, and LRF
coordinate axis data; further, Equation (3) using the rotation matrix is applied to implement
the transformation of the LRF coordinates. xmap

ymap
zmap

 =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 xRobot
yRobot
zRobot

+

 xLRF
0

yLRF

 (3)
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where xRobot, yRobot, and zRobot denote the mobile robot’s coordinates; xLRF, yLRF represent
the coordinates of the data scanned by LRF; θ denotes the rotational angle of the mobile
robot’s coordinates around X0; and xmap, ymap, zmap represent the coordinates of the points
for building a map. The coordinates of the LRF data transformed with Equation (3) are
used for building a 3D map through a continuous iteration.
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4. Lane Recognition and Prediction
4.1. Lane Feature Point Extraction

In order to discern the line between lane and asphalt, it is necessary to extract the edge
points of the lane formed lower than the road with respect to the road surface. We have
used Equations (4a) and (4b) for extracting these boundary points.√

(zmap(i) − zmap(i+1))
2 ≥ d (4a)∣∣∣∣∣tan−1

(
zmap(i) − zmap(i+1)

xmap(i) − xmap(i+1)

)∣∣∣∣∣ ≥ σ (4b)

where xmap(i) denotes the road coordinates in the horizontal direction and zmap(i) represents
the road height coordinates. Equations (4a) and (4b) are used for calculating the height
difference and the gradient between two points, respectively. If the height difference
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deviates from a certain range, it implies that there is a topographic change, and the
deviation of the gradient between two points from a certain range indicates a feature point
of the parts showing large changes, i.e., edges. The edge points building the boundary
between the asphalt and the lane can be easily obtained with this equation. In Equation
(4a), d denotes the minimum height difference for a feature point, and σ in Equation (4b)
represents the minimum angle between two points for a feature point.

4.2. Curvature Algorithm

When a point moves along a curve at a given velocity, the moving direction changes
according to s, the distance covered (the length of the arc of the curve). Therefore, the rate
of change is called the curvature of the curve. Figure 7 illustrates the degree of rotation
required to follow the curve while moving along the curve from the start point to the
end point.
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where ∆s denotes the point-to-point infinitesimal distance and ∆θ represents the infinitesi-
mal angle formed by the tangent lines of two points.

k = lim
∆s→∞

∣∣∣∣∆θ

∆s

∣∣∣∣ = ∣∣∣∣dθ

ds

∣∣∣∣ (5)

where ∆s denotes the infinitesimal distance covered from a start point on a curve to the
end point and ∆θ denotes the angle formed by two tangent lines at two points. Further,
the multiplicative inverse of curvature is the curvature radius. The curvature radius is the
radius of a circle having a certain curvature and is also referred to as the rotational radius.
Curvature radius ρ is defined as Equation (6).

k > 0⇒ ρ = 1/k (6)

Equation (5) shows that ∆s, which denotes the total length of the arc moved along
the curve, is proportional to the curvature radius. On the whole, curvature k is shown
to be inversely related to ∆s. If k = 0, the curvature radius is infinity, and thus, the curve
becomes a straight line. In other words, a straight line can be thought to be a circle having
an infinite radius.

If the robot moves rotationally, a rotational centroid is generated, and this point is the
instantaneous center of rotation (ICR). ICR is a point at which the extension lines of the
rotational axes of the wheels meet [34–37]. Since the axis of the two wheels of the mobile
robot analogous to the vehicle wheels’ moving tendency is positioned along the same line,
ICR can be positioned anywhere on the wheel axis. Further, the relationship between the
wheel velocity values and the robot-to-ICR distance can be expressed by a proportional
equation such as Equation (7).

vL : vR = ρ− l
2

: ρ +
l
2

(7)
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where vL denotes the velocity of the left side wheels; vR, that of the right side wheels; ρ, the
curvature radius; and l, the lane between two wheels of the robot. The curvature radius
can be expressed by Equation (8).

ρ =
l
2

(
vR + vL
vR − vL

)
(8)

In other words, the rotational radius is determined by the velocity of the robot’s left
and right wheels. According to the above equation, if the robot navigates along a straight
line, ρ = ∞(vR = vL), and if vR 6= vL, the robot implements a circular motion.

In Figure 8, if the mobile robot moves from point A to point B, let the time at point A
be t0 and its location

(
xp, yp, θp

)
, then the time at point B can be expressed as t1 = t0 + ∆t

and its location as
(

x′p, y′p, θ′p
)

. ICR’s coordinates can be defined as in Equation (9).

ICR = [xR − R sin(θR), yR + R cos(θR)] (9)
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The robot’s location (x′R, y′R, θ′R) at the instant of time lapse of δt from t0 can be
expressed by Equation (10). x′p

y′p
θ′

 =

 cos(ψ•∆t) − sin(ψ•∆t) 0
sin(ψ•∆t) cos(ψ•∆t) 0

0 0 1

 xp − ICRx
yp − ICRy

θ

+

 ICRx
ICRy
ψ•∆t


=

 R sin(ψ•∆t) + ICRx
−R cos(ψ•∆t) + ICRy

θ + ψ•∆t

 (10)

Equation (10) expresses the mobile robot’s location as an equation governing the
location of ICR and the angular velocity. The numerical expressions of the total moving
distance, D, of the mobile robot from P0 to P1 and the rotation angle, φ, are expressed
as follows:

D =
∫ t+∆t

t
Vdt =

∫ t+∆t

t

vl + vr

2
dt (11)

φ =
D
R

=

∫ t+∆t
t (vl + vr)dt

L(vl + vr)
•(vr − vl) (12)
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4.3. Limitations of Mobile Robot

The velocities of the mobile robot’s left and right wheels are denoted as vL and vR, and
their accelerations are denoted as aL and aR, respectively, as in the following equations.

|vL|, |vR| ≤ vmax (13)

|aL|, |aR| ≤ amax (14)

where vmax refers to the maximum design velocity of the mobile robot, whereas amax refers
to the maximum design acceleration. In this study, vmax was set to 0.1 m/s and amax was
set to 0.1 m/s2.

4.4. Lane Tendency and Lane Prediction Using a Curvature Algorithm

In general, as explained above, curvature is used for determining the robot’s path
or time-dependent location in cases where the start and end points as well as the robot’s
navigating and angular velocities are clearly known. The curvature radius is calculated
using the start and target points as well as the robot’s direction angle, and the robot’s
navigating path is figured out using the curvature radius and the robot’s velocity.

However, the method proposed in this paper was used for predicting the navigation
path of the mobile robot by using a curvature algorithm, in cases where the lanes became
recognizable while driving, by applying the feature points recognized up to the start
point of the discontinuity and using the recognized tendency. Thus, this method has no
preset target point. Equation (15) is used for figuring out the lane tendency up to the
point of discontinuity in order to predict the future course of the lanes. It expresses the
point-to-point distances at the n – 1th point and the change rate of the yaw-axis angle.

(Dave, θave) =

(
1

n− 1

n

∑
a=2

(√
xa − x0

)2
+
(√

ya − y0
)2,

1
n− 1

n

∑
a=2

θa

)
(15)

where Dave denotes the average distance; θave, the average change rate of the yaw-axis
angle; x0, the n – 1th x-axis coordinates; y0, the n – 1th y-axis coordinates; and θa, the
amount of angular change between the n – 1th point and the ath point. The lane tendency
thus obtained can be calculated to yield the curvature radius by using Equation (16).

ρ =
Dave

2 cos(θave + 180)
(16)

The navigation path can be predicted using the calculated curvature radius and the
point-to-point distance.

xest = ρ cos(θave) (17a)

yest = ρ sin(θave) (17b)

Equations (17a) and (17b) is used for calculating the x and y coordinates at the point
where the lanes are not visible; the robot can move along these coordinates.

4.5. Path Monitoring through Update

A dashed line is divided into lined and unlined parts. In the unlined parts, the
robot’s navigation path is established by using the curvature-theory-based lane prediction.
Wherever lines are detected, navigation follows the visible lines. However, in the case of
a dashed line, lines are not found within the given interval. In this case, curvature is not
generated using Equations (15)–(17), but a more accurate curvature can be generated using
the curvature generated immediately before finding the line and the data of the dashed
line covered up to the point as well as Equations (15)–(17). Figure 9 shows the flow of the
entire system.
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After the initialization, the system scans the road using LRF. Lanes are then sought
using the feature point extraction algorithm. When the feature points of the lane are
extracted and the lane borders are found, a path is generated via the line coordinates. If no
lines are found, the changing line pattern is figured out using the line coordinates available
up to that point. Thus, a path is generated using the curvature algorithm as well as the
lane change rate. When the line recognized is not a continuous line, but a dashed line, the
curvature algorithm is updated with the information on the given line, and a more accurate
prediction path can be generated.

5. Tracking Control Algorithm

This algorithm is a stable tracking control algorithm to progressively control the
Cartesian trajectory from the start point to the target point of an off-trajectory robot using
the mobile robot’s present location and position and the location of the target point. The
location of the robot is expressed using three degrees of freedom as in Equation (18) where
x and y denote the robot’s coordinates, which can be obtained via the encoder values of the
motors on both sides, and θ denotes the robot’s eye direction.

Pk = [x, y, θ]T (18)

Further, all terms of Equation (14) are time functions. Therefore, they can be expressed
as x(t), y(t), and θ(t), and θ(t) can be obtained using Equation (15).

θ(t) = tan−1
( .

y(t)
.
x(t)

)
(19)

The motions of the mobile robot are controlled with linear and angular velocities. The
mobile robot’s kinematics is defined by using the Jacobian matrix J.

.
P = Jq (20)

where q denotes
[

v w
]T and J is

[
cos θ sin θ 0

0 0 1

]T

. This kinematics algorithm can be

applied commonly to all non-omnidirectional robots. This algorithm requires the locations
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of the current and target points in order to control a mobile robot. The system calculates Pe,
the difference between the two points, using Equation (20) [37].

Pe = Te(Pr − Pc) (21)

where Te is

 cos θc sin θc 0
− sin θc cos θc 0

0 0 1

 and θc denotes the present direction angle of the robot.

Finally, the linear and angular velocities required for the robot to move up to the target
point can be calculated via Equation (18).

q =

(
vd cos θe − vc

ωd −ωc

)
(22a)

vd = ±
√

.
x2

r (t) +
.
y2

r (t) (22b)

ωd =

..
yr(t)

.
xr(t)−

..
xr(t)

.
yr(t)

.
x2

r (t) +
.
y2

r (t)
(22c)

where vd,ωd denote the linear and angular velocities required to reach the target point,
vc,ωc represent the present linear and angular velocities, and ωc, yr denote the coordinates
of the target point.

Figure 10 shows the structure of the following controller. pr(t) represents the target
position and pc(t) represents the current position of the mobile robot. Through the error
matrix, which is the difference pe between the current position and the target position, q
composed of the required linear velocity and angular velocity is obtained. The third box T
is converted to fit the hardware considering the structure of the hardware. The coordinates
of the mobile robot reflecting the required speed are combined with the Jacobian J and
changed to the current speed which is accumulated and feedback to the current position.
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6. Experiment
6.1. Comparison Using Vision

The first experiment involved driving under foggy conditions in a comparison test of
a vision-based system and LRF to demonstrate that the vision-based system is influenced
by fog whereas LRF is not. The first picture in Figure 11a shows the test environment on a
foggy road. The picture beneath it shows the vision-based processing. Figure 11b shows an
onsite LRF-scanned 3D road map.

In order to extract the lane-related information from the image obtained using the
vision-based system, various filters or considerable computations are required. We ex-
tracted the lane information using SOBEL after changing the image into a gray-scaled one.
As shown in the picture above, the front lane is partially visible as a blurred image, but
the overall visibility for extracting the lane information is very limited. Moreover, under
more severe foggy conditions, it would be a huge challenge to find lanes using vision. In
contrast, LRF was not influenced by the fog at all, demonstrating the same effect as that
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on a clear day. Figure 11b shows a 3D road map built using the LRF scan data around the
center line of the lane. The robot was instructed to navigate at the velocity of 1 m/s.
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In Figure 12, the lane feature points extracted from the 3D road map shown in
Figure 11b by using the feature point extraction algorithm are highlighted with yellow
dots. The robot was instructed to navigate along the right-hand-side boundary line. The
errors in the case of the real lane width and the case of the scanned lane width with respect
to the right-hand-side boundary line were compared.
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In Table 5, Given the land width of 150 mm, the average feature point coordinates
did not deviate from those of the real lane width. Further, the maximum error was
below 20 mm, not largely deviating from the real lane width. Nor did the robot deviate
considerably from the lane during navigation because of the data error.
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Table 5. Lane width error of feature point extraction.

Max (mm) Mean (mm) Max Error (mm)

Real lane - 150 -

LRF-scanned lane 169 104 19 mm
(12.7%)

Furthermore, we conducted the same experiment on a dark road at night without
street lamps and obtained the same results as those shown in Figure 11b. The results of
this experiment verified that LRF could recognize lanes irrespective of the weather or
light conditions by yielding the same results on foggy or dark roads as those on clear and
bright roads.

6.2. Stable Tracking Algorithm Using Lane Tracking

The second experiment is an experiment that allows mobile robots to follow the lanes
found on the three-dimensional map. In Figure 13, the red dots represent the densest points
among the singularities of the lane and the part marked with the blue dotted line indicates
the path the mobile robot moved. The purple straight line of both sides shows the real lane.
The results of this experiment show that the detected lane is stably driven using a stable
following algorithm.
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Furthermore, the singularity of the lane is zigzag, which calculates the singularity
density of both lane edges, so it can appear irregularly in the lane according to the density
of the detected singularity.

Figure 14 shows a graph of error. The blue solid line is the detection of the singularity
of the actual lane, and the mobile robot must follow this line while driving at 1 m/s,
but an error occurred as shown in the red dotted line. The maximum tracking error was
147.65 mm. However, when looking at the overall driving as shown in Figure 14, it can be
seen that the robot’s driving path was stably driven without departing from the lane.
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6.3. Lane Prediction Using the Curvature Algorithm

We tested whether the driving path could be predicted by applying the curvature
algorithm to a dashed-line curved path when the lines could not be scanned.

Figure 15 shows the 3D road map (right) of the test environment (left). Figure 16
shows the feature points extracted from this map.
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If the curvature algorithm is applied using the feature points extracted as shown in
Figure 16, the path can be predicted as shown in Figure 17.
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Figure 17. Application of the curvature algorithm.

As shown in Figure 18, the driving path can be predicted with blue dots by using the
curvature of the road sections that do not have any marked lines. The predicted dots do
not deviate considerably from the lane and provide the robot with a path to follow that
is almost analogous to the lane. Figure 15 shows that the robot navigates well without
deviating from the dashed-line lane.
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Figure 18. Predicted path for driving.

As shown in Figure 19a, we tested whether lane prediction can be implemented by
using curvature in cases where the line markings are partly unrecognizable. Figure 19b
shows the prediction test result for the test environment shown in Figure 19a when the
algorithm was not used. It shows that the prediction was not correct after the first dashed-
line lane and the robot failed to find the dashed-line lane again. In contrast, Figure 19c
clearly demonstrates that by applying the curvature algorithm, lane prediction is possible
even if the marked lines are partially unrecognizable.
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7. Conclusions 
This paper proposed a real time lane detection algorithm using LRF (Laser Range 

Finder) for autonomous navigation of a mobile robot. By the vision-based system, recog-
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7. Conclusions

This paper proposed a real time lane detection algorithm using LRF (Laser Range
Finder) for autonomous navigation of a mobile robot. By the vision-based system, recog-
nition of the environment for three dimensional space becomes excellent only in good
conditions for capturing images. However, there are so many unexpected barriers, such as
bad illumination, occlusions, and vibrations that the vision cannot be used for satisfying
the fundamental requirement, and conventional lane detection has mainly been carried out
by using vision-based methods, but such methods have a serious drawback of showing
substantially diminished performance in driving environments where reliable vision-based
information is not obtained, such as under conditions of dense fog. Therefore, in this study,
we built a laser-scanned 3D road map and discerned and recognized lanes by using a fea-
ture point extraction algorithm using LRF calibration and amplification errors depending
on the materials and colors of the asphalt and the lanes. The test results confirmed that the
use of the proposed method could ensure safe driving under unfavorable road conditions
such as fog, which could contribute to the R&D on autonomous driving technologies. As
future research, we plan to have a variety of tests in different environmental conditions
and we have to apply a new method (RANSAC, MLESAC and so on).
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