
applied
sciences

Article

Fast Low-Precision Computer-Generated Holography on GPU

David Blinder 1,2,* and Peter Schelkens 1,2

����������
�������

Citation: Blinder, D.; Schelkens, P.

Fast Low-Precision

Computer-Generated Holography on

GPU. Appl. Sci. 2021, 11, 6235.

https://doi.org/10.3390/app11136235

Academic Editor: Motoharu Fujigaki

Received: 28 May 2021

Accepted: 4 July 2021

Published: 5 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), B-1050 Brussels,
Belgium; peter.schelkens@vub.be

2 imec, Kapeldreef 75, B-3001 Leuven, Belgium
* Correspondence: david.blinder@vub.be; Tel.: +32-2629-1694

Abstract: Computer-generated holography (CGH) is a notoriously difficult computation problem,
simulating numerical diffraction, where every scene point can affect every hologram pixel. To
tackle this challenge, specialized software instructions and hardware solutions are developed to
significantly reduce calculation time and power consumption. In this work, we propose a novel
algorithm for high-performance point-based CGH, leveraging fixed-point integer representations,
the separability of the Fresnel transform and using new look-up table free cosine representation. We
report up to a 3-fold speed up over an optimized floating-point GPU implementation, as well as a
15 dB increase in quality over a state-of-the-art FPGA-based fixed-point integer solution.

Keywords: digital holography; computer-generated holography; massively parallel computing; 3D
displays; computer graphics

1. Introduction

Electro-holographic displays are a promising technology for immersive 3D displays,
thanks to their ability to fully reproduce the wavefield of light, thereby accounting for all
human visual cues [1,2]: continuous motion parallax, and no accommodation-vergence
conflict, all while supporting accurate shading and occlusion cues. One major challenge
for realizing those display systems is computational, because holograms are computed
by modeling numerical diffraction: every point in the virtual 3D scene creates spherical
waves that can affect every hologram pixel. This many-to-many mapping, combined with
the large needed resolutions and low frame rates required for driving holographic video
displays, makes the use of efficient algorithms and hardware solutions a necessity.

Nowadays, many different CGH algorithms exist that are specialized for different
kinds of holography applications [3]. The best choice depends on the hologram reso-
lution, viewing angle, display type, power and visual quality requirements. Examples
of CGH algorithms are polygonal CGH [4–6], layer-based CGH [7–9], and holographic
stereograms [10,11]. These can be combined with acceleration structures, such as wavefront
recording planes [12], sparse bases [13,14] and deep neural networks [15].

One of the most widely used algorithms are point-based CGH [16,17]. These de-
compose 3D objects into a large collection of infinitesimal self-luminous points, whose
point-spread functions (PSF) are calculated and superimposed to obtain the final hologram.
Thanks to the relatively simple mathematical expression of PSFs and the inherent paral-
lelizability of the linear superpositions, they are a good candidate for massively parallel im-
plementations on application-specific integrated circuits (ASIC) [18], field-programmable
gate arrays (FPGA) [19–21] and graphics processing units (GPU) [16,22].

Our goal is to optimize point-based CGH algorithms by reducing both the memory
and computational requirements for calculating PSFs, targeting specialized GPU, FPGA or
ASIC implementations. This is achieved by reducing the bit-width of intermediate results
and approximating mathematical operators, all while preserving sufficient visual quality.
Our main contributions are the following:

Appl. Sci. 2021, 11, 6235. https://doi.org/10.3390/app11136235 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7054-0203
https://orcid.org/0000-0003-0908-1655
https://doi.org/10.3390/app11136235
https://doi.org/10.3390/app11136235
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11136235
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11136235?type=check_update&version=2

Appl. Sci. 2021, 11, 6235 2 of 11

• We propose a generic framework for the efficient calculation of separable point-based
CGH, using fixed-precision integer representations.

• We propose a more accurate, look-up-table-free approximation of (co)sine functions
resulting in a 15 dB quality gain over the triangular wave implementation [19].

• A high-performance CUDA implementation for GPU is detailed with well-chosen
assembly instructions, resulting in up to 3-fold speed ups over an optimized floating-
point CGH implementation.

The paper is structured as follows: in Section 2, we derive the expressions optimized
for low-memory and low-precision representations and detail the steps of the general
algorithm. Then, we expound on the optimized CUDA implementations, explaining how
these algorithms can be translated into the appropriate instructions and data structures in
Section 3. This is followed by Section 4 in which we render different holograms to quantify
visual quality and to measure the reductions in calculation times. Finally, we discuss the
results and their interpretation in Section 5 and conclude in Section 6.

2. Methodology

The Fresnel model for the complex amplitude of a single PSF created by a point emitter
located at coordinates (δ, ε, ζ) is given by the following expression:

P(x, y) = a · exp
(πi

λζ

[
(x− δ)2 + (y− ε)2]) (1)

where λ is the wavelength and a is the point amplitude. To obtain the complex-valued
hologram H(x, y), we must sum over all Q points in all pixels of H. This gives us the
following:

H(x, y) =
Q

∑
j=1

Pj(x, y) =
Q

∑
j=1

aj · exp
(πi

λζ j

[
(x− δj)

2 + (y− εj)
2]). (2)

In conventional point-based CGH, this expression is evaluated independently for all
pixels, typically computed using floating-point arithmetic. We propose to significantly
accelerate this by combining two features:

1. Leveraging the separability of every P(x, y) along its spatial dimensions x and y;
2. Using low-precision fixed-point integer approximations for the various mathematical

operations of (2).

These are described in the remainder of this section.

2.1. Packed Separable PSF Phases

The phase of the PSF P(x, y) is given by the parabola as follows:

φ(x, y) = ∠P(x, y) =
π

λζ

[
(x− δ)2 + (y− ε)2] = π

λζ
(x− δ)2 +

π

λζ
(y− ε)2 (3)

i.e., scaled by a constant inversely proportional to the axial distance of the point emitter.
Note that the phase φ is, therefore, separable in φx and φy:

φx(x) =
π

λζ
(x− δ)2; φy(y) =

π

λζ
(y− ε)2; φ(x, y) = φx(x) + φy(y). (4)

This is leveraged to minimize redundant operations when calculating and packing
the bits encoding the φx and φy values.

When using fixed-point integers, one should carefully select the units so as to optimize
the number of required bits for encoding numbers in a given application, balancing preci-
sion and computational performance constraints. For the conversion to n-bit (fixed-point)
integer representations, we want to encode units as integer multiples of π · 21−n, n ∈ N0; we

Appl. Sci. 2021, 11, 6235 3 of 11

make this choice since the exponential of purely imaginary functions is periodic (consisting
of sines/cosines), so we can ignore any overflow when adding phase values together,
which is some multiple of 2π.

The precision of the quantization is denoted as s, which should be no larger than the
hologram pixel pitch p in order to ensure numerically distinguishable signal changes across
subsequent pixels; otherwise, the coordinates for two neighboring pixels may be quantized
(e.g. rounded) to the same value, thereby resulting in erroneous identical computed PSF
amplitudes. One may want to choose s < p if finer lateral quantizations of the point
cloud would be desirable, e.g., for sub-pixel lateral resolution of point coordinates for very
detailed objects.

These precision considerations must also be taken to determine the axial quantization
of the factor π

λζ , which we denote as c, i.e., the depth resolution of the point cloud. It should
also be proportional to some π · 21−m, m ∈ N0 so to facilitate integer multiplication, but not
necessarily the same as the precision chosen for s. We chose the same precision for this
parabolic phase scaling factor as that for s because of GPU register size constraints, giving
us the following integer:

c =
⌊

π

λζ

s22n

2π

⌉
=

⌊
s2

2λζ

⌉
(5)

where b·e is the rounding operator.
This process is summarized for φx in Figure 1; it is identical for φy, except for the other

chosen coordinate difference (y− ε). The final multiplication result can have a different
bit-width k < n than the intermediate integers to significantly reduce the multiplier design
in, for example, a customized FPGA implementation. Because typical GPUs are more
constrained, namely, memory is addressed byte-wise and registers are 32-bit for most
modern GPU models, we chose k = 8 and n = 32.

0 01 1 0 0 1 0

0 1 0 1 1

00 1 0 0 1 1 01 0 0 1 1 0

1

0 00 00 00 0

00 00 0

1

(a) Example diagram

2𝜋 multiples
overflow

Point-wise CGH

𝒙 − 𝜹

𝒙 − 𝜹 𝟐

2𝜋

𝒙 − 𝜹

𝒄

𝝓𝐱

Relative
x-coordinates

Squared
coordinates

π

𝜆𝜁
factor

discarded phase LSB

π2𝑛−1

𝑛 bits

𝑘 bits

(b) Fixed-point integer phase computation

Figure 1. Diagram of the fixed-point integer multiplications for computing the phase. (a) Fixed-
point integer multiplication diagram with example bit patterns; the boxes indicate where significant
bits are found (all other bits are assumed to be 0). (b) Proposed scheme for computing phase
values. The bits encode the binary digits representing the negative powers of two, multiplied by 2π.
The first multiplication squares the relative coordinates and the second multiplies it again with the c
factors. The shaded red regions designate bits of φx, which do not have to be computed, reducing
computational requirements: the (n− k) least significant bits (LSB), and the overflowing multiples of
2π, which do not alter the result of the periodic trigonometric functions.

These low-precision φx and φy phase values are tightly packed together in regis-
ters, and all pairwise combinations are added together efficiently to obtain the phase
φ = φx + φy in every pixel, as is detailed further in the “Implementation” section.

Appl. Sci. 2021, 11, 6235 4 of 11

2.2. LUT-Free Low-Precision Approximations to the Complex Exponential

We would like find a way to compute cosine (and sine) functions efficiently, using fixed-
point integers without the use of look-up tables (LUT). Accurately computing (co)sines
takes significant resources, and has less utility in a low-precision computation environment.
We are thus seeking approximations requiring minimal amount calculations. Since the
appearance of holograms remains invariant under scaling, we should try to minimize the
deviation from the true cosine only up to a constant scaling factor.

For the first approximation, we take a triangular signal with matching frequency
and phase to a pure cosine. This is also known in the CGH literature as “Nishitsuji’s
approximation” [19]. This approximation consists of linear segments, described by an
absolute difference operator. This can thus be computed easily, using only a difference and
a conditional sign change. Within the interval of interest [0, 2π[, we obtain the following:

cos(φ) ≈ TA(φ) ∝ |φ− π| (6)

We call this function TA the “triangular approximation”. The error is small when the
(co)sine is close to 0, given their Taylor expansion, but the deviation is quite significant
near the peaks of the triangular wave. We aim to significantly reduce that error by making
a modification. We first define the clipping function as follows:

clip(x, d) =

−d, if x < d
x, if |x| ≤ d
d, if x > d

(7)

which saturates a signal between −d and +d. This can be used to reduce the relative slope
of the approximate function near the extremes of the cosine. We use the following:

cos(φ) ≈ PA(φ) ∝ TA(φ) + clip(TA(φ), d) (8)

which we call the “piecewise approximation”. It either doubles the computed TA value,
or adds a saturated version of the signal to itself when |x| > d. The relative slope is thus
halved near the peaks and valleys of the cosine. We still need to determine the best value
for d, so that the squared error ‖cos(φ)− PA(φ)‖ is minimal (using the Euclidean norm
‖·‖). This optimum can be found easily since the error function is convex, cf. Figure 2.
The minimum is reached at d = 0.7515, where the error becomes 1.557× 10−3. This can be
contrasted with the error of the triangular approximation, which equals to 2.272× 10−2 at
optimal scaling, differing by an order of magnitude.

Figure 2. Euclidean norm of the error ‖cos(φ)− PA(φ)‖ as a function of d. The function is convex,
reaching a minimum error of 1.557× 10−3 at d = 0.7515.

The resulting functions can be viewed in Figure 3. One can see that changes in the
slopes of the smoothing of the piecewise approximation match the reference cosine much

Appl. Sci. 2021, 11, 6235 5 of 11

better, reducing the error by a factor of≈7. This allows for the calculation of hologram wave
fields with increased accuracy without sacrificing much extra calculation time. The sine
function can be computed analogously by using a π

2 phase delay.

(a) Triangular approximation (b) Piecewise approximation

Figure 3. Diagrams of the implemented LUT-free approximation functions. The shown approxima-
tions are scaled so that the squared error is minimal.

3. Implementation

This section details the GPU implementation, instructions and pseudo code. For the
reference implementation, we allocate a single GPU thread per pixel, each looping over
all points in the point cloud, numerically computing the expression (1) for every point.
We utilize the intrinsic __sincosf function for computing the phase in the exponential
function (since exp iφ = cos φ + i sin φ); this is significantly faster, but less precise, than the
conventional single precision floating-point sine and cosine functions. We attempted to
utilize a separable implementation for this floating-point version as well, but this resulted in
a net increase in calculation time: the additional memory transfers outweigh the reduction
in the amount of arithmetic operations. Therefore, a non-separated version of the PSF is
used for the reference implementation.

The fixed-point versions of the algorithm operate in two phases. In the first phase,
the separated packed phase bytes are computed for all x- and y-coordinates for all points.
Since it is separable, computing a M×N resolution hologram with a point cloud consisting
of Q points needs (M + N)Q bytes in total. When Q becomes too large, the GPU memory
may run out, so the calculations are performed in multiple point batches.

This first phase allocates one thread for every unique pixel coordinate and group of
four points. Let us consider a square hologram, where M = N; since the GPU registers
are 32-bit words, 4 bytes can be packed in a register. Therefore, every thread can compute
an 8-bit phase value for φx (and φy), packing them together for four points at a time in a
single word (Figure 4). In total, we obtain MQ

4 threads, each computing two words of 4
phase bytes each: one for φx and one for φy.

In the second phase, threads are grouped in 2D thread blocks (we used 16× 16 threads
per block), each assigned to a different pixel. The threads collectively load the relevant
phase bytes in shared memory in small batches. For example, when there are 16× 16 = 256
threads, each loading a single word (4 packed phase bytes), mapping to 16 + 16 = 32
unique coordinates, every small batch processes 4× 256/32 = 32 unique points per load.
Then, every thread accesses the relevant packed phase bytes pphase_x and pphase_y in a
short unrolled loop over all points in shared memory, cf. Figure 5.

Appl. Sci. 2021, 11, 6235 6 of 11

𝑃𝑃0

−𝛿𝛿 1 − 𝛿𝛿 2 − 𝛿𝛿 3 − 𝛿𝛿 𝑀𝑀 − 1 − 𝛿𝛿 𝑀𝑀 − 𝛿𝛿

−𝜀𝜀 1 − 𝜀𝜀 2 − 𝜀𝜀 3 − 𝜀𝜀 N − 1 − 𝜀𝜀 N − 𝜀𝜀𝑃𝑃0 ... 𝑃𝑃3
𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

𝑃𝑃4

−𝛿𝛿 1 − 𝛿𝛿 2 − 𝛿𝛿 3 − 𝛿𝛿 𝑀𝑀 − 1 − 𝛿𝛿 𝑀𝑀 − 𝛿𝛿

−𝜀𝜀 1 − 𝜀𝜀 2 − 𝜀𝜀 3 − 𝜀𝜀 N − 1 − 𝜀𝜀 N − 𝜀𝜀𝑃𝑃4 ... 𝑃𝑃7
𝑃𝑃5 𝑃𝑃6 𝑃𝑃7

𝑃𝑃4 𝑃𝑃5 𝑃𝑃6 𝑃𝑃7

𝑃𝑃8 ... 𝑃𝑃11
𝑃𝑃8

−𝛿𝛿 1 − 𝛿𝛿 2 − 𝛿𝛿 3 − 𝛿𝛿 𝑀𝑀 − 1 − 𝛿𝛿 𝑀𝑀 − 𝛿𝛿

−𝜀𝜀 1 − 𝜀𝜀 2 − 𝜀𝜀 3 − 𝜀𝜀 N − 1 − 𝜀𝜀 N − 𝜀𝜀

𝑃𝑃9 𝑃𝑃10𝑃𝑃11

𝑃𝑃8 𝑃𝑃9 𝑃𝑃10𝑃𝑃11

… … …

…

…

…

…

…

…

𝜑𝜑𝑥𝑥

𝜑𝜑𝑦𝑦

𝜑𝜑𝑥𝑥

𝜑𝜑𝑦𝑦

𝜑𝜑𝑥𝑥

𝜑𝜑𝑦𝑦

Figure 4. Memory layout of packed phase bytes for φx and φy. Every 4 point phase gets packed
together in a word, written to global GPU memory. In phase 2, the requisite combination of packed
φx and φy can be efficiently processed together, using GPU SIMD instructions.

…

…

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

𝑃𝑃 0
𝑃𝑃 1

𝑃𝑃 2
𝑃𝑃 3

𝜑𝜑𝑥𝑥
𝜑𝜑𝑦𝑦

Block id (0,0) Block id (1,0)

Thread id (0,0)

Thread id (0,1)

Thread id (1,0)

Thread id (1,1)

Thread id (0,2) Thread id (1,2)

Thread id (0,0)

Thread id (0,1)

Thread id (1,0)

Thread id (1,1)

Thread id (0,2) Thread id (1,2)

......

......

Figure 5. Simplified diagram of how hologram pixel values are computed. Every block loads
the relevant packed phase bytes into shared memory, which can be combined together by every
thread within the block depending on their thread coordinates. The resulting complex amplitude
is accumulated within a register, whose final result is written to video memory as a hologram
pixel value.

The next main instructions are as follows:

unsigned pphase = __vadd4 (pphase_x , pphase_y) ;
unsigned cosval = __vabsdi f fu4 (pphase , 0x7F7F7F7F) ;
i f constexpr (S_EXTENSION)
cosval += __vminu4 (__vmaxu4 (cosval , 0 x22222222) , 0x5E5E5E5E) ;
r e a l _ p a r t += __dp4a (cosval , packed_amplitudes) ;

The double underscore prefix indicates the use of CUDA intrinsics, which are not
standard C/C++. The unsigned are, by default, 32-bit integers. The __vadd4 SIMD,
intrinsic, performs a byte-wise addition, ignoring the overflow; this effect is desired,
as overflows correspond to 2π multiples, which do not alter the outcome of the periodic
sine and cosine functions. The triangular signal TA(φ) is computed with the byte-wise
absolute difference instruction, __vabsdiffu4 with 0x7F = 127 per byte.

If the piecewise approximation extension flag S_EXTENSION is enabled, an extra set of
instructions is executed. The “if constexpr” indicates that this is evaluated at compile

Appl. Sci. 2021, 11, 6235 7 of 11

time. The optimal value for the clipping function in PA(φ), using 8 bits of precision,
corresponds to d = 30. The byte-wise clipping happens, using the __vmin4 and __vmax4
instructions, with 64-d = 34 = 0x22 and 64+d = 94 = 0x5E. This clipped signal is added
to the original cosval to obtain a function proportional to the piecewise approximation
function. Note that the conventional increment operator += was deliberately chosen
rather than another __vadd4; by design, we are guaranteed never to encounter byte-
wise overflow here, so the faster regular increment is preferred. Finally, we used the
relatively newer intrinsic instruction __dp4a, doing a byte-wise dot product: all bytes of
the two input operators are multiplied pairwise and added together. The second operator
packed_amplitudes contains the packed amplitudes of the corresponding 4 PSFs, thereby
simultaneously computing and summing the real part of 4 PSFs to the accumulated pixel
result “real_part”.

The instructions are almost identical for the imaginary component of the signal,
except for a phase delay since sin (x) = cos (x− π

2). Thus the sine can be obtained in the
same manner by subtracting 256/4 = 64 from all packed phase bytes with overflow (or
equivalently by adding 192). The complete algorithm is summarized in Figure 6.Flowchart

Point
cloud data

Update
hologram pixel

Apply Eq.2 to all
points and pixels

Point
cloud data

Prepare subset
as point batch

More
batches?

Display

Increment
hologram pixel Display

Compute Eq. 4:
low-precision

phase components

Separable
packed phase
data 𝜑𝜑𝑥𝑥, 𝜑𝜑𝑥𝑥

Pairwise packed
phase addition 𝜑𝜑

Compute
sawtooth or

piecewise approx.

Need
imaginary

part?

Y

N
Y

N

subtract 𝜋𝜋
2

Figure 6. Algorithm flowcharts. (a) Reference floating-point point-cloud CGH algorithm. (b) Pro-
posed fixed-point algorithm pipeline, illustrating the batch subdivision and the different calcula-
tion phases.

4. Experiments

This section consists of two sets of experiments: (1) generating holograms from images,
so as to have an established baseline for the visual quality, and (2) holograms rendered
from 3D point clouds to measure the differences in calculation speed. The algorithms were
run on a machine with an AMD Ryzen Threadripper 3960X processor, 64 GB of RAM and
a NVIDIA Geforce RTX 3080 GPU running a Windows 10 OS. They were implemented
in C++17 with CUDA 11.2, enabling CUDA compute capability of 8.6 and using 32-bit
floating-point precision for the reference implementation.

4.1. Visual Quality Experiments

We generated holograms with a resolution of 2048 × 2048 pixels, a pixel pitch of
p = 4 µm and a wavelength of λ = 532 nm. The input data are a grayscale version of
the standard “Peppers” test image, consisting of 512 × 512 pixels, decomposed into a
point cloud (one point for every pixel). The virtual image plane is centered at the origin,
displaced at a depth of 10 cm from the hologram plane.

The image quality is evaluated by first backpropagating the hologram with the angular
spectrum method (ASM) [23] to the image plane, taking the magnitude and scaling and

Appl. Sci. 2021, 11, 6235 8 of 11

quantizing it to 8 bits, and then evaluating the peak signal-to-noise ratio (PSNR), defined
for 8-bit images as follows:

PSNR(I, Î) := 10 log10

(
2552

‖I − Î‖2

)
(9)

where ‖·‖ is the Euclidean norm, I is the reference image and Î the approximation. The
resulting images are shown on Figure 7. Comparing the quality of the reference floating-
point algorithm to the triangular and piecewise fixed-point integer approximations, we
obtain PSNR values of 34.58 dB and 51.19 dB, respectively.

(a) Reference algorithm (b) Triangular approximation (c) Piecewise approximation

Figure 7. Reconstruction of the “peppers” image holograms, using ASM backpropagation and
showing the hologram magnitude, computed using 3 different versions of the point-wise CGH
algorithm implementations covered in this paper.

Please note that generally speaking, convolutional methods, such as discrete Fresnel
diffraction or the ASM, should be used when creating holograms of planar images, which
would be far more computationally efficient. However, these cannot directly calculate
holograms of arbitrary 3D point clouds. Next, we investigate the impact of our proposed
algorithm on 3D point cloud CGH.

4.2. Calculation Speed Experiments on a 3D Object

The 3D point cloud comes from a bi-plane model, consisting of 105 points, each with
their associated amplitudes (cf. Figure 8). The plane is centered laterally to match the
hologram origin, and displaced to be 20 cm from the hologram plane. The dimensions of
the plane point cloud along the main axes are 1.59× 0.39× 1.08 cm.

Figure 8. False color diagram of the “bi-plane” point cloud model, with its absolute coordinates.
The intensity of the point color correspond to the actual amplitudes aj of their PSFs; the hue matches
their relative z-position to improve visual interpretation.

Appl. Sci. 2021, 11, 6235 9 of 11

The measured calculation times were averaged over 10 runs. The reference floating-
point algorithm took 3330 ms to compute, the triangular approximation version took
1068 ms and the piecewise approximation version took 2594 ms. The reconstructions are
shown on Figure 9. That means that the fixed-point integer versions are about 3.1× and
1.3× times faster, respectively.

(a) Reference (z = 0.195 m) (b) Triangular (z = 0.195 m) (c) Piecewise (z = 0.195 m)

(d) Reference (z = 0.200 m) (e) Triangular (z = 0.200 m) (f) Piecewise (z = 0.200 m)

(g) Reference (z = 0.205 m) (h) Triangular (z = 0.205 m) (i) Piecewise (z = 0.205 m)

Figure 9. Various reconstructions of the “bi-plane” hologram, for the three algorithm versions,
reconstructed at three different depths. The columns stand for the reference (a,d,g), triangular
approximation (b,e,h) and piecewise approximation (c,f,i). The rows show the front (a–c), middle
(d–f) and back (g–i) of the bi-plane in focus, respectively.

All results are summarized in Table 1.

Table 1. Summary of the results for the computed holograms comparing the different proposed algo-
rithms. The best results in each column are indicated with boldface.

Algorithm PSNR (dB) Calculation Time (ms) Speedup Factor

Reference method / 3330 1.0
Triangular approximation 34.58 1068 3.1
Piecewise approximation 51.19 2594 1.3

5. Discussion

Fixed-point integer approximation algorithms can bring significant speed improve-
ments to CGH applications. Because they are primarily used for visualization and because
in holograms, the information is generally distributed over the entire hologram plane, there
is much more tolerance for errors than for conventional natural image and video rendering,
which can be leveraged for speed.

Many candidate CGH algorithms exist with potential for acceleration, but many tend
to be rather complex, requiring several different transforms and operations, such as multi-
ple fast Fourier transforms, non-uniform resampling, LUT use and non-linear occlusion
operations. We opted to accelerate the point-cloud CGH algorithm, due to its simplicity,
low memory requirements and high parallelizability, making it highly compatible for
(simpler) FPGAs and ASICs.

Appl. Sci. 2021, 11, 6235 10 of 11

The advantage of the CGH method’s simplicity also has a drawback in its limited
supported shading effects. Extensions of the method addressing the limitation bring
increased complexity in the algorithms, making the use of specialized hardware systems
more difficult. The main disadvantage of the proposed method is the quality loss w.r.t.
reference point-cloud method, though this can be controlled by selecting the appropriate
approximation and bit-width depending on the CGH application’s needs. Moreover, it has
to be noted that the phase packing phase takes a non-negligible time on a GPU, and SIMD
instructions are noticeably slower than the conventional instructions in the current GPU
models. The obtained relative speed ups may thus be increased further in the context of
FPGA or ASIC systems, where there is more fine-grained control on the bit width of various
variables, as well as broader possibilities for customized instructions and the reduction of
power requirements.

In future work, we aim to implement optimized implementations on FPGA or ASIC
systems, as well as refine the algorithm by supporting more visual effects and further
reducing calculation requirements.

6. Conclusions

We presented a novel algorithm for efficiently computing point-cloud CGH, using
low-precision fixed-point integers and LUT-free piecewise approximations to the sine and
cosine functions, suitable for highly parallel computing systems. We report significant
gains in calculation speed at high visual quality.

Author Contributions: Conceptualization, D.B.; methodology, D.B.; software, D.B.; validation, D.B.
and P.S.; formal analysis, D.B.; investigation, D.B.; resources, D.B..; data curation, D.B. and P.S.;
writing—original draft preparation, D.B.; writing—review and editing, P.S.; visualization, D.B.;
supervision, D.B. and P.S.; project administration, D.B. and P.S.; funding acquisition, D.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Fonds Wetenschappelijk Onderzoek (12ZQ220N, VS07820N).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting the findings of this study are available upon
reasonable request from the corresponding author.

Acknowledgments: The Biplane point cloud model is courtesy of ScanLAB Projects.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

3D Three-dimensional
ASIC Application-specific integrated circuit
ASM Angular spectrum method
CGH Computer-generated holography
CUDA Compute Unified Device Architecture
FPGA Field-programmable gate array
GPU Graphics processing unit
LSB Least significant bit
LUT Look-up table
SIMD Single instruction, multiple data
PSNR Peak signal-to-noise ratio

References
1. Blinder, D.; Ahar, A.; Bettens, S.; Birnbaum, T.; Symeonidou, A.; Ottevaere, H.; Schretter, C.; Schelkens, P. Signal processing

challenges for digital holographic video display systems. Signal Process. Image Commun. 2019, 70, 114–130. [CrossRef]

http://doi.org/10.1016/j.image.2018.09.014

Appl. Sci. 2021, 11, 6235 11 of 11

2. Pan, Y.; Liu, J.; Li, X.; Wang, Y. A Review of Dynamic Holographic Three-Dimensional Display: Algorithms, Devices, and Systems.
IEEE Trans. Ind. Inform. 2016, 12, 1599–1610. [CrossRef]

3. Sahin, E.; Stoykova, E.; Mäkinen, J.; Gotchev, A. Computer-Generated Holograms for 3D Imaging: A Survey. ACM Comput. Surv.
2020, 53. [CrossRef]

4. Kim, H.; Hahn, J.; Lee, B. Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital
holography. Appl. Opt. 2008, 47, D117–D127. [CrossRef]

5. Matsushima, K.; Nakahara, S. Extremely high-definition full-parallax computer-generated hologram created by the polygon-based
method. Appl. Opt. 2009, 48, H54–H63. [CrossRef]

6. Zhang, Y.P.; Wang, F.; Poon, T.C.; Fan, S.; Xu, W. Fast generation of full analytical polygon-based computer-generated holograms.
Opt. Express 2018, 26, 19206–19224. [CrossRef]

7. Gilles, A.; Gioia, P.; Cozot, R.; Morin, L. Hybrid approach for fast occlusion processing in computer-generated hologram
calculation. Appl. Opt. 2016, 55, 5459–5470. [CrossRef]

8. Zhang, H.; Cao, L.; Jin, G. Computer-generated hologram with occlusion effect using layer-based processing. Appl. Opt. 2017,
56, F138–F143. [CrossRef]

9. Symeonidou, A.; Blinder, D.; Schelkens, P. Colour computer-generated holography for point clouds utilizing the Phong
illumination model. Opt. Express 2018, 26, 10282–10298. [CrossRef]

10. Yamaguchi, M.; Hoshino, H.; Honda, T.; Ohyama, N. Phase-added stereogram: Calculation of hologram using computer graphics
technique. Proc. SPIE 1993, 1914, 25–31. [CrossRef]

11. Igarashi, S.; Nakamura, T.; Matsushima, K.; Yamaguchi, M. Efficient tiled calculation of over-10-gigapixel holograms using
ray-wavefront conversion. Opt. Express 2018, 26, 10773–10786. [CrossRef] [PubMed]

12. Shimobaba, T.; Masuda, N.; Ito, T. Simple and fast calculation algorithm for computer-generated hologram with wavefront
recording plane. Opt. Lett. 2009, 34, 3133–3135. [CrossRef] [PubMed]

13. Shimobaba, T.; Ito, T. Fast generation of computer-generated holograms using wavelet shrinkage. Opt. Express 2017, 25, 77–87.
[CrossRef] [PubMed]

14. Blinder, D.; Schelkens, P. Accelerated computer generated holography using sparse bases in the STFT domain. Opt. Express 2018,
26, 1461–1473. [CrossRef] [PubMed]

15. Shi, L.; Li, B.; Kim, C.; Kellnhofer, P.; Matusik, W. Towards real-time photorealistic 3D holography with deep neural networks.
Nature 2021, 591, 234–239. [CrossRef]

16. Chen, R.H.Y.; Wilkinson, T.D. Computer generated hologram from point cloud using graphics processor. Appl. Opt. 2009,
48, 6841–6850. [CrossRef] [PubMed]

17. Tsang, P.W.M.; Poon, T.C.; Wu, Y.M. Review of fast methods for point-based computer-generated holography (Invited). Photonics
Res. 2018, 6, 837–846. [CrossRef]

18. Seo, Y.H.; Lee, Y.H.; Kim, D.W. ASIC chipset design to generate block-based complex holographic video. Appl. Opt. 2017,
56, D52–D59. [CrossRef] [PubMed]

19. Nishitsuji, T.; Yamamoto, Y.; Sugie, T.; Akamatsu, T.; Hirayama, R.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T. Special-
purpose computer HORN-8 for phase-type electro-holography. Opt. Express 2018, 26, 26722–26733. [CrossRef]

20. Kim, H.; Kim, Y.; Ji, H.; Park, H.; An, J.; Song, H.; Kim, Y.T.; Lee, H.; Kim, K. A Single-Chip FPGA Holographic Video Processor.
IEEE Trans. Ind. Electron. 2019, 66, 2066–2073. [CrossRef]

21. An, J.; Won, K.; Kim, Y.; Hong, J.Y.; Kim, H.; Kim, Y.; Song, H.; Choi, C.; Kim, Y.; Seo, J.; et al. Slim-panel holographic video
display. Nat. Commun. 2020, 11, 5568. [CrossRef]

22. Masuda, N.; Ito, T.; Tanaka, T.; Shiraki, A.; Sugie, T. Computer generated holography using a graphics processing unit. Opt.
Express 2006, 14, 603–608. [CrossRef]

23. Goodman, J.W. Introduction to Fourier Optics; W. H. Freeman and Company: New York, NY, USA, 2017.

http://dx.doi.org/10.1109/TII.2015.2496304
http://dx.doi.org/10.1145/3378444
http://dx.doi.org/10.1364/AO.47.00D117
http://dx.doi.org/10.1364/AO.48.000H54
http://dx.doi.org/10.1364/OE.26.019206
http://dx.doi.org/10.1364/AO.55.005459
http://dx.doi.org/10.1364/AO.56.00F138
http://dx.doi.org/10.1364/OE.26.010282
http://dx.doi.org/10.1117/12.155027
http://dx.doi.org/10.1364/OE.26.010773
http://www.ncbi.nlm.nih.gov/pubmed/29716009
http://dx.doi.org/10.1364/OL.34.003133
http://www.ncbi.nlm.nih.gov/pubmed/19838250
http://dx.doi.org/10.1364/OE.25.000077
http://www.ncbi.nlm.nih.gov/pubmed/28085812
http://dx.doi.org/10.1364/OE.26.001461
http://www.ncbi.nlm.nih.gov/pubmed/29402020
http://dx.doi.org/10.1038/s41586-020-03152-0
http://dx.doi.org/10.1364/AO.48.006841
http://www.ncbi.nlm.nih.gov/pubmed/20029585
http://dx.doi.org/10.1364/PRJ.6.000837
http://dx.doi.org/10.1364/AO.56.000D52
http://www.ncbi.nlm.nih.gov/pubmed/28375388
http://dx.doi.org/10.1364/OE.26.026722
http://dx.doi.org/10.1109/TIE.2018.2835424
http://dx.doi.org/10.1038/s41467-020-19298-4
http://dx.doi.org/10.1364/OPEX.14.000603

	Introduction
	Methodology
	Packed Separable PSF Phases
	LUT-Free Low-Precision Approximations to the Complex Exponential

	Implementation
	Experiments
	Visual Quality Experiments
	Calculation Speed Experiments on a 3D Object

	Discussion
	Conclusions
	References

