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Featured Application: The proposed classification models could be adapted to develop a recircu-
lating aquaculture system with continuous variable-flow control technology.

Abstract: A recirculating aquaculture system (RAS) can reduce water and land requirements for
intensive aquaculture production. However, a traditional RAS uses a fixed circulation flow rate for
water treatment. In general, the water in an RAS is highly turbid only when the animals are fed and
when they excrete. Therefore, RAS water quality regulation technology based on process control
is proposed in this paper. The intelligent variable-flow RAS was designed based on the circulating
pump-drum filter linkage working model. Machine learning methods were introduced to develop the
intelligent regulation model to maintain a clean and stable water environment. Results showed that
the long short-term memory network performed with the highest accuracy (training set 100%, test
set 96.84%) and F1-score (training 100%, test 93.83%) among artificial neural networks. Optimization
methods including grid search, cuckoo search, linear squares, and gene algorithm were proposed to
improve the classification ability of support vector machine models. Results showed that all support
vector machine models passed cross-validation and could meet accuracy standards. In summary,
the gene algorithm support vector machine model (accuracy: training 100%, test 98.95%; F1-score:
training 100%, test 99.17%) is suitable as an optimal variable-flow regulation model for an intelligent
variable-flow RAS.

Keywords: recirculating aquaculture system; variable-flow regulation model; circulating pump-drum
filter linkage working technique; machine learning methods; gene algorithm support vector machine

1. Introduction

With global economic growth, consumer demand for seafood products is also increas-
ing. However, fishery productivity is facing a massive challenge of declining resources due
to environmental pollution and overfishing [1]. The recirculating aquaculture mode is an
effective solution to maintain the supply of seafood products and support the modern and
sustainable development of the aquaculture industry while decreasing ecological impact [2].
A recirculating aquaculture system (RAS) can offer a high degree of environmental control
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and uses various technologies to carry out physical filtration, biofiltration, and disinfection
for water recycling [3].

The core of an RAS is the water treatment system, which mainly includes micro-screen
drum filters, biofilters, oxidation devices, and disinfection devices [4]. Suspended solids
removal is a critical part of water treatment in the RAS. Suspended solid particles are
composed mainly of feces, residual feed, and bacterial flocs [5–7]. Feed is the main source
of suspended solids in the system, and studies have shown that 25% of feed is converted
into suspended solids in an RAS [8]. Suspended solid particles have been proven to be the
leading cause of high turbidity in aquaculture water, which can cause stress reactions and
endanger the health of aquatic animals [9]. As residence time increases, the suspended
solids block the breeding facilities and increase chemical oxygen demand. Organic solid
waste can be mineralized and decomposed to increase ammonia and nitrite concentrations
and increase the load on the nitrification function of the biofilter [10]. Suspended solids
removal devices in an RAS can be roughly classified according to the particle size of the
suspended matter: sedimentation separation devices, micro-mesh filtration devices, foam
fractionators, and ozone generators. The micro-screen drum filter, which is a physical filter
device widely used in RASs, has the characteristics of strong adaptability, minimal floor
space, and a high level of automation [11]. In a drum filter, the screen is fixed on a rotating
drum frame on the horizontal axis and partially submerged in water; water flows into
the drum and radially through the straining cloth, which captures fine particles with a
suitable mesh size [12]. The micro-screen is the central working part of the drum filter,
and the mesh number can directly affect filtration performance. Gravdal Arve et al. [13]
reported that the removal rate of particles larger than 60 µm by the drum filter could reach
more than 68%. Su et al. [14] found that the removal rate rapidly increased when the mesh
number was increased from 150 to 200. The effect was apparent when the screen mesh was
200; the TSS removal rate reached 54.90%. Generally, 200 mesh is the principal mesh size
used, as it is the one with the most outstanding technical and economic advantages [11].

A high-power centrifugal pump and an oversized drum filter are generally used
to ensure sufficient circulation flow and filtration ability in an RAS [15]. The water in a
traditional fixed-flow RAS is highly turbid when the breeding animals are fed and when
they defecate. However, at other times, the water is relatively clean and does not require
high-power pumps to recirculate it, resulting in wasting resources. Compared with the
traditional fixed-flow RAS, the variable-flow RAS can increase the total water circulation to
accelerate the water treatment process when organic particles increase, and the ammonia
and nitrite then can be eliminated from the source [16]. In addition, the variable-flow
RAS consumes a low amount of electricity when the water is relatively clean. However,
manual operation is often used to adjust the circulation pump frequency to determine
the appropriate total water circulation in the variable-flow RAS. The manual operation
experience may cause the water treatment efficiency to not match the actual situation,
resulting in insufficient water processing efficiency or waste of electricity. Hence, an
intelligent variable-flow RAS for culturing Litopenaeus vannamei was developed in the
present study. Machine learning, which has emerged with Big Data technologies and
created new opportunities in multidisciplinary aquaculture, was used to develop the
intelligent variable-flow model. Currently, machine learning is applied in related fields,
including environmental assessment, water management, animal welfare, disease detection,
feeding control, and species recognition [17–23]. More data-intensive machine learning
approaches have been reported, but model- and technology-intensive approaches have
been infrequent [24,25]. For industrial control in recirculating aquaculture, in particular,
there is an urgent need to apply machine learning models to improve instrument efficiency
and promote the development of intelligent equipment applications.

The primary purpose of the present study was to develop the circulating pump-
drum filter linkage working technique using machine learning methods. Water quality
indicators and the backwash frequency of the drum filter were used as primary indicators



Appl. Sci. 2021, 11, 6546 3 of 15

in developing a variable-flow model. An intelligent variable-flow RAS can rapidly remove
suspended solids and reduce ammonia and nitrite generation from the source.

2. Materials and Methods
2.1. Experimental RAS

The experimental RAS used the recirculating aquaculture system of Dalian Huixin
Titanium Equipment Development Co., Ltd. (Dalian city, China) for breeding L. vannamei.
Figure 1a shows the schematic of the experimental RAS control system. The control
system collected the water quality indicators by connecting them with the sensors. Water
quality changes can be monitored in real time, and the centrifugal pump was controlled by
variable-frequency operation using a flow regulation model based on machine learning.
The variable-flow circulation caused different trends in the drum filter backwash frequency
during the unit period (0.5 h). The water quality indicators were used to train the regulation
strategy model for variable-flow circulation. The types of water treatment equipment
included biofilters, a micro-screen drum filter, an ultraviolet generator, ozone generators,
foam fractionators, and oxygenation cones. Figure 1b shows the actual indoor workshop.
The RAS contained 10 circular FRP tanks with a diameter of 1.8 m and a depth of 1.4 m,
with a total water volume of 35 m3. Shrimp were fed five times a day during the culture
period with a 36% protein commercial feed (Dale 2# shrimp commercial feeds, Dale, Inc.,
Yantai, China). During the early stage of shrimp culture, the amount of feed accounted
for 5–8% of the total biomass of shrimp. The amount of feed was reduced over time and
accounted for 3.7–5% of the total biomass by the end of the culture process. The whole
culture process lasted for 90 days, with a culture density of 800 individuals/m3 and a final
yield of 525 kg of shrimp.
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2.2. Variable-Flow Experiment Design

Turbidity (NTU) is mainly influenced by water flow fluctuations and can only reflect
the instantaneous transparency of the water body. This study proposes a technique for
detecting turbidity in an RAS based on a micro-screen drum filter. The backwash frequency
of the drum filter within a unit period (0.5 h) was used to represent overall RAS turbidity,
and the variable-flow regulation model was constructed using the backwash frequency
and various water quality data. The variable-flow regulation model can determine the
operating frequency of the centrifugal pump for the next period using real-time data
from the current period. The intelligent variable-flow RAS technology is implemented
by controlling the RAS circulation rate by changing the circulating pump flow rate. The
primary purpose of the variable-flow RAS is to implement a linkage control technology to
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model the relationship between the micro-screen drum filter backwash frequency and the
circulation flow rate.

The total flow rate of the circulating pump was set to three levels: 55, 65, and 75 m3/h.
The circulation rate was operated with a cycle of 24 h. A cycle started with a circulation rate
of 55 m3/h and was adjusted to 65 m3/h after an interval of 24 h and then to 75 m3/h after
the same interval (24 h). The drum filter controller collected backwash data every 0.5 h.
Turbidity sensors were placed at the main return pipeline to monitor and record overall
RAS water turbidity. Water quality indicators, including water temperature (T), dissolved
oxygen (DO), pH, and salinity, were measured by sensors in real time using YSI ProPlus
portable sensors. Total suspended solids (TSS), total ammonia nitrogen (TAN), and nitrite
nitrogen (NO2-N) were measured daily with a Palintest 7500 water quality analyzer.

The circulating pump was set to three circulating levels: slow (55 m3/h), medium
(65 m3/h), and fast (75 m3/h). In the variable-flow RAS, the circulation rate was maintained
at a medium level, and the control system read water quality indicators and backwash
times from sensors at every unit period. The circulation rate for the next period could be
adjusted to slow or fast levels. The circulation adjustment process could be operated in
two ways: upshift and downshift. In the drum filter controller program, the backwash
frequency was recorded for 48 periods in a day, using 0.5 h as a period. The circulating
pump was utilized to determine the upshift/downshift for the next period by reading the
current water quality sensors, current backwash frequency, and current circulating level.
A water gauge controlled the drum filter backwash frequency; the backwash frequency
reflects water turbidity in the RAS. Downshifts (−1) and upshifts (+1) of circulating pump
frequency were used as indicators of circulation levels. The water quality indicators,
current circulating pump frequency, and the drum filter backwash frequency were chosen
as independent variables, and the downshifts (−1)/upshifts (+1) data were considered
as the dependent variable. As the whole culture process lasted for 90 days in the RAS,
the total circulation rate was set to 55 m3/h for the first 30 days, 65 m3/h for the middle
30 days, and 75 m3/h for the last 30 days. Establishing a variable-flow circulation strategy
was the core task of the experiment, and therefore the circulation rate regulation model was
constructed using the optimal classification model based on machine learning to control
the variable-flow circulation rate in the RAS.

As shown in Figure 2, the drum filter controller was used to collect the backwash
frequency, circulation flow rate, and water quality data that were then uploaded to the
industrial PC through the RS485 protocol. The embedded system was connected to the in-
dustrial computer. The dataset was processed with the optimal machine learning model in
the industrial computer to regulate pump frequency for the next period and feed it back to
the embedded system, so that the RAS circulation flow rate could be regulated intelligently.

2.3. Machine Learning Methods
2.3.1. Artificial Neural Networks (ANNs)

ANNs are statistical learning algorithms that possess prediction and approximation
abilities given sufficient and considerable inputs [26]. ANNs are derived from the biological
neural networks in the human brain. Interconnected artificial neural networks are usually
composed of neurons that can deal with the inputs and follow various situations. ANNs
are suitable not only for machine learning but also pattern recognition. Therefore, ANNs
have become a popular way of indicating a function by observation in the case of complex
data. Figure 3a shows a typical ANN structure, including input, hidden, and output layers.

In this study, several ANN methods, including the backpropagation neural network
(BPNN), extreme learning machine (ELM), probabilistic neural network (PNN), and long
short-term memory (LSTM) neural network, were used to develop variable-flow models.
The BPNN and ELM are feedforward neural networks with no cycles or loops. Information
propagates in one direction, forward from the input layer, through the hidden layer, and
then to the output layer, in a feedforward neural network.
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The activation function can introduce a nonlinear factor to the neuron so that the
ANN can approximate any nonlinear function. In the present study, a sigmoid function
was adopted in the BPNN model and ELM model. For the sigmoid activation function, it
holds that

f (z) =
1

1 + exp(−z)
, (1)

where the output of the sigmoid function is between 0 and 1. For the binary classification
task, the output of the sigmoid is divided into a positive class/negative class when the
output satisfies a certain probability condition.

Figure 3b shows the schematic of the LSTM network. The LSTM network is a special
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RNN focusing on long sequences of data [27]. A standard LSTM unit comprises a cell, an
input gate, an output gate, and a forget gate to solve the long-term dependency problem.
Long-term memory information is stored during three steps (forgetting, remembering, and
outputting) in an LSTM. In the present study, a rectified linear unit (ReLU) function was
applied in the LSTM model. The ReLU function is described as

f (x) = max(0, x), (2)

which means that

ReLU(x) =
{

x, x > 0
0, x ≤ 0

. (3)

The convergence rate of the stochastic gradient descent obtained by the ReLU function
is much faster than the tanh/sigmoid function. However, the learning rate should be set
appropriately to prevent neurons in the network from losing their activation ability. In
this study, the parameters of the LSTM training process were set as follows: sequence
input layer = 9, initial learning rate = 0.01, learning rate drop factor = 0.1, batch size = 128,
number of training epochs = 200, hidden layer = 1 (with 32 hidden units). Adaptive
moment estimation (Adam) was chosen as the optimization method. The fully connected
layer was set as 2 for the binary classification task.

Figure 3c shows the architecture of a typical PNN, which was first proposed by
Dr. D.F. Specht [28]. As a branch of a radial basis network, PNN has the advantages of
a simple learning process and fast training time. Therefore, PNN models can be well
implemented in hardware since the neuron number in each layer is fixed. Generally, a
PNN network contains four layers: input layer, pattern layer, summation layer, and output
layer. The input layer simply distributes the input to the neurons in the pattern layer. The
pattern layer neuron may compute its output by Gaussian function when receiving x from
the input layer. It holds that

yg(x; σ) =
1

lg(2π)n/2σn

lg

∑
i=1

exp(−
n

∑
j=1

(xij
(g) − xj)

2

2σ2 ), (4)

where lg denotes the total number of samples, n is the input feature, sigma represents the
smoothing parameter, and xij represents the j-th data of the i-th neuron of the class g. The
summation layer connects the pattern layer units of each class, and then the output layer
is responsible for outputting the category with the highest score in the summation layer.
K-fold cross-validation is useful for preventing models with small datasets from overfitting
but is not used too frequently in deep learning. The dataset is equally divided into k parts.
Every time a unique fold is used as a validation subset, the remaining pattern examples
train the ANN. In this study, we introduced 4-fold cross-validation to evaluate the machine
learning models. The evaluation indicators were all calculated by averaging the 4-fold
cross-validation results.

2.3.2. Support Vector Machine (SVM)

An SVM has excellent generalization ability between model complexity and learning
ability when dealing with limited sample information [29]. In SVM applications, choosing
the appropriate kernel function and suitable parameters is crucial for prediction accuracy.
As for the linear separable binary classification, finding the optimal hyperplane that divides
all samples with maximum margin is the principal function of an SVM. For linear problems,
the optimal classification hyperplane in separating two classes of training vector sets D is

D =
{(

x1, y1
)

, . . . ,
(

xl , yl
)}

, x ∈ Rn, y ∈ (−1, 1). (5)
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The plane was assumed as

< w, x >+ b = 0, (6)

When the optimal classification surface is generated, the vectors are classified without
error, and when redundancy occurs, a typical hyperplane is assumed where w and b
are constrained:

mini

∣∣∣< w, xi >+ b
∣∣∣ = 1. (7)

The classification hyperplane in the regular form must satisfy the following constraints:

yi
[
< w, xi >+ b

]
≥ 1, i = 1, . . . , l. (8)

The coordinate of the point x in the hyperplane at a distance d(w, b; x) is

d(w, b; x) =

∣∣< w, xi >+ b
∣∣

||w|| , (9)

The final hyperplane that can satisfy the separated samples is the hyperplane that
minimizes the data:

Φ(w) =
1
2
||w||2. (10)

For nonlinear classification, the idea of SVM is to map the samples to a high-dimensional
space, where the nonlinear problem is transformed into a linear solution using a kernel
function, at which point the weight w is expressed as

w =
l

∑
i=1

αiyiΦ(xi). (11)

Introducing the relaxation variable ξ(ξ ≥ 0) describing the function interval, the
optimization equation under the kernel approach is expressed as

minα + C
l

∑
i=1

ξ. (12)

The model is described as

yl

(
l

∑
j=1

αjyjK
(
xj, yi

)
+ b

)
≥ 1− ξi, i = 1, . . . , l

α ≥ αj, j = 1, . . . , l

α ≥ −αj, j = 1, . . . , l

α, b ∈ R, ξi ≥ 0, i = 1, . . . , l

. (13)

In the present study, the SVM model was adopted to control the inverter frequency to
improve circulating pump operating efficiency under different water quality conditions.
The SVM is a kind of machine learning algorithm with a high generalization ability to
classify and predict small samples. As upshifting and downshifting of the circulating pump
is a binary problem, water quality indicators as variables can provide good generalization
ability for the model. Support vector classification (SVC) can be used as the core algorithm
for developing drum filter-circulating pump linkage technology. However, there is no inter-
national standard for selecting optimal parameters, and the parameter selection principles
are based on dataset performance and the construction of a more reliable solution through
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cross-validation methods [30,31]. Here, we used the Gaussian kernel function in resolving
the nonlinear support vector classification task:

K(x, z) = exp

(
−||x− z||2

2σ2

)
, (14)

For the SVM model, the penalty parameter C and RBF kernel parameter g need to be
decided to improve the classification accuracy. In the present study, several optimizing
algorithms, including grid search (GS), least squares method (LS), genetic algorithm (GA),
and cuckoo search (CS) algorithm, were applied to improve the classification performance
of the SVM model. The parameters of GA were set as follows: max generation = 300, popu-
lation size = 50, generation gap = 0.9, range of parameter c = (0, 100), range of parameter
g = (0, 1000). For the CS algorithm, the parameters were set as follows: iteration = 300,
number of nests = 20, probability = 0.25. The best parameters of GS and LS methods were ob-
tained through the traversal method; the ranges of c and g were set as (0, 100) and (0, 1000),
respectively. K-fold cross-validation was utilized in the SVM models to prevent overfitting,
and the evaluation indicators were calculated using averaging. The optimal SVM model
can be determined by comparing the evaluation indicators of classification results from
different algorithms.

3. Results
3.1. Data Processing for Variable-Flow Regulation

Ranges of the water quality data and backwash frequency from the measurements
at three total circulation rates in RAS are shown in Table 1. The variable-flow regulation
was decided by the frequency of the circulating pump. The upshifting and downshifting of
the circulating pump inverter as two indicators of the classifier were labeled as 1 (upshift)
and −1 (downshift) in the dataset. In order to develop the variable-flow regulation mod-
els based on the machine learning methods, water quality indicators, current circulation
flow rate, and current backwash frequency were used as input variables, and regulat-
ing data (upshift/downshift) for the next period (0.5 h) were used as output variables.
Upshift/downshift data were labeled by manual marking. The marking principal was
decided from the variable-flow experiments under three circulation rates in RAS. The
binary classification models can be applied for variable-flow regulation strategy, and the
current data for water quality indicators and backwash frequency can be used to determine
the total circulation rates for the next period through the classification models.

Table 1. Ranges of water quality indicators at three total circulation rate levels.

Indicator 55 m3/h 65 m3/h 75 m3/h

Temperature (◦C) 27.30~27.70 27.40~27.70 27.40~27.80
pH 6.90~7.50 6.91~7.50 6.91~7.49

DO (mg/L) 7.00~8.95 7.00~8.92 7.01~8.97
Salinity (h) 30.50~30.90 30.50~30.90 30.50~30.90
TAN (mg/L) 0.18~2.68 0.20~1.36 0.19~1.13

Nitrite nitrogen
(mg/L) 0.06~1.91 0.07~0.81 0.05~0.72

TSS (mg/L) 11.60~33.54 12.06~42.40 8.85~26.25
Turbidity (NTU) 3.52~8.98 3.63~13.68 2.83~8.87

Backwash frequency
(Times per 0.5 h) 1~9 4~18 3~22

A total of 375 datasets were collected in the experiment, of which 280 were used
as the training set and 95 as the test set. The training data were normalized after data
pre-processing. The first step in developing the machine learning models was to simplify
the explanatory variables by principal component analysis (PCA). PCA can reduce the com-
plexity of the dataset and reveal hidden structures. The simplified principal components
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can be used as valid indicators to develop models. Figure 4 illustrates that the simplified
variables reduced the original dataset from nine dimensions (water quality indicators) to
three dimensions and could reflect 99% of the information in the original independent
variables. However, the key components extracted from the original data were compressed
and mapped to another space, and the simplified variables were not directly related to the
original data [32]. Hence, in the present study, PCA successfully provided the optimal re-
duced representation for the data. The new dataset could then be used to develop machine
learning models to reduce the complexity of the computation process.
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3.2. Intelligent Variable-Flow Models
3.2.1. Results of the ANN Models

ANN classification models, including GA-BP, ELM, PNN, and LSTM, were used to
adjust the circulating pump’s frequency. The upshifting operation of circulating pump
frequency was labeled as 1, and downshifting operation was labeled as −1. The classifica-
tion process was regarded as a binary classification problem. The classification accuracy of
both training set and test set data was calculated. For the BPNN model, the GA algorithm
was applied to optimize the model performance. Models were tested by cross-validation
to prevent the overfitting problem. ANN models were implemented by programming in
Python 3.8.5 [33]. For the BPNN model, the maximum epoch was set to 1000 iterations, and
the learning rate was set to 0.01 during the training process. The GA method optimized the
BPNN model with the lowest error rate (2.59%) at 25 generations. The GA-BP model had
the best validation performance (0.12) at epoch 142. For the LSTM model training process,
loss and accuracy gradually converged after 350 iterations. The accuracy of the training set
reached 100% when the loss was below 0.05.

Table 2 presents the evaluations of the ANN classification models. Results showed that
the training accuracy of all the ANN models was beyond 90%. PNN and LSTM achieved
the most accurate classification (100%). For the test set, the LSTM model had a 96.84%
accuracy rate; however, the accuracy rates of other models were less than 90%. Thus, the
optimal model was identified as the LSTM model, with the highest accuracy for both the
training set (100%) and test set (96.84%) among the ANN models.

3.2.2. Results of the SVM Models

The SVM models were developed in Python 3.8.5. As classification accuracy is di-
rectly related to the optimal parameters of the SVM model, we used several optimizing
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methods to determine penalty parameter c and the kernel parameter g in the present study.
Table 3 shows the optimizing methods for SVM models. The optimized parameters were
determined by the grid search, least squares, cuckoo search, and gene algorithm.

Table 2. Classification accuracy of training sets and test sets from ANN models.

ANNs Training Accuracy Test Accuracy

GA-BP 92.14% 86.32%
ELM 95.00% 89.47%
PNN 100.00% 71.58%
LSTM 100.00% 96.84%

Table 3. Classification accuracy of training sets and test sets from SVM models.

Optimizations Training
Accuracy Test Accuracy Best Gamma Best c

Grid Search 100.00% 97.89% 0.0039 48.50
Least Square 94.29% 96.84% 250.00 20.00

Cuckoo Search 100.00% 97.89% 0.56 25.51
Genetic Algorithm 100.00% 98.95% 0.33 66.43

As Table 3 shows, the accuracy rates of classification results of the SVM models
were maintained at relatively high levels. The least squares method had 94.29% accuracy,
and other methods all had 100% accuracy rates for the training set. The test set from
the gene algorithm optimized support vector machine (GA-SVM) model had one set of
data classified with the wrong label among 95 groups (accuracy 98.95%). The grid search
optimized support vector machine (GS-SVM) and the cuckoo search optimized support
vector machine (CS-SVM) both had two error sets (97.89%). For the least squares support
vector machine (LS-SVM), the test set results exhibited lower accuracy (96.84%) than other
methods. Thus, the GA-SVM was identified as the optimal SVM classification model
through comprehensive comparison. Table 3 shows that the four searching algorithms
optimized the parameters (penalty c and kernel radius g). Although the accuracy could
be maintained at a high level, the ranges of the optimized parameters of the SVM models
were quite different. Therefore, it was necessary to further select the SVM model through
evaluation indicators.

3.3. Model Evaluation

The confusion matrix, which comprehensively reflects the performance of the classi-
fiers, can derive many evaluation indicators. Here, the calculated evaluation indicators,
including accuracy, precision, recall, and F1-score, were used to evaluate classification per-
formance for the binary classifier. The SVM model was estimated by 4-fold cross-validation,
and the indicators were computed by averaging the folds. Accuracy represents the ratio
of correct samples to the total samples without considering the positive and negative.
Recall refers to the ratio of the correctly classified positive samples to the total true positive
samples, and precision refers to the ratio of correctly classified positive samples to all
classified positive samples. The F1-score indicator is proposed based on precision and
recall to evaluate the indicators as a whole. The F1-score can be used to comprehensively
consider the pros and cons of the classification models.

Table 4 shows the results of model evaluation indicators for machine learning classi-
fiers. Figure 5 shows the histograms of the evaluation indicators (accuracy and F1-score)
of the training set and test set from machine learning classification models. According to
the summaries of the model evaluation indicators, GA-SVM shows both higher accuracy
and F1-score than other machine learning methods. Accuracy can reflect the classification
correctness of the global results of the model. The F1-score can reflect the weighted average
between precision and recall, and the results show that the GA-SVM classifier can be
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considered as an optimal model for drum filter-circulating pump linkage technology in a
variable-flow RAS because the model indicators satisfied the criteria.

Table 4. Results of model evaluation indicators for machine learning classifiers.

Methods Accuracy Precision Recall F1-Score

GA-BP
92.14% (Train) 95.21% (Train) 92.98% (Train) 94.08% (Train)
86.32% (Test) 90.74% (Test) 85.96% (Test) 88.29% (Test)

ELM
95.00% (Train) 96.41% (Train) 95.27% (Train) 95.84% (Train)
89.47% (Test) 91.23% (Test) 91.23% (Test) 91.23% (Test)

PNN
100.00% (Train) 100.00% (Train) 100.00% (Train) 100.00% (Train)

71.58% (Test) 81.48% (Test) 72.13% (Test) 76.52% (Test)

LSTM
100.00% (Train) 100.00% (Train) 100.00% (Train) 100.00% (Train)

96.84% (Test) 94.34% (Test) 100% (Test) 93.83% (Test)

GS-SVM
100.00% (Train) 100.00% (Train) 100.00% (Train) 100.00% (Train)

97.89% (Test) 98.11% (Test) 98.11% (Test) 98.11% (Test)

LS-SVM
94.29% (Train) 94.22% (Train) 96.45% (Train) 95.32% (Train)
96.84% (Test) 96.55% (Test) 98.25% (Test) 97.39% (Test)

CS-SVM
100.00% (Train) 100.00% (Train) 100.00% (Train) 100.00% (Train)

97.89% (Test) 98.11% (Test) 98.11% (Test) 98.11% (Test)

GA-SVM
100.00% (Train) 100.00% (Train) 100.00% (Train) 100.00% (Train)
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4. Discussion

Feces and residual feed may decompose to organic suspended solids, which further
generate TAN and nitrite, harming breeding animals’ health. Suspended solids in the
RAS also provide surface area that can be colonized by bacteria. As circulation intensity



Appl. Sci. 2021, 11, 6546 12 of 15

increases, more particles accumulate, which may increase the bacterial carrying capacity
of the system. Hence, rapid removal of solid waste is the most critical unit process in an
RAS [34]. The traditional method of water quality regulation in an RAS is to act when water
quality deteriorates. This approach leads to large fluctuations in the water environment,
and the cost of water quality regulation becomes very high, often requiring many water
exchanges to control water quality. This study proposes regulation of RAS circulation
based on process control technology, relying on the microfilter backwash times in a unit
period (0.5 h) as the main parameter to reflect the overall turbidity of the water body. The
variable-flow RAS circulation strategy was designed to form microfilter-circulating pump
linkage technology based on water quality parameters and backwash times at different
flow rates. An intelligent variable-flow regulation model was developed to keep the water
clean and quickly and dynamically remove suspended solids.

Related research has proven the significant differences in water quality between the
high and low makeup water exchange treatment groups [35]. One study has shown that
increasing RAS water circulation can effectively reduce ammonia and nitrite [36]; the
higher the circulation level, the lower the ammonia and nitrite mass concentrations became.
Moreover, the conversion of nitrite revealed a certain hysteresis, and the ammonia peak
appeared earlier than the nitrite peak after feeding was stopped.

RAS solids come mainly from uneaten feed and fecal solids, and the decomposition
and mineralization of these solids lead to elevated ammonia and nitrite levels in the
RAS [10]. Data such as TAN, NO2-N, and TSS must be obtained by manual measurement
and are challenging to obtain by sensors. According to Vinatea et al. [37], TSS tended
to accumulate in the intensive L. vannamei culture and was eventually reflected in an
increase in NTU. As both turbidity and TSS can reflect the clarity of a liquid, the turbidity
parameter was used for modeling in this study. The principal component analysis (PCA)
results for dimensionality reduction showed that turbidity, dissolved oxygen, pH, and
temperature could be used as the leading indicators for modeling. The variable-flow
regulation model obtains the current water quality indicators in real time and then applies
these indicators to predict and classify the circulation rate for the next period. The turbidity
sensor in turbulent flow had a measured data fluctuation that was too large, and the sensor
arrangement position also caused measurement errors. An innovative point of this study is
that the drum filter backwash frequency over a certain period was used as one of the critical
factors for modeling instead of the momentary RAS water turbidity. Backwash times can
effectively replace turbidity reading to reflect overall RAS water turbidity, avoiding the
instability of the data collected by the turbidity sensor.

The application of machine learning methods in aquaculture-related research is fo-
cused mainly on the prediction, classification, and evaluation of water quality indicators
such as dissolved oxygen, salinity, pH, ammonia, and nitrite [25]. In the present study, ma-
chine learning was used to model the variable-flow regulation strategy. Sensors collected
water indicators, including DO, pH, temperature, and turbidity. In order to implement
the variable-flow principle, the machine learning methods were introduced in the present
study to develop the optimal variable-flow regulation model for RAS. The water quality
indicators, the backwash frequency, and the circulating pump frequency were obtained
through continuous monitoring. For the ANN methods, the LSTM model was identified as
the optimal regulation model, since the accuracy and F1-score indicators reflected the strong
ability of the LSTM classifier. The modeling data based on time series were collected from
the continuously running RAS in the present study. The water quality indicators, backwash
frequency, and total circulation rates were recorded through the fixed time interval during
the whole rearing period. Research has shown that LSTM can indeed perform well in
processing long time series sequences of data [38]. The optimal classification model needs
to be relatively simple in order to be applied in the embedded devices. The variable-flow
adjustment strategy in RAS also needs to respond quickly and satisfy the high standard
of classification accuracy. All the evaluated indicators of the SVM models demonstrated
better results compared with the LSTM model. The gene algorithm contributed the highest
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accuracy and F1-score among the four optimization algorithms in the classification task.
As a supervised algorithm, GA-SVM can be applied to effectively adjust water refreshment
in RAS.

In future work on variable-flow RAS regulation, the data-driven model needs to be
improved to establish continuous variable-flow control technology by adjusting circulating
pump frequency. A larger quantity of data from the running RAS can ensure higher avail-
ability and robustness for optimizing the intelligent variable-flow strategy. The continuous
variable-flow control technology prerequisite is required for the indicators (water quality,
backwash frequency, and rearing cycle) to correspond to the ideal circulation volume. Fur-
thermore, the interaction effects between various indicators need to be revealed through
experiments and analysis. The ultimate goal of the study is to achieve a precise circulation
control strategy in the RAS and execute rapid water treatment without affecting the health
of the reared animals.

5. Conclusions

A variable-flow regulation model was established in the present study to implement
the circulating pump-drum filter linkage working technique. Classification models based
on machine learning methods between the explanatory variables and the regulation strategy
were developed based on experimental data. ANN models including GA-BP, LSTM, PNN,
and ELM were established. The LSTM model had the highest accuracy (training set 100%,
test set 96.84%) and F1-score (training 100%, test 93.83%) and was regarded as the best
classification model among ANN methods. SVM models were developed and optimized
using linear squares, grid search, cuckoo search, and gene algorithm. Results showed that
SVM models required less training time and exhibited higher accuracy compared with
ANN models. Finally, the optimal model was GA-SVM, with the highest classification
accuracy (training 100%, test 98.95%) and F1-score (training 100%, test 99.17%). The model
was tested under cross-validation with precise classification performance and used for the
circulating pump-drum filter intelligent linkage working technique.
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