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Abstract: Rice has long served as the staple food in Asia, and the cultivation of high-yield rice crops
draws increasing attention from academic researchers. The prediction of rice growth condition by
image features realizes nondestructive prediction and it has great implications for smart agriculture.
We found a special image parameter called the fractal dimension that can improve the effect of the
prediction model. As an important geometric feature, the fractal dimension could be calculated
from the image, but it is rarely used in the field of rice growth prediction. In this paper, we attempt
to combine the fractal dimension with traditional rice image features to improve the effect of the
model. The thresholding method is used to transform the cropped rice image into binary image, and
the box-counting method is used to calculate the fractal dimension of the image. The correlation
coefficients are calculated to select the characteristics with a strong correlation with biomass. The
prediction models of dry weight, fresh weight and plant height of rice are established by using
random forest, support vector regression and linear regression. By evaluating the prediction effect
of the model, it can be concluded that the fractal dimension can improve the prediction effect of
the model. Among the models obtained by the three methods, the multiple linear regression model
has the best comprehensive effect, with the dry weight prediction model R2 reaching 0.8697, the
fresh weight prediction model R2 reaching 0.8631 and the plant height prediction model R2 reaching
0.9196. The model established in this paper has a fine effect and has a certain guiding significance in
rice research.

Keywords: rice biomass; fractal; machine learning; predictive model

1. Introduction

Agriculture is the foundation of social stability and national development in many
countries, especially in developing countries. Adequate supply of grain and other basic
agricultural products is an irreplaceable foundation for ensuring sufficient stability of
market prices. Meanwhile, food security is a crucial support for national economic security.
Therefore, it is a particularly urgent and meaningful task to strengthen the macro-control
of the food market and ensure food security and market stability at present.

Rice plays an essential role in agricultural production as the most significant food
crop [1]. With the rapid increase in the population, the country’s demand for food is also
growing. We have problems with declining soil quality and eutrophication [2]. Since
rice plays a key role in food security, it is necessary to study the growth status of rice.
Industrialization reduces the arable land area, so it is required to increase the yield of rice in
order to increase the total yield of rice. Therefore, rice growth and cultivation of high-yield
varieties has become a major research issue in agricultural research institutions [3]. The
study of rice growth is very critical to political, economic and social stability.

Due to the development of computer information technology, image-processing tech-
nology is becoming more and more advanced. In order to detect and extract data from the
overall growth state of rice, phenotypic feature data extraction from rice image has been
widely used. Compared with artificial experiments, this method can reduce subjective
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errors and improve the accuracy of data. The main content of image processing is to cut the
areas in the original image that need to be studied, and then extract the features of specific
areas according to color components and texture features [4].

Fractal geometry has a self-similar character. When the geometries with fractal char-
acteristics are magnified at different multiples, the observed properties are similar and
have a fractal dimension in space [5,6]. The concept of fractals was first put forward by B.
B. Madelbrot in 1973. He defined a fractal as a set, which expresses the symmetry or self-
similarity of the whole and the part in a certain sense. There are many fractal phenomena
in nature, such as coastlines, lightning, human lungs, material surfaces, etc., which can be
approximately regarded as fractal sets [7].

However, the typical fractal sets are specially constructed by mathematicians, so they
have a standard and strict self-similarity. However, in nature, most of the objects we study
do not have strict self-similarity characteristics, but only meet statistical self-similarity.
Therefore, in research, we mainly carry out approximate processing on the objects to
explore the quasi-self-similarity [8].

The dimension of fractal geometry is usually not an integer dimension, so the inte-
ger dimension used in the traditional Euclidean space cannot describe the fractal shape.
Mandelbrot proposed the concept of a non-integer dimension or fractal dimension [9]. The
fractal dimension describes a complex ratio that reflects how the details of the pattern
change with the scale of the measurement [10]. It is used in all areas of science because it
provides a measure of the complexity and irregularity of a given object [11]. Complexity
is a change in detail and scale. As the fractal dimension increases, the complexity of the
object also increases.

As a long-neglected part of geometry, fractals can help us to study nature from a new
perspective and find order in apparent disorder [12]. Since the 1970s, the application of frac-
tal theory has developed rapidly and gradually become an important new subject. Fractals
have been widely used in natural and social sciences such as biology, chemistry, physics,
material science, computer graphics, seismology, economics and so on. It is now one of the
frontier research disciplines of many disciplines all over the world [13]. It provides a new
method for researchers to solve traditional nonlinear problems more accurately.

The fractal dimension has been widely used in various fields. Pinavega Rogelio
et al. [14] proposed an automatic prediction method for sudden cardiac death (SCD) based
on a fractal dimension algorithm and a fuzzy logic system. In the paper, five kinds of fractal
dimensions were used for experimental research. The results show that the method of basic
fractal dimension could predict SCD events, and the prediction time was up to 60 min
before the onset, with an accuracy of 91.54%. Cheng Liu et al. [15] proposes an improved
DBC (IMDBC) to estimate the fractal dimension of three-dimensional (3D) pavement
texture images based on a grid displacement mechanism. Combined with the contact
characteristics of the road surface and the tire, the most suitable road surface with fractal
texture was determined by the fractal stratification method. Compared with traditional
DBC, the fitting accuracy of IMDBC is improved by 18.8% (full texture) and 900% (partial
texture), respectively. Lucas Glaucio da Silva et al. [16] analyzed all the images using
the FracLAC algorithm in the ImageJ computing environment to obtain the box fractal
dimension results. They found that computer-aided diagnostic algorithms can benefit
from box fractal dimension data; the cutoff value of the fractal dimension of the specific
box produced 0~99% specificity in the diagnosis of breast cancer. Eloy Roura et al. [17]
aimed to evaluate longitudinal changes in brain fractal geometry and its predictive value
for disease progression in patients with multiple sclerosis (MS). The box number method
was used to calculate the dimensionality of brain differentiation and the space between
brain regions. Fractal geometric analysis of brain MRI found that patients had an increased
risk of disability over the next 5 years. Shanshan Jin et al. [18] used pore size distribution
curves and pore volume histograms to qualitatively analyze the pore structure before
and after freeze-thaw. A fractal model was used to characterize pore distribution. A
micro freeze-thaw damage model with fractal dimension as an independent variable was
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established, and the relationship between the damage parameters calculated by the model
and durability factors was analyzed. Parikshaa Gupta et al. [19] aimed to evaluate the
value of fractal dimensions in differentiating benign and malignant HCGS endometrium
in liquid cervical specimens. They suggest that fractal dimension analysis is an effective
tool to distinguish between different types of cell groups. It is concluded that the fractal
dimension detection of cervical cell carcinoma has high sensitivity and can be used as an
effective screening method for differentiating benign and malignant cervical cell carcinoma.
When the object is relatively complex, it can be studied from the perspective of fractals.
The fractal dimension can reflect the complexity of the object, which may improve the
analysis effect.

The traditional method of yield estimation is field sampling survey. Observers estimate
the yield of a large area according to the growth condition of samples through observation
sampling evaluation. This estimation method cannot be standardized and requires a large
amount of manpower and material resources. At present, rice yield prediction is mainly
divided into meteorological model prediction, remote sensing model prediction and image
feature model prediction.

Forecasting based on a meteorological model is mainly to analyze the correlation
between meteorological factors and yield. The key meteorological factors are selected to es-
tablish a model for yield prediction [20]. In order to explore the influence of meteorological
factors on rice yield, Li Hongyan et al. [21] used meteorological data and rice yield data of
Tongxiang city over 13 years. They used an exponential smoothing method to calculate the
trend yield of rice, and conducted correlation analysis with the monthly average tempera-
ture, maximum temperature, minimum temperature, sunshine hours and precipitation in
the rice growth period. The key factors affecting the yield of rice were determined, and the
regression equation was established and tested. The average accuracy of the prediction
model was up to 96.2%. Zuo Huiting et al. [22] studied climate change in different climatic
zones, different climatic conditions and recent years. Combined with the variation trend
of rice yield in different climatic zones, they analyzed the correlation between rice yield
and climatic factors, and selected the main controlling factors of rice yield in each climatic
zone. The regression model was established to forecast the production of different climate
zones in the next five years, and the results are relatively stable. Meteorological models
need a lot of meteorological data and yield data, and need to maintain the consistency
of growth conditions. Therefore, the established models have poor generality and are
difficult to be popularized. The prediction based on remote sensing and spectral model
prediction is mainly to obtain the plant spectral index through a multi-spectral camera,
select key factors and establish a prediction model based on yield data [23]. Wang Di [24]
extracted vegetation index, end element abundance, texture features and other information
by using ground hyperspectral data and multi-spectral data of the UAV platform. Rice
yield estimation was studied by stepwise linear regression, BP neural network and random
forest algorithm. Liu Shanshan et al. [25] obtained the normalized vegetation index (NDVI)
of remote sensing data according to time series and evaluated it with Pearson product
moment correlation coefficient (Pearson) of average rice yield in the field by comparing
the mean value of NDVI combination in different time periods. NDVI data were used
to establish several prediction models with rice yield, and the best model was selected.
Remote sensing yield estimation is generally applicable to large-area yield estimation, but
when the planting area is not large enough, the accuracy is often reduced, and it is difficult
to obtain remote sensing data.

The prediction is made based on the image feature model, mainly through segmen-
tation of RGB images, extraction of features and establishment of regression model [26].
Gong Hongju and Ji Changying [27] made a preliminary study on the relationship between
texture features of wheat spike head image and yield by using MATLAB image-processing
technology. The mathematical model of spike head image texture and yield was established
by using multiple linear regression method, and 84.42% of the samples with an accuracy
of more than 15% were measured by using the established model. Li Yinian et al. [28]
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performed the segmentation of wheat ears through color space conversion and image-
processing technology to identify the number of ears. By predicting the number of grains
by panicle area and combining this with 1000-grain weight, they built a model to predict
the wheat yield per unit area with an average accuracy of more than 90%. The image
feature model can not only make predictions with damage, but also make predictions
without damage, and the effect is better when the planting area is small.

Fractal dimension is an important image feature, but it is seldom used in rice yield
estimation. The purpose of this study is to combine the characteristics of rice in the early
growth stage with the fractal dimension; practical and low-cost models are established.
These models can be used to predict the fresh weight, dry weight and plant height of rice,
which need to be measured by machine and are highly correlated with yield. The model
can not only provide a reference for countries to formulate food security strategies, but also
help to measure the yield of smart agriculture, so this study has a strong practical value.

2. Materials and Methods
2.1. Data Collection

The rice test base of this experiment was located in the potting farm of Huazhong
Agricultural University, and the rice used for the experiment was planted in plastic con-
tainers. The bottom diameter of the plastic container was 16 cm, the top diameter was
19.5 cm and the height of the container was 19 cm. Each container was loaded with 5 kg
of air-dried soil, and rice seedlings were planted in it with the proper amount of water.
A visible-light industrial camera (AVT Stingray FG504) was used to take pictures of rice.
We obtained 424 RGB images in PNG format at a size of 2452 by 2056. This batch of data
contains three growth stages, in which the first stage of rice is at the tillering stage, the
second stage of rice is at the jointing stage and the third stage of rice is at the heading and
grain-filling stage. The RGB images of rice obtained by camera are shown in Figure 1.
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Figure 1. Sample RGB images of rice growth in three stages. (a) shows the tillering stage of rice; (b) shows the jointing stage
of rice; (c) shows the heading and grain-filling stage of rice.

RGB images were transformed into binary images by the threshold method, and the
formula was: 2G-R-B ≥M (where G was the green component of the pixel, R was the red
component and B was the blue component); M = 20 was the threshold value [29]. The
binary images of the three batches of rice samples are shown in Figure 2.
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Figure 2. Sample binary graphs of rice growth in three stages. (a) shows the tillering stage of rice; (b) shows the jointing
stage of rice; (c) shows the heading and grain-filling stage of rice.

The box-counting method is one of the most widely used methods to measure the
fractal dimension. Its measuring principle is shown in Figure 3. The square grid with side
length of δ was overlaid with the graph to be measured, and then the number of grids N(δ)
that overlapped with the boundary curve was calculated. Then, we continuously reduced
the side length of the grid, and we obtained the number of overlapping grids at different
scales δ. The relationship between the number of overlapped grids N(δ) and the grid side
length δ satisfied Equation (1).

log N(δ) = D log
1
δ
+ k (1)
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In Equation (1), k is a constant and D is the fractal dimension. Then, the slope of the
straight-line equation is the estimated value of the box-counting dimension.

Besides the fractal dimension, some traditional rice representations could be extracted
based on the binary images of rice. By using the characterization extraction system, we
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could obtain the characteristics of rice, including width, leaf area and texture characteristics,
etc. Feature extraction was carried out once for each binary image. The characteristic
variables and their abbreviations which were obtained from the images of rice are shown
in Table 1.

Table 1. Characterization of rice and its corresponding symbols.

Symbol The Meaning of the Symbol

PW Width of plant
PH(V) Vertical height of plant

PH(V)/PW Plant vertical height/width
PH The height of rice leaves after straightening

PH/PW Plant height/width
SA Projection area of side view of rice plant

SA/PH(V) × PW Projected area/multiply vertical height by width
IFD Fractal dimension
SFD Fractal dimension of the surrounding rectangle
G_g Texture feature

f1–f12 Relative frequency
LD1–LD6 Structural parameters

‘PW’ is the width of the rice plant. ‘PH(V)’ is the vertical height of the rice (the highest
height of the rice in its natural state). ‘PH’ is the height of rice leaves after straightening
and the process is simulated by image-processing method in the program. ‘SA’ is the
lateral projection area of the rice plant. ‘IFD’ is the fractal dimension of the rice binary
image obtained by box-counting method. ‘SFD’ is the box-counting fractal dimension
based on the minimum bounding rectangle of the binary image. ‘G_g’ is a texture feature
(gradient information), and we found that it could reflect the number of panicles in rice.
‘f1–f12′ are relative frequencies and ‘LD1–LD6′ are structural parameters. They all reflect
the compactness of the plants. If their values are large, the plant is compact. In addition to
the above rice characterization data, the fresh weight (g), dry weight (g) and plant height
(cm) of rice could be obtained by manual measurement. Dry weight is the weight of dry
matter, which can reflect the growth of the plant. Fresh weight can reflect the water content
of the plant. Different rice varieties have different water content, and the direct difference
between fresh weight and dry weight can reflect the water content information.

2.2. Select Feature Variable

In order to observe the relationship between the fractal dimension and the dry weight,
fresh weight and plant height of rice, three point plots were drawn to reflect the distribution
of the data. The three point plots are shown in Figures 4–6.

By observing these images, it can be seen that the fractal dimension is correlated with
dry weight, fresh weight and plant height. In order to verify this, we need to calculate the
correlation coefficient between them.

Pearson correlation coefficient can better reflect the degree of correlation between
two variables, and its value is [−1, 1]. The correlation coefficient between characteristic
variables and fresh weight, dry weight and plant height can be calculated.

Considering the correlation between explanatory variables and dependent variables,
as well as the autocorrelation between explanatory variables, the correlation coefficients
between the selected variables and their dependent variables are shown in Tables 2–4.

These variables are closely related to the dependent variables, so we can select these
variables for modeling.

2.3. Modeling Methods

Three regression models are used for modeling and the effects of the models
are compared.
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Table 3. Correlation coefficient between characterization and dry weight of rice.

Variable Correlation Coefficient with Dry Weight

PW 0.644520
SA 0.925310

SA/PH(V) × PW 0.525873
IFD 0.630591
SFD 0.893188
G_g 0.782164
LD1 −0.577148

Table 4. Correlation coefficient between rice characterization and plant height.

Variable Correlation Coefficient with Plant Height

PW 0.600954
PH(V) 0.727988

PH 0.896098
SFD 0.696987
G_g 0.615098
f1 0.559564

LD2 0.521077Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 19 
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2.3.1. Random Forest

Random forest is a kind of integration algorithm. Based on the bagging integration
built with decision tree as the learning machine, random attribute selection is further
introduced into the training process of the decision tree. Random forest is simple, easy to
implement and has low computational overhead, but it can show powerful performance
in many practical tasks, and is considered as a method to represent the technical level of
ensemble learning [30]. Due to the universality of random forest, we try to use random
forest to establish the biomass model of rice. The diversity of basic learners in random
forests not only comes from sample perturbations, but also from attribute perturbations.
Therefore, the generalization of the final integration can be improved by increasing the
differences among individual learners. The initial performance of random forest is usually
poor, but with the increase in basic learners, random forest can gradually converge to
a lower generalization error and achieve better results. An important parameter in the
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model, N_ESTIMATORS, is the number of trees in the forest; that is, the number of base
learners. The influence of this parameter on the accuracy of the random forest model is
monotonous. The larger N_ESTIMATORS is, the better the effect of the model will be.
However, any model has a decision boundary. After N_ESTIMATORS reach a certain level,
the accuracy of the random forest usually stops rising or starts to fluctuate. Moreover, the
larger N_ESTIMATORS is, the more computation and memory is required, and the longer
training time will be.

2.3.2. Support Vector Regression

Support vector regression is an extension of support vector machines. Assuming that
we can tolerate a maximum deviation of ε, we will only calculate the loss if the absolute
value of the difference between f (x) and y is greater than ε. It has a strong learning ability
for small data sets, and can solve high-dimensional nonlinear problems by transforming
them into linear ones through nonlinear transformation [31]. This batch of rice data contains
more than 200 pieces of data, and the data volume is suitable for the use of support vector
regression. Considering the application effect of each kernel function comprehensively,
the Gaussian radial basis kernel function is finally determined to be used in the model
established in this paper. The prediction model of support vector regression has two
unknown parameters, penalty parameter C and kernel parameter Gamma. C represents
the prediction ability of the model. The larger the C, the higher the degree of the model’s
learning from the samples, and the worse the prediction effect of the unknown data. On
the contrary, the smaller C is, the higher the fault-tolerant rate of the model is, and the
worse the fitting effect of the model is, but the prediction effect is relatively good. The
kernel parameter gamma determines the distribution of the low-dimensional data mapped
into the higher-dimensional space.

SVR model prediction is based on distance measurement and distance is very sensitive
to different value ranges between features. Due to the different dimensionality of each
feature of the data set, there is a large gap in the data size under different features, which
will affect the results of data analysis. In order to eliminate the dimensionless influence
among the indicators, data standardization is needed to solve the comparability among
the data indicators. After the standardization of the original data, each index is in the
same order of magnitude, which is suitable for comprehensive comparative evaluation.
In this paper, normalization is adopted to process the data, and the formula is shown in
Equation (2).

x′ =
x−min(x)

max(x)−min(x)
(2)

Normalization can make the data map to the range of [0, 1], so as to eliminate the
adverse effects caused by the strange sample data.

2.3.3. Linear Regression

Linear regression is a statistical analysis method that uses regression analysis in
mathematical statistics to determine the interdependent quantitative relationship between
two or more variables. It has a very wide range of applications. Since there is a linear
relationship between the selected variables, multiple linear regression models can be used.
The expression for this is y = ωTX + e. In the formula, ωT is the regression coefficient
matrix, and the number of regression coefficients in the matrix is equal to the number of
independent variable X. Where e is the error, e is normally distributed and the mean is 0,
which is e ∼ N

(
0, σ2). In regression analysis, if there is only one independent variable and

one dependent variable, and the relationship between the independent variable and the
dependent variable can be approximated by a straight line, then this regression analysis
is called unary linear regression. If there are two or more independent variables in the
regression analysis, and there is a linear relationship between the dependent variable and
the independent variable, then this regression analysis is called multiple linear regression.
The effect of the linear regression model mainly depends on the data themselves, rather
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than the ability to improve the model by adjusting parameters. As long as the linear
connection of the data is strong, the least square method can be used to establish a linear
regression model with fine effect.

2.4. Accuracy Evaluation

For model performance evaluation, R2 and mean absolute percentage error (MAPE)
are selected as the evaluation index.

The calculation for R2 is shown in Equation (3).

R2 = 1−

m
∑

i=0
(yi −

_
y i)

2

m
∑

i=0
(yi −

_
y )

2
(3)

where yi is the real result of the data, ŷi is the predicted result of the model and yi is the
mean value of the data. In R2, the numerator is the difference between the real value
and the predicted value, which is the total amount of information not captured by the
established model. The denominator is the amount of information carried by the real tag,
so the numerator divided by the denominator measures the proportion of the amount of
information not captured by the model to the amount of information carried by the real tag.
Therefore, the closer R2 is to 1, the better this model will be. Generally, when R2 is greater
than 0.6, the model can be considered to have a wonderful effect.

The calculation for MAPE is shown in Equation (4).

MAPE =
100%

m

m

∑
i=0

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (4)

MAPE reflects the relative error of the model, and MAPE = 0 means that the model
has no error. If MAPE is greater than 100%, the model is too ineffective. The larger MAPE
is, the larger the error the model will have.

3. Results and Analysis
3.1. Random Forest Regression Model

According to the second chapter of this paper, the random forest regression model has
a relatively important unknown parameter; that is, the number of regression trees in the
forest, N_ESTIMATORS. In order to obtain the best effect of the model, we need to choose
the size of the N_ESTIMATORS.

The size of the tree N_ESTIMATORS is selected by drawing the learning curve. By
observing the variation of the model’s R2 with the N_ESTIMATORS, the overall size of the
random forest is selected. We can see from Figure 7 that when the value of N_ESTIMATORS
is greater than 50, R2 tends to be basically stable. The larger N_ESTIMATORS is, the more
computation and memory will be needed, and the longer training time will be. When
N_ESTIMATORS is equal to 50, R2 is in the front of the stable part and the calculation time
is short. Therefore, the random forest model parameter in this paper is selected as 50.

Based on the data of the three growth stages of rice, the models of dry weight (g), fresh
weight (g) and plant height (cm) of rice are established respectively with the characteristic
variables selected above. The data is divided into training set and test set in a ratio of 4 to 1.
In order to facilitate the comparison of model effects, we used the same test set and training
set. The training set is used to build the model, and the test set is used to test the effect of
the model.

After completing the establishment of the random forest regression model, the test
set data are substituted into the model to obtain the corresponding prediction results. The
predicted results are drawn into a line chart for fitting with the actual situation in the
test set, as shown in the figure below. It can be seen from Figure 8 that the predicted
results of the model are close to the actual situation, and the distribution of data is well
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fitted. The prediction ability of the model is relatively stable. Under certain conditions,
the predicted value of the random forest model established in this section has certain
guiding significance.
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In order to verify the effectiveness of the fractal dimension in predicting rice dry
weight, fresh weight and plant height, the model is established by removing the fractal
dimension during modeling, and the established model is compared with the model with
the added fractal dimension; their R2 and MAPE are compared. If the fractal dimension
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is valid for modeling, the R2 of these models will be improved and the MAPE will be
decreased. The comparison results are shown in Tables 5–7.

Table 5. R2 and MAPE for the dry weight model.

The Model Variables R2 MAPE

Without fractal dimension 0.8324 20.67%
+IFD 0.8410 20.66%
+SFD 0.8445 20.63%

+IFD, SFD 0.8593 19.66%

Table 6. R2 and MAPE for the fresh weight model.

The Model Variables R2 MAPE

Without fractal dimension 0.8080 17.24%
+IFD 0.8312 16.35%
+SFD 0.8304 16.10%

+IFD, SFD 0.8452 15.96%

Table 7. R2 and MAPE for the plant height model.

The Model Variables R2 MAPE

Without fractal dimension 0.8258 19.85%
+SFD 0.8312 18.93%

It can be seen that both the fractal dimension of the rice binary image and the fractal
dimension of the rectangle surrounding the rice image have a promoting effect on the fitting
effect of the model. For dry weight and fresh weight models of rice, the best effect can be
obtained by adding the fractal dimension of the binary image and fractal dimension of the
rectangle surrounding the rice image. Although plant height has a low correlation with the
fractal dimension of the binary image, it is still closely related to the fractal dimension of
the rectangle surrounding the rice image.

With the growth of rice, some characters of rice change greatly, so the characteristic
data change to a certain extent. By calculating the correlation coefficient of each stage, it
is proved that the characteristic variables of the model did not need to change with the
growth stage, but the fitting effect of dry weight, fresh weight and plant height models
would all change with the growth stage. The corresponding model R2 and MAPE of the
three stages are shown in Tables 8–10.

Table 8. R2 and MAPE for the random forest dry weight model.

Growth Stage R2 MAPE

The first stage 0.8593 19.66%
The second stage 0.8532 19.98%
The third stage 0.8460 21.85%

Table 9. R2 and MAPE for the random forest fresh weight model.

Growth Stage R2 MAPE

The first stage 0.8452 15.96%
The second stage 0.8421 16.42%
The third stage 0.8218 18.98%
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Table 10. R2 and MAPE for the random forest plant height model.

Growth Stage R2 MAPE

The first stage 0.8312 18.93%
The second stage 0.8428 18.85%
The third stage 0.8889 20.88%

By comparing Tables 8–10, it can be seen that when random forest is used to build the
prediction model, the prediction accuracy of the model will also change with the change of
the growth stage. Both the dry weight prediction model and the fresh weight prediction
model show a downward trend, but even in the third stage, the R2 and MAPE of the model
are still good. However, the plant height prediction model showed an opposite trend.
With the growth of rice, the accuracy of the plant height prediction model will increase
continuously. In conclusion, although the growth stage will have a certain influence on
the effect of the random forest model, the influence is not significant and is within the
acceptable range. Therefore, the random forest model has a good effect on the prediction
of dry weight, fresh weight and plant height of rice.

3.2. SVR Model

In this section, the rice characteristics selected above are taken as explanatory variables.
The dry weight, fresh weight and plant height are explained variables. The sklearn package
of Python is used to establish prediction models of rice dry weight, fresh weight and
plant height based on support vector regression. The grid search method of 10-fold cross-
validation method is used to find the optimal combination of these two parameters, so
that the model can achieve the optimal prediction effect. The optimization interval is
determined as C belonging to 0 to 150 and Gamma to 0 to 10, respectively. A more detailed
search is conducted with a step size of 1. According to the grid search results, when C
equals 100 and gamma equals 4, the model achieves the highest R2.

Based on the selected kernel function and the optimal parameter combination, the
SVR function in the Python sklearn package is used to build the model. The ‘PW’, ‘SA’,
‘SA/pH (V) × PW’, ‘IFD’, ‘SFD’, ‘G_g’, ‘f1’ and ‘LD1’ of three growth stages are used as
explanatory variables to establish a prediction model for fresh weight (g) and dry weight
(g). ‘PW’, ‘PH(V)’, ‘PH’, ‘SFD’, ‘G_g’, ‘f1’, ‘f2’ and ‘LD2’ are used as explanatory variables
to establish a prediction model of plant height (cm).

The data need to be normalized first, and then divided into a training set and test set
in a ratio of 4 to 1. After the establishment of the SVR model, the corresponding prediction
results can be obtained by substituting the data as the test set into the model. The predicted
results are drawn into a line chart for fitting with the actual situation of the data in the
test set, as shown in Figure 9. It can be seen from the figure that the predicted results of
the model are close to the actual situation, and the distribution of data is well fitted. The
prediction ability of the model is relatively stable. Under certain conditions, the predicted
value of the model established in this section has certain guiding significance.

According to the above, the growth stage of rice will have an impact on the prediction
performance of the model. The R2 and MAPE of the prediction model at different stages
are compared, and the comparison results are shown in Tables 11–13.

Table 11. R2 and MAPE for the SVR dry weight model.

Growth Stage R2 MAPE

The first stage 0.8499 22.58%
The second stage 0.6639 28.35%
The third stage 0.7727 28.04%
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Table 12. R2 and MAPE for the SVR fresh weight model.

Growth Stage R2 MAPE

The first stage 0.8032 23.82%
The second stage 0.8152 25.65%
The third stage 0.8551 24.66%

Table 13. R2 and MAPE for the SVR plant height model.

Growth Stage R2 MAPE

The first stage 0.8025 20.08%
The second stage 0.8491 25.34%
The third stage 0.8660 21.86%
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By comparing Tables 11–13, it can be seen that with the growth of rice, the R2 of
the support vector regression model will change greatly and MAPE will hold steady.
With the growth of rice, the prediction effect of fresh weight and plant height models
will become better and better, and the increase in both models is greater than 0.05 at
the third stage, which has a better prediction effect. However, with the growth of rice,
the prediction effect of the dry weight model shows a downward trend; the R2 of the
second stage is only 0.6639, and even in the third stage, the R2 of the model is less than
0.8. Although the R2 of the dry weight model meets the application standard of the model,
the effect is too poor compared with the model obtained by other algorithms. Therefore,
support vector regression is not recommended to be used when establishing the dry weight
prediction model of rice. However, support vector regression can achieve better results
when establishing the prediction model of rice fresh weight and plant height.

3.3. Linear Regression Model

This section uses Python to build a multivariate LinearRegression prediction model us-
ing the LinearRegression function in the Sklearn package. The ‘PW’, ‘SA’, ‘SA/PH (V) × PW’,
‘IFD’, ‘SFD’, ‘G_g’, ‘f1’ and ‘LD1’ of three growth stages are used as explanatory variables
to establish a prediction model for fresh weight (g) and dry weight (g). Using ‘PW’,
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‘PH(V)’, ‘PH’, ‘SFD’, ‘G_g’, ‘f1’, ‘f2’ and ‘LD2’ as explanatory variables, the plant height
(cm) prediction model is established.

The data are divided into a training set and test set in a ratio of 4 to 1. After the
establishment of a multiple linear regression model, the corresponding prediction results
can be obtained by substituting the test set data into the model. The predicted results
are drawn into a line chart for fitting with the actual situation in the test set, as shown in
Figure 10. It can be seen from the figure that the predicted results of the model are close to
the actual situation, and the distribution of data is well fitted. The prediction ability of the
model is relatively stable. Under certain conditions, the predicted value of the multiple
linear regression model established in this section has certain guiding significance.
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Since the growth stage of rice will affect the prediction performance of the model,
the R2 and MAPE of multiple linear regression prediction models at different stages are
compared, and the comparison results are shown in Tables 14–16.

Table 14. R2 and MAPE for the linear regression dry weight model.

Growth Stage R2 MAPE

The first stage 0.8697 11.22%
The second stage 0.8561 14.29%
The third stage 0.8375 15.93%

Table 15. R2 and MAPE for the linear regression fresh weight model.

Growth Stage R2 MAPE

The first stage 0.8631 10.71%
The second stage 0.8529 11.79%
The third stage 0.8462 13.76%
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Table 16. R2 and MAPE for the linear regression plant height model.

Growth Stage R2 MAPE

The first stage 0.8358 5.27%
The second stage 0.8067 5.55%
The third stage 0.9196 4.45%

By comparing Tables 14–16, it can be seen that when using the multiple linear regres-
sion model to predict the dry weight and fresh weight, the prediction effect of the model
will decrease slightly with the growth of rice, but the decline is small and the overall effect
is relatively stable, and good results can be achieved. However, the R2 of the plant height
prediction model fluctuates greatly, with the minimum value of 0.8067 in the second stage
and the maximum value of 0.9196 in the third stage. The prediction effect of the third stage
is the best among the models which are selected in the previous parts of this paper. By
comparing the MAPE of all the models, the MAPE of linear regression models are much
lower than those of random forest models and SVR models.

4. Discussion

In Yang Wanli’s research [32], he used a SegNet convolutional neural network to
segment rice images, and extracted texture features, morphological features and color
features from the segmented images. He used the selected features to build a linear
regression model to predict the fresh weight and dry weight of rice, and the R2 of the model
was 0.812 and 0.772. The characteristic parameters used in this paper are almost the same
as those in Yang’s paper, and the planting conditions of rice are also the same. However,
fractal dimension is not paid attention to in Yang’s paper, which may be the reason why
the effect of Yang’s model is inferior to that in this paper. Therefore, when establishing the
prediction model of rice biomass, we can consider adding the fractal dimension into the
model, which may improve the model effect. In Gong Hongju’s research [33], she proposed
the idea and method of establishing a mathematical model for accurate prediction of rice
yield based on texture analysis and fractal theory. She obtained the texture features and
fractal dimension by analyzing and calculating the binary image of rice, and then used
principal component analysis to obtain the variables for establishing the model. She used
linear regression to establish the yield prediction model, and the R2 only reached 0.494,
and the model had a poor effect in the posterior error test. Gong Hongju’s use of the
fractal dimension to establish the model is innovative, but she ignored the traditional
characteristic parameters of rice, which may be the reason for the poor final result of the
model. By combining the fractal dimension with the traditional characteristics of rice, the
prediction model obtained in this paper has a better effect. Compared with their research,
this paper improved the shortcomings of their research and obtained a simple and effective
model for predicting rice biomass. The model is based on images of rice and can play a
role in the field of smart agriculture.

The multivariate linear regression model is very different from other machine learning
algorithms. The model obtained through machine learning belongs to the black box model,
and we cannot know the specific structure of the model, nor the role of each explanatory
variable in the model, so the model has a low explanatory ability. However, the linear
regression model has good explanatory properties, the expression of the model can be
obtained and the effect of each variable in the model can be clearly understood through the
expression. In the study of rice, researchers often pay close attention to the influence of
variables which can guide the improvement in varieties. Therefore, in the prediction of
rice biomass, if the effect of the linear regression model is not far from that of the machine
learning model, it is suggested to give priority to the linear regression model.

5. Conclusions

In this study, a prediction model of rice biomass based on the fractal dimension was
proposed. We obtained the image of rice through the camera and extracted the phenotypic
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characteristics of rice. The fractal dimension of the rice image was calculated by the box-
counting method. Based on the combination of traditional characterization and the fractal
dimension, prediction models were established by using random forest, SVR and multiple
linear regression to predict the dry weight, fresh weight and plant height of rice. The model
achieved an excellent prediction effect. We can draw the following conclusions.

(a) As an image feature of rice, the fractal dimension can be used to predict the biomass
of rice. According to the image and correlation coefficient, the fractal dimension
is correlated with dry weight, fresh weight and plant height of rice. The fractal
dimension can improve the effect of the biomass prediction model. Therefore, the
fractal dimension can be considered to achieve better results in future research on rice.

(b) By using various methods to establish the biomass prediction model of rice, it can
be found that the effect of the linear regression model is better than random forest
and SVR. Compared with the random forest model and the SVR model, the multiple
linear regression model has the largest R2 and the smallest MAPE, and has a good
explainability. Therefore, when using rice images to build models to predict dry
weight, fresh weight and plant height, multiple linear regression models are preferred.
In addition, random forest and SVR are not recommended.

(c) Although the growth stage of rice will affect the prediction effect of the model, the
fluctuation is within the acceptable range. Compared with the models established
above, only the SVR dry weight model shows a great decline in R2. The R2 of the
other models can remain above 0.8. Although the stage of rice growth has changed,
the MAPE of these models remain stable. The overall effects of these models are still
quite excellent.
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