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Abstract: This is a review paper containing the governing equations and analytical solutions of
the classical and shear deformation theories of functionally graded straight beams. The classical,
first-order, and third-order shear deformation theories account for through-thickness variation of
two-constituent functionally graded material, modified couple stress (i.e., strain gradient), and the
von Kármán nonlinearity. Analytical solutions for bending of the linear theories, some of which are
not readily available in the literature, are included to show the influence of the material variation,
boundary conditions, and loads.

Keywords: analytical solutions; beams; classical theory; shear deformation theories; functionally
graded structures; modified couple stress; numerical results

1. Introduction
1.1. Preliminary Comments

Beams are structural members that have a ratio of length-to-height that is very large
(say, a/h > 10) and are subjected to forces both in-plane and transverse to the plane that
tend to bend about an axis perpendicular to their length. Such members are known as
structural elements and their study constitutes structural mechanics, which is a subset of
solid mechanics. Due to the particular structural configuration (i.e., one dimension being
much bigger in comparison to the cross-sectional dimensions), the deformation and stress
fields can be predicted, for most practical engineering problems, with structural theories
known as the beam theories. Beam theories are derived from the three-dimensional elasticity
theory by making certain simplifying assumptions concerning the deformation (kinematics)
and stress states. The development of such theories dates back to Galileo Galilei, Leonardo
da Vinci, and Jacob Bernoulli and Euler. The first one is the Euler–Bernoulli beam theory,
in which the transverse shear strain is neglected, making the beam infinitely rigid in the
transverse direction. The second one that accounts for the transverse shear strain (γxz) is
popularly known as the Timoshenko beam theory [1,2].

All modern developments are refinements to the above stated two theories, where the
displacement fields are expanded in terms of powers of the thickness [3] and accounting
for other non-classical continuum mechanics aspects (e.g., stress and strain gradient effects
and material length scales). For example, a general higher-order theory is of the form

u = ux êx + uy êy + uz êz (1)

where

ux(x, z) =
m

∑
i=0

ziφ(i)
x (x), uy = 0, uz(x, z) =

p

∑
i=0

ziψ(i)
z (x) (2)
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where φ(0)
x = u and ψ(0)

z = w are the midplane displacements along the x and z directions,
respectively, and φ(i)

x and ψ(i)
x can be mathematically interpreted as higher-order generalized

displacements with the meaning

φ(i)
x =

1
(i)!

(
∂iux

∂zi

)
z=0

, ψ(i)
z =

1
(i)!

(
∂iuz

∂zi

)
z=0

(3)

For a general third-order beam theory, we have m = 3 and p = 2 in Equation (2). The third-
order beam theory of Reddy, derived from the third-order plate theory (see Reddy [4–7] and
Heyliger and Reddy [8]), adopts a displacement field that is a special case of Equation (1)
and imposes zero transverse shear stress conditions on the bounding planes (i.e., top and
bottom faces) of the beam to express the variables introduced with the higher order terms
in terms of the variables appearing in the Euler–Bernoulli and Timoshenko beam theories.

1.2. Functionally Graded Structures
1.2.1. Background

Functionally gradient materials (FGM) are a class of composites that have a gradual
variation of material properties from one surface to another. These novel materials were
proposed as thermal barrier materials for applications in space structures, nuclear reactors,
turbine rotors, flywheels, and gears, to name only a few. In general, all the multi-phase
materials, in which the material properties are varied gradually in a predetermined manner,
fall into the category of functionally gradient materials. Such property enhancements
endow FGMs with material properties such as the resilience to fracture.

In the last two decades, a large number journal papers dealing with functionally
graded beams and plates have appeared in the literature and a critical review of these
papers is not a focus of this introduction to FGM structures (see, e.g., Birman [9] and
Klusemann [10] for a review). The works of Praveen and Reddy [11] also considered von
Kármán nonlinearity in functionally graded plates.

1.2.2. FGM Material Models

A typical FGM represents a particulate composite with a prescribed distribution of
volume fractions of constituent phases. In the case of beams, the material properties are
assumed to vary continuously through the beam height. Several models are available in the
literature, but the Voigt (or power-law) and Mori–Tanaka schemes [12] have been generally
used for the study of FGM structures.

The advantage of the Voigt scheme is the simplicity of implementation and the ease of
computation. According to the Voigt scheme, the effective properties are the arithmetic
average of constituent property (P) and are given by (see, e.g., [11,13])

P(z) = (P1 − P2) f (z) + P2, f (z) =
(

1
2
+

z
h

)n
(4)

1.3. Modified Couple Stress Effects
1.3.1. Background

Theories that account for microstructural length scales are the modified couple stress
theory of Mindlin [14], Koiter [15], and Toupin [16] and the strain gradient theory of [17–19].
A more complete review of the early developments can be found in the work of Srinivasa
and Reddy [20]. The strain gradient theory is a more general form of the modified couple
stress theory and the relationship between the modified couple stress theory and the strain
gradient theory can be found in the recent work of Reddy and Srinivasa [21]. In recent
years a number of attempts have been made to bring microstructural length scales into
the continuum description of beams and plates. Such models are useful in determining
the structural response of micro and nano devices made of a variety of new materials
that require the consideration of small material length scales over which the neighboring
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secondary constituents interact, especially when the spatial resolution is comparable to the
size of the secondary constituents.

Microstructure-dependent theories are developed for the Bernoulli-Euler beam by Park
and Gao [22], for the shear deformable beams and plates by Ma, Gao, and Reddy [23,24],
and for vibration and buckling of shear deformable beams by Araujo dos Santos and
Reddy [25–27]. In the last two decades, Reddy and his colleagues [23–30] have published a
large number of papers dealing with linear and nonlinear bending of classical and first-
and third-order shear deformable beams using the modified couple stress theory. Some
of these works have accounted for the von Kármán nonlinearity and functionally graded
materials. Of course, there are many papers by other colleagues on the same topics, which
are not cited here and references to them can be found in the works already cited here.
The von Kármán nonlinearity may have significant contribution to the response of beam-
like elements used in micro- and nano-scale devices such as biosensors and atomic force
microscopes (see, e.g., Li et al. [31] and Pei et al. [32]).

1.3.2. The Strain Energy Functional

The modified couple stress theory is based on the hypothesis that the rate of change of
macrorotations cause additional stresses, called couple stresses, in the continuum. The rate
of change of rotation is represented by the curvature tensor χ, which is defined by

χ =
1
2

[
∇ω + (∇ω)T

]
(5)

where ω is the rotation vector
ω =

1
2
∇× u (6)

and u is the displacement vector of an arbitrary point in the beam. Physically, ω denotes
the macrorotation at a point of the continuum.

According to the modified couple stress theory [18], the strain energy potential of an
elastic beam can be expressed as

U =
1
2

∫ L

0

[∫
A
(σ : ε + m : χ)dA

]
dx (7)

where L is the length of the beam, σ is the Cauchy stress tensor, ε is the simplified Green–
Lagrange strain tensor, and m is the deviatoric part of the symmetric couple stress tensor. In
the coming sections, these relations will be specialized to various beam theories. The couple
stress tensor m is related to the curvature tensor χ through the constitutive relation [14]:

m = 2G`2 χ (8)

where ` is the length scale parameterand G is the shear modulus. As pointed out in [33]
the material length scale parameter of the modified couple stress theory is not constant for
an especial material and changes as the size of a structure changes. To determine this value,
experimental data for all different sizes are required.

The present paper outlines the displacement fields of the three theories (classical,
first-order, and third-order), the governing equations, and analytical solutions of straight
beams for the linear case. To keep the size of the paper within reasonable limits, many
details are not included here, and interested readers may consult the forthcoming book
by the senior author on beams and circular plates [34], which is very comprehensive in its
treatment of the theories, analytical solutions by exact means, the Navier solution approach,
and numerical solutions by variational and finite element methods.
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2. Classical Theory of Beams (CBT)
2.1. Kinematics

The displacement field of the classical beam theory (CBT) is constructed assuming
that transverse lines perpendicular to the beam axis (x) remain: (1) straight, (2) inextensible,
and (3) perpendicular to the tangents of the deflected x-axis. These assumptions, known as
the Euler–Bernoulli hypothesis, result in the following displacement field:

u(x, z) = [u(x) + zθx(x)]êx + w(x)êz, θx ≡ −
dw
dx

, (9)

where (êx, êz) are the unit basis vectors along the (x, y) coordinates and (u, w) denote the
axial and transverse displacements, respectively, of a point on the midplane of the beam.

Based on the displacement field in Equation (9), the only nonzero strain in the present
case is (see Reddy [35]) εxx:

εxx(x, z) =
du
dx

+
1
2

(
dw
dx

)2
+ z
(
−d2w

dx2

)
≡ ε

(0)
xx + z ε

(0)
xx , (10)

ε
(0)
xx (x) =

du
dx

+
1
2

(
dw
dx

)2
, ε

(1)
xx (x) = −d2w

dx2 . (11)

The only nonzero components of the rotation and curvature are

ωy =
1
2

(
∂u1

∂z
− ∂u3

∂x

)
= −dw

dx
, χxy =

1
2

∂ωy

∂x
= −1

2
d2w
dx2 (12)

2.2. Equations of Equilibrium

First we introduce the stress resultants Nxx, Mxx, and Pxy

Nxx =
∫

A
σxx dA, Mxx =

∫
A

zσxx dA, Pxy =
∫

A
Mxy dA, (13)

whereMxy is the couple stress induced by the difference between rates of rotations. Then
using the principle minimum total potential energy, we obtain the Euler equations of
equilibrium as

dNxx

dx
+ f = 0, (14)

d2M̄xx

dx2 +
d

dx

(
dw
dx

Nxx

)
+ q = 0, (15)

where M̄xx = Mxx + Pxy takes into account the modified couple stress effects in both the
governing equations and the boundary conditions.

The duality pairs of the CBT are (the first element of each pair is the primary variable
and the second element is the secondary variable)

(u, Nxx), (w, Veff),
(
−dw

dx
, M̄xx

)
. (16)

where Veff is the effective shear force

Veff ≡
dM̄xx

dx
+ Nxx

dw
dx

(17)
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2.3. Governing Equations in Terms of Displacements

For an isotropic material the one-dimensional stress–strain relation

σxx = E(z) εxx(x, z) (18)

We assume that the beam is graded with two material combination through the beam
height according to the relation

E(z) = (E1 − E2)V1(z) + E2, V1(z) =
(

1
2
+

z
h

)n
(19)

where E1 and E2 are Young’s moduli of the two materials used, and n is the index that
dictates the relative dominance of volume fractions V1(z) and V2(z) = 1− V1(z). We
assume that Poisson’s ratio ν is a constant for the FGM material.

The stress resultants can be expressed in terms of the displacements as

Nxx =
∫

A
σxx dA = Axx

[
du
dx

+
1
2

(
dw
dx

)2
]
− Bxx

d2w
dx2 (20a)

Mxx =
∫

A
zσxx dA = Bxx

[
du
dx

+
1
2

(
dw
dx

)2
]
− Dxx

d2w
dx2 (20b)

Pxy =
∫

A
Mxy dA = −Axy

d2w
dx2 (20c)

where Axx, Bxx, Dxx, and Axy are the extensional, extensional-bending, bending, and in-
plane shear stiffness coefficients. For beams with E = E(x) (i.e., n = 0 or E1 = E2 = E),
we have Axx = EA0, Bxx = 0, Dxx = EI0, and Axy = GA0`

2. For n 6= 0 (i.e., FGM beams),
we have

Axx =
∫

A
E(z) dA = E2 A0

M + n
1 + n

Bxx =
∫

A
E(z)z dA = E2B0

n(M− 1)
2(1 + n)(2 + n)

Dxx =
∫

A
E(z)z2 dA = E2 I0

[
(6 + 3n + 3n2)M + (8n + 3n2 + n3)

6 + 11n + 6n2 + n3

]
Axy =

`2

2(1 + ν)

∫
A

E(z) dA = `2 E2 A0

2(1 + ν)

M + n
1 + n

A0 = bh, B0 = bh2, I0 =
bh3

12
, M =

E1

E2
.

(21)

Figure 1a contains the variation of the non-dimensional axial stiffness
(Āxx = Axx/E2 A0, A0 = bh) and bending stiffness D̄xx = Dxx/E2 I0, I0 = bh3/12) as func-
tions of the volume fraction index n for various values of the modulus ratio M = E1/E2 ≥ 1
and Figure 1b contains similar plots for the non-dimensional extensional-bending coupling
stiffness B̄xx = Bxx/E2B0, B0 = bh). It is clear that both Āxx and D̄xx are the maximum at
n = 0 and decrease with increasing values of n. However, B̄xx is zero at n = 0, increases to
a maximum at n =

√
2, and then decreases with increasing value of n. Thus, beams with

nonzero Bxx will have a response that is not monotonic with respect to n.
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Figure 5.3.7
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Figure 1. Variation of the normalized (a) axial stiffness coefficients Āxx(n) = Axx/E2 A0 and
D̄xx(n) = Dxx/E2 I0 and (b) coupling stiffness coefficients B̄xx(n) = Bxx/E2B0 as functions of
the power-law index, n, for various values of the modulus ratio, M = E1/E2.

The equations of equilibrium can be expressed in terms of the displacements u and w
using the beam constitutive relations from Equation (21). We obtain

− d
dx

{
Axx

[
du
dx

+
1
2

(
dw
dx

)2
]
+ Bxx

(
−d2w

dx2

)
− NT

xx

}
− f = 0 (22)

− d2

dx2

{
Bxx

[
du
dx

+
1
2

(
dw
dx

)2
]
+
(

Dxx + Axy
)(
−d2w

dx2

)
−MT

xx

}

− d
dx

{
Axx

dw
dx

[
du
dx

+
1
2

(
dw
dx

)2
]
− Bxx

dw
dx

d2w
dx2

}
− q = 0 (23)

2.4. Exact Solutions
2.4.1. General Solution

The exact solution to the linearized equations of equilibrium (i.e., static case) under
distributed load q(x) is given by

u(x) =
D̂xx

D̂∗xx
K1x +

Bxx

D̂∗xx

∫ x ∫ ξ ∫ η
q(ζ) dζ dη dξ

− Bxx

D̂∗xx

(
K2

x2

2
+ K3x + K4

)
(24)

w(x) =
(

Bxx

D̂∗xx
K1

)
x2

2
− Axx

D̂∗xx

(
K2

x3

6
+ K3

x2

2
+ K5x + K6

)
+

Axx

D̂∗xx

∫ x ∫ ξ ∫ η ∫ ζ
q(µ) dµ dζ dη dξ (25)

where K1 through K6 are constants of integration and ξ, η, ζ, and µ are dummy coor-
dinates introduced to indicate the order of integration. The six constants of integra-
tion are determined using six boundary conditions, three at each end of the beam (i.e.,
one element of the each of the three duality pairs at each point: (u, Nxx), (w, Veff =
dM̄xx/dx), and (dw/dx, M̄xx). The stress resultants Nxx and M̄xx can be computed us-
ing Equations (20a) and (20b).

We can determine the constants of integration for various boundary conditions
(pinned: u = w = M̄xx = 0; hinged: Nxx = w = M̄xx = 0; and clamped u = w =
dw/dx = 0). In the following we present the exact solutions for beams with various
boundary conditions at x = 0 and x = L, L being the length of the beam.
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2.4.2. Pinned-Hinged Beams

The exact solution for this case, with FGM and modified couple stress (MCS) effect, is
(ξ = x/L):

D̂∗xx u(ξ) = Bxx
q0L3

12

(
−3ξ2 + 2ξ3

)
(26)

D̂∗xx w(ξ) = Axx
q0L4

24

(
ξ − 2ξ3 + ξ3

)
, (27)

M̄xx =
q0L2

2

(
ξ − ξ2

)
, Nxx = 0, (28)

Nxz =
dMxx

dx
=

q0L
2

(1− 2ξ). (29)

We note that the effect of Bxx on the mechanical deflection is zero, while the bending
moment is independent of Bxx.

2.4.3. Pinned-Pinned Beams

The solution for the pinned-pinned FGM beam is (ξ = x/L)

D̂∗xx u(ξ) = Bxx
q0L3

12

(
ξ − 3ξ2 + 2ξ3

)
, (30)

D̂∗xx w(ξ) = − B2
xx

D̂xx

q0L4

24

(
ξ − ξ2

)
+ Axx

q0L4

24

(
ξ − 2ξ3 + ξ4

)
, (31)

M̄xx =
q0L2

2

(
ξ − ξ2

)
, Nxx = 0, (32)

Nxz =
dMxx

dx
=

q0L
2

(1− 2ξ). (33)

When Bxx = 0, the solutions for the pinned-hinged beams and pinned-pinned beams coincide.

2.4.4. Numerical Results

To present numerical results, we consider pinned-pinned functionally graded beams
of length L = 100 in (254 cm), height h = 1 in (2.54 cm), and width b = 1 in (2.54 cm) and
subjected to uniformly distributed load of intensity q0 lb/in (1 lb/in = 175 N/m). The FGM
beam is made of two materials with the following values of the moduli, Poisson’s ratio,
and shear correction coefficient:

E1 = 30× 106 psi (210 GPa), E2 = 3× 106 psi (21 GPa), ν = 0.3

We shall investigate the parametric effects of the volume fraction index, n, and boundary
conditions on the transverse deflections and bending moment.

Figures 2 contain plots of u(x) vs. x/L and w(x) vs. x/L, while Figure 3 slope
−(dw/dx)(x) vs. x/L and bending moment Mxx(x) vs. x/L. The axial displacement
u(x) exists only because of the coupling coefficient Bxx (because f = 0), and the way Bxx
varies with n (see Figure 1b) is reflected in the variation of u(x) with n. In particular,
u(x) increases with increasing values of n for n < 5 but the magnitude of u(x) decreases
with increasing values of n. On the other hand, the deflection and slope increase their
magnitudes with the increasing values of n as the bending stiffness Dxx dominates bending.

Figure 4 contains variations of the maximum displacements u(0.25L) and w(0.5L)
with the volume fraction index n. It is clear from the plots that the displacement u increases
with n for n ≤ 5 and then decreases with the increasing values of n, as dictated by the
variation of Bxx with n (see Figure 1b). Both w(0.5L) and −(dw/dx)(L) (not shown here)
increase with n but there are two parts, the first part exhibits rapid increase with n followed
by slow increase due to the interplay between Bxx and Dxx in the bending response.
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Figure 3.7.2
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Figure 2. Plots of maximum displacements u(x) and w(x) versus ξ = x/L for pinned-pinned FGM
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beams under uniformly distributed transverse load.
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2.4.5. Clamped Beams

For beams clamped at both ends and subjected to uniformly distributed transverse
load of intensity q(x) = q0, we have

D̂∗xx u(ξ) = Bxx
q0L3

12

(
ξ − 3ξ2 + 2ξ3

)
, (34)

−D̂∗xx
dw
dx

= Axx
q0L3

12

(
−ξ + 3ξ2 − 2ξ3

)
, (35)

D̂∗xx w(ξ) = Axx
q0L4

24

(
ξ2 − 2ξ3 + ξ4

)
, (36)

Mxx(x) = − q0L2

12

(
1− 6ξ + 6ξ2

)
, (37)

Nxz =
dMxx

dx
=

q0L
2

(1− 2ξ), Nxx = 0. (38)

The variation of u(x) for the clamped-clamped beam is the same as that of the pinned-
pinned beam. Figure 5 contains plots of w(x) vs. x/L and −(dw/dx)(x) vs. x/L while
Figure 6 contains the bending moment Mxx(x) vs. x/L. The data used here is the same as
that used for pinned-pinned beams. The results obtained show the same trends as those
discussed for the pinned-pinned beams.

Figure 3.7.5
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Figure 5. Plots of maximum displacements w(x) versus x/L and the maximum slope −(dw/dx)(L)
versus x/L for clamped-clamped FGM beams under uniformly distributed transverse load.
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Appl. Sci. 2021, 11, 7159 10 of 24

3. First-Order Theory of Beams (TBT)
3.1. Preliminary Comments

In this section we consider the first-order shear deformation theory (TBT), most
commonly known as the Timoshenko beam theory. The TBT brings the transverse shear strain
γxz = 2εxz and shear stress σxz into the calculations. However, in the TBT the transverse
shear stress through the beam thickness is only represented as a constant, whereas the
elasticity equations (as discussed in mechanics of materials books) show that the variation
should be quadratic. To account for the inaccuracy in predicting the transverse shear
force magnitude (not the shear stress distribution itself), shear correction factor (SCF) has
been introduced (see [2,36,37], among many others). According to Timoshenko, the shear
correction factor is the ratio of the average shear strain on a section to the shear strain
at the geometric centroid of the cross section. The SCF, in general, is a function of the
cross-sectional shape, Poisson’s ratio, material properties, boundary conditions, and so
on. For rectangular sections, Timoshenko [2] proposed a SCF Ks = 5(1+ν)

(6+5ν)
, which takes

the range values (5/6) ≤ Ks ≤ (15/17) for 0 ≤ ν ≤ 0.5. Following these preliminary
comments, we proceed, in somewhat parallel fashion to the developments presented for the
classical beam theory (CBT), to develop the equations of equilibrium and exact solutions
for the linear case.

3.2. Displacements and Strains

The TBT is based on the displacement field

u(x, z) = [u(x) + zφx(x)]êx + w(x)êz (39)

where φx denotes the rotation (independent of the slope, θx = −dw/dx) of the cross-
sectional plane about the y-axis. In the TBT, the normality assumption of the classical
beam theory (CBT) is relaxed and a constant state of transverse shear strain (and thus
constant shear stress computed from the constitutive equation) with respect to the thickness
coordinate z is included. As stated earlier, the TBT requires a shear correction factor to
compensate for the error due to this constant shear stress assumption.

The von Kármán nonlinear strains of the TBT are

εxx(x, z) =
du
dx

+
1
2

(
dw
dx

)2
+ z

dφx

dx
≡ ε

(0)
xx + zε

(1)
xx (40a)

γxz(x) = φx +
dw
dx

, ε
(0)
xx =

du
dx

+
1
2

(
dw
dx

)2
, ε

(1)
xx =

dφx

dx
(40b)

where G the shear modulus [G(z) = E(z)/2(1 + ν)] and ν is Poisson’s ratio, which is
assumed to be a constant.

3.3. Equations of Equilibrium

The principle of minimum total potential energy for the TBT has the same form as that
for CBT, except that one must add the strain energy terms associated with the transverse
stress σxz. The curvature in the TBT is given by

ωy =
1
2

(
∂u1

∂z
− ∂u3

∂x

)
=

1
2

(
φx −

dw
dx

)
, χxy =

1
2

∂ωy

∂x
=

1
4

(
dφx

dx
− d2w

dx2

)
(41)
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The stress resultants of the TBT are defined as

Nxx =
∫

A
σxx dA, Nxz = Ks

∫
A

σxz dA,

Mxx =
∫

A
zσxx dA, Pxy =

∫
A
Mxy dA.

(42)

Here Ks denotes the shear correction factor. The Euler equations of the TBT are

−dNxx

dx
− f = 0 (43)

−dNxz

dx
− 1

2
d2Pxy

dx2 −
d

dx

(
Nxx

dw
dx

)
− q = 0 (44)

−dMxx

dx
− 1

2
dPxy

dx
+ Nxz = 0 (45)

The three duality pairs for the TBT are

(u, Nxx), (w, Veff), (φx, M̄xx). (46)

where the effective shear force and bending moments are

Veff ≡ Nxz + Nxx
dw
dx

+ 1
2

dPxy

dx
(47a)

M̄xx = Mxx +
1
2 Pxy (47b)

We note that the effective shear force in the TBT has the modified couple stress term.

3.4. Governing Equations in Terms of Displacements
Beam Constitutive Equations

The stress resultants (Nxx, Mxx, Nxz, Pxy) in terms of the strains are

Nxx =
∫

A
σxx dA = Axx

[
du
dx

+
1
2

(
dw
dx

)2
]
+ Bxx

dφx

dx
(48a)

Mxx =
∫

A
zσxx dA = Bxx

[
du
dx

+
1
2

(
dw
dx

)2
]
+ Dxx

dφx

dx
(48b)

Pxy =
∫

A
Mxy dA =

1
2

Axy

(
dφx

dx
− d2w

dx2

)
(48c)

Nxz = Ks

∫
A

σxz dA = Sxz

(
φx +

dw
dx

)
, (48d)

where Axx, Bxx, Dxx, and Axy are as defined in Equation (21), and Ks denotes the shear
correction factor and Sxz is the shear stiffness

Sxz =
Ks

2(1 + ν)

∫
A

E(z) dA (49)
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The equations of equilibrium in Equations (43)–(45) now can be expressed in terms
of the displacements u, w, and φx with the help of the beam constitutive relations in
Equations (48a)–(48c) as

− d
dx

{
Axx

[
du
dx

+
1
2

(
dw
dx

)2
]
+ Bxx

dφx

dx

}
= f , (50)

− d
dx

[
Sxz

(
φx +

dw
dx

)]
− 1

4
d2

dx2

[
Axy

(
dφx

dx
− d2w

dx2

)]
− d

dx

{
Axx

dw
dx

[
du
dx

+
1
2

(
dw
dx

)2
]
+ Bxx

dw
dx

(
dφx

dx

)}
− q = 0 (51)

− d
dx

{
Bxx

[
du
dx

+
1
2

(
dw
dx

)2
]
+ Dxx

dφx

dx

}
+ Sxz

(
φx +

dw
dx

)
−1

4
d

dx

[
Axy

(
dφx

dx
− d2w

dx2

)]
= 0 (52)

3.5. Exact Solutions
3.5.1. General Solution

In this section we present exact solutions to the linear equations of equilibrium of FGM
beams without the modified couple stress effect. By setting f = 0 in Equations (50)–(52),
we obtain

− d
dx

[
Axx

(
du
dx

)
+ Bxx

dφx

dx

]
= f , (53)

− d
dx

[
Sxz

(
φx +

dw
dx

)]
− q = 0, (54)

− d
dx

(
Bxx

du
dx

+ Dxx
dφx

dx

)
+ Sxz

(
φx +

dw
dx

)
= 0. (55)

Again, we further assume that the beam stiffness coefficients are all constant and f = 0.
Equations (53)–(55), when expressed in terms of the stress resultants Nxx, Nxz, and

Mxx (see Equations (43)–(45) with Pxy = 0) take the following form:

dNxx

dx
= 0, −dNxz

dx
− q = 0, −dMxx

dx
+ Nxz = 0 (56)

Substituting for Nxz from the third equation into the second equation, we obtain

dNxx

dx
= 0, −d2Mxx

dx2 − q = 0. (57)

Integrating the above equations,

Nxx = c1,
dMxx

dx
= −

∫ x
q(ξ)dξ + c2 (58)

Integrating the second equation, we obtain

Mxx = −
∫ x ∫ ξ

q(η) dηdξ + c2x + c3 ≡ F(x), (59)

Here ci (i = 1, 2, 3) denote the constants of integration.
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The left sides of Equations (58) and (59) can be expressed in terms of the displacements
(u, φx) using Equations (48a) and (48b); we have[

Axx Bxx

Bxx Dxx

]{ du
dx

dφx
dx

}
=

{
c1 + NT

xx

F(x) + MT
xx

}
(60)

Solving for du/dx and dφx/dx, we obtain

du
dx

=
1

D∗xx
[Dxxc1 − BxxF(x)] (61)

dφx

dx
=

1
D∗xx

[−Bxxc1 + AxxF(x)] (62)

where

D∗xx = AxxDxx − B2
xx, F(x) = −

∫ x ∫ ξ
q(η) dη dξ + c2x + c3 (63)

Integrating Equations (61) and (62), we obtain

u(x) =
Dxx

D∗xx
c1 x +

Bxx

D∗xx

∫ x ∫ ξ ∫ η
q(ζ) dζ dη dξ

− Bxx

D∗xx

(
c2

x2

2
+ c3x + c4

)
, (64)

φx(x) = − Bxx

D∗xx
c1 x− Axx

D∗xx

∫ x ∫ ξ ∫ η
q(ζ) dζ dηdξ

+
Axx

D∗xx

(
c2

x2

2
+ c3x + c5

)
. (65)

From Equations (56) and (58), we arrive at

Nxz =
dMxx

dx
= −

∫ x
q(ξ) dξ + c2 (66)

and using Equation (48d) we obtain

dw
dx

=
1

Sxz

(
−
∫ x

q(ξ) dξ + c2

)
− φx

=
1

Sxz

(
−
∫ x

q(ξ) dξ + c2

)
+

Bxx

D∗xx
c1 x

− Axx

D∗xx

(
−
∫ x ∫ ξ ∫ η

q(ζ) dζ dηdξ + c2
x2

2
+ c3x + c5

)
(67)

or

w(x) =
1

Sxz

(
−
∫ x ∫ ξ

q(η) dη dξ + c2x
)
+

Bxx

D∗xx
c1

x2

2

− Axx

D∗xx

(
−
∫ x ∫ ξ ∫ η ∫ ζ

q(µ) dµ dζ dηdξ + c2
x3

6
+ c3

x2

2
+ c5x + c6

)
(68)

The six constants of integration are determined using six boundary conditions, three
at each end of the beam. One (and only one) element of the each of three duality pairs at
each boundary point must be known (see Equation (43)): (u, Nxx), (w, Nxz), and (φx, Mxx).
We note that, in TBT, φx has replaced −dw/dx as the primary variable, and it is dual to
the bending moment Mxx. One should not specify dw/dx in place of φx in the TBT. The stress
resultants (Nxx, Mxx, Pxy, Nxz) can be computed with the help of Equations (48a)–(48d).
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3.5.2. Pinned-Pinned Beams

The exact solution of a beam pinned at both ends (u(0) = 0, w(0) = 0, Mxx(0) = 0,
u(L) = 0, w(L) = 0, and Mxx(L) = 0) is

D∗xx u(ξ) = Bxx
q0L3

12

(
ξ − 3ξ2 + 2ξ3

)
, (69)

D∗xx φx(ξ) =
B2

xx
Dxx

q0L3

24
(1− 2ξ)

− Axx
q0L3

24

(
1− 6ξ + 4ξ3

)
, (70)

D∗xx w(ξ) = − B2
xx

Dxx

q0L4

24

(
ξ − ξ2

)
+ Axx

q0L4

24

(
ξ − 2ξ3 + ξ4

)
+

D∗xx
Sxz

q0L2

2

(
ξ − ξ2

)
, (71)

M̄xx =
q0L2

2

(
ξ − ξ2

)
, Nxz =

q0L
2

(1− 2ξ), Nxx = 0. (72)

It is clear that all functions except the transverse deflection are the same as those predicted
by the classical beam theory (CBT). The transverse deflection has an additional positive term
that adds to the value predicted by the CBT. Thus, the first-order shear deformation theory
(TBT) deflection w is larger than those predicted by the CBT (i.e., the CBT underpredicts w).

The numerical results obtained by the TBT are either the same or very close to those
obtained using the CBT. Because of the fact that the beam considered is a thin beam with
length-to-height ratio of L/h = 100, the effect of the shear deformation is not seen. Table 1
shows the numerical results obtained with the two theories for the data:

E1 = 30× 106 psi (210 GPa), E2 = 3× 106 psi (21 GPa), ν = 0.3, K =
5
6

Transverse deflections obtained with the CBT and TBT for three different length-to-
height ratios, L/h = 50, L/h = 20, and L/h = 10 are presented in Table 2. It is clear
that when the beam is moderately thick (L/h = 20) to very thick (L/h = 10), the CBT
under predicts the deflections, although the difference between the two solutions may not
be significant.

Table 1. Numerical results obtained with the classical (CBT) and the shear deformation (TBT) beam
theories for the displacements ū = u(0.25L)× 102 and w(0.5L) and slopes θx(L) = −(dw/dx)(L) and
φx(L) of a pinned–pinned FGM beams under a uniformly distributed load (all results are normalized
with the load).

n ū-CBT ū-TBT w-CBT w-TBT θx φx

0.0 0.00000 0.00000 0.5208 0.5210 0.01657 0.01657
1.0 0.09973 0.09973 1.0014 1.0016 0.03062 0.03062
2.0 0.20118 0.20118 1.2635 1.2638 0.03722 0.03722
3.0 0.26301 0.26301 1.4261 1.4265 0.04148 0.04148
4.0 0.29297 0.29297 1.5440 1.5445 0.04495 0.04495
5.0 0.30523 0.30523 1.6415 1.6420 0.04806 0.04806
6.0 0.30850 0.30850 1.7286 1.7292 0.05097 0.05097
10.0 0.29367 0.29367 2.0305 2.0312 0.06131 0.06131
20.0 0.24302 0.24302 2.6047 2.6056 0.08080 0.08080
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Table 2. Numerical results obtained with the classical (CBT) and the Timoshenko (TBT) beam theories
for the transverse deflections of a pinned–pinned FGM beams under a uniformly distributed load (the
results are normalized with the load, q0); w̄ = w(0.5L) 10 and ŵ = w(0.5L)× 102.

L/h = 50 L/h = 20 L/h = 10

n w-CBT w-TBT w̄-CBT w̄-TBT ŵ-CBT ŵ-TBT

0.0 0.06510 0.06517 0.04167 0.04193 0.05208 0.05338
1.0 0.12517 0.12529 0.08011 0.08058 0.10014 0.10250
2.0 0.15793 0.15809 0.10108 0.10173 0.12635 0.12960
3.0 0.17827 0.17847 0.11409 0.11409 0.14261 0.14661
4.0 0.19300 0.19324 0.12352 0.12445 0.15440 0.15905
5.0 0.20518 0.20544 0.13132 0.13236 0.16415 0.16935
6.0 0.21608 0.21636 0.13829 0.13943 0.17286 0.17855
10.0 0.25382 0.25417 0.16244 0.16387 0.20305 0.21020
20.0 0.32559 0.32605 0.20838 0.21020 0.26047 0.26957

4. The Third-Order Beam Theory
4.1. Preliminary Comments

From the discussions presented in the previous sections, it is clear that the transverse
shear stress distribution through the beam height, computed using the stress–strain relation
σxz = 2Gεxz, is either zero (in CBT) or constant (in TBT), although the actual variation of
σxz(x, z) with z, determined using the 3-D equations of equilibrium of linearized elasticity,
is cubic. Therefore, it is necessary to have the displacement field (especially u1) to be a
cubic function of z. In this section, a third-order beam theory which accounts for the von
Kármán geometric nonlinearity, through thickness variation of the material and modified
couple stress effect, is presented. The theory presented herein accounts for the vanishing of
transverse shear stress on the bottom and top surfaces of the beam (see [4,8,38,39]).

4.2. Kinematics

The displacement field of the Reddy–Bickford third-order beam theory (RBT) is

u(x, z) =
[

u(x) + zφx(x)− α z3
(

φx +
dw
dx

)]
êx + w(x)êz, (73)

where α = 4/3h2. The nonzero strain and curvature components are

εxxε(0)xx + zε(1)xx + z3ε(3)xx, γxz = γ(0)
xz + z2γ(2)

xz , (74a)

χxy = χ(0)
xy + z2χ(2)

xy, χyz = z χ(1)
yz (74b)

where (omitting the higher-order terms in the thickness strain)

ε(0)xx =
du
dx

+ 1
2

(
dw
dx

)2

, ε(1)xx =
dφx

dx
, ε(3)xx = −α

(
dφx

dx
+

d2w
dx2

)
,

γ(0)
xz = φx +

dw
dx

, γ(2)
xz = −β

(
φx +

dw
dx

)
, β = 3α =

4
h2 (74c)

χ(0)
xy = 1

4

(
dφx

dx
− d2w

dx2

)
, χ(2)

xy = − 1
4 β

(
dφx

dx
+

d2w
dx2

)
,

χ(1)
yz = − 1

2 β

(
φx +

dw
dx

)
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4.3. Equations of Equilibrium

The equations of equilibrium of the RBT are derived using the principle of minimum
total potential energy. We introduce the following stress resultants:

(Nxx, Mxx, Pxx) =
∫

A
(1, z, z3)σxx dA, (Nxz, Pxz) =

∫
A
(1, z2)σxz dA, (75a)

(Pxy, Rxy) =
∫

A
(1, z2)Mxy dA, Qyz =

∫
A

zMyz dA, (75b)

M̄xx = Mxx − α Pxx, N̄xz = Nxz − βPxz, β = 3α =
4
h2 . (75c)

The equations of equilibrium of the RBT are:

−dNxx

dx
= f (76)

− d
dx

(
Nxx

dw
dx

)
− dN̄xz

dx
− α

d2Pxx

dx2

− 1
2

d2Pxy

dx2 −
1
2 β

d2Rxy

dx2 + β
dQyz

dx
= q (77)

−dM̄xx

dx
+ N̄xz − 1

2
dPxy

dx
+ 1

2 β
dRxy

dx
− β Qyz = 0 (78)

The duality pairs (the first element of the pair denotes a generalized displacement
while the second element denotes a generalized force):

(u, Nxx), (w, Veff),
(
−dw

dx
, Meff

)
,
(
φx, M̃xx

)
, (79)

where

Veff = N̄xz + α
dPxx

dx
+ Nxx

dw
dx

+ 1
2

dPxy

dx
+ 1

2 β
dRxy

dx
− β Qyz, (80)

Meff =
1
2 Pxy +

1
2 βRxy, M̃xx = M̄xx +

1
2 Pxy − β 1

2 Rxy. (81)

Thus, there are four boundary conditions at each boundary point. Requiring ∂w/∂x as well
as φx to vanish at a support necessarily implies that the shear force, when shear stress is
computed using the constitutive relation σxz = Gγxz, is zero. However, the effective shear
force Veff is not zero.

One of the challenges of higher-order theories is the ability to specify boundary
conditions that involve higher-order stress resultants. In most cases, one does not know the
known values of the higher-order stress resultants. Therefore, whenever the lower-order
stress resultant is specified, we assume that the corresponding higher-order stress resultant
is known to be zero. For example, if Mxx is specified at a point, we assume that M̄xx = Mxx
(implying that Pxx = 0 there).

4.4. Beam Constitutive Relations

In the RBT, as in in the case of CBT and TBT, we invoked the inextensibility of
the transverse normal lines, which amounts to setting εzz = 0. Therefore, we can use
one-dimensional constitutive relations. In particular, the one-dimensional constitutive
relations are

σxx = E εxx, σxz = G γxz, (82)

Mxy = 2`2G χxy, Myz = 2`2G χyz. (83)
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Substituting the constitutive relations from Equations (82) and (83) into the definition of
the stress resultants in Equations (75a)–(75c), we obtain

Nxx

Mxx

Pxx

 =

 Axx Bxx Exx

Bxx Dxx Fxx

Exx Fxx Hxx




ε(0)xx

ε(1)xx

ε(3)xx

, (84a)



Nxz

Pxz

Pxy

Rxy

Qyz


=


Axz Dxz 0 0 0
Dxz Fxz 0 0 0

0 0 Axy Dxy 0
0 0 Dxy Fxy 0
0 0 0 0 Dxy





γ(0)
xz

γ(2)
xz

2χ
(0)
xy

2χ
(2)
xy

2χ
(1)
yz


. (84b)

where (see Equation (21))

(Axx, Bxx, Dxx, Exx,Fxx, Hxx) =
∫

A
(1, z, z2, z3, z4, z6)E(z) dA, (85a)

(Axz, Dxz, Fxz) =
1

2(1 + ν)

∫
A
(1, z2, z4)E(z) dA, (85b)

(Axy, Dxy, Fxy) =
`2

2(1 + ν)

∫
A
(1, z2, z4)E(z) dA, (85c)

4.5. Beam Stiffness Coefficients for FGM Beams

For the FGM beams, the integrals in Equations (85a)–(85c) can be evaluated as:

Axx = E2bh
M + n
1 + n

, Bxx = E2
bh2

2
n(M− 1)

(1 + n)(2 + n)
,

Dxx = E2
bh3

12

[
(6 + 3n + 3n2)M + (8n + 3n2 + n3)

(1 + n)(2 + n)(3 + n)

]
,

Exx = E2
bh4

8
(M− 1)

[
n(8 + 3n + n2)

(1 + n)(2 + n)(3 + n)(4 + n)

]
,

Fxx = E2
bh5

80
f (n), Hxx = E2

bh7

448
g(n),

Axy = E2`
2 bh

2(1 + ν)

M + n
1 + n

, Fxy =
E2`

2bh5

120(1 + ν)
f (n),

Dxy = E2`
2 bh3

24(1 + ν)

[
(6 + 3n + 3n2)M + (8n + 3n2 + n3)

(1 + n)(2 + n)(3 + n)

]
,

(86a)

where
f (n) =

f1 M + n f2

f3
, g(n) =

g1 M + g2

g3
, M =

E1

E2
,

f1 = (24 + 18n + 23n2 + 6n3 + n4),

f2 = (184 + 110n + 55n2 + 10n3 + n4),

f3 = (1 + n)(2 + n)(3 + n)(4 + n)(5 + n),

g1 = (720 + 660n + 964n2 + 405n3 + 115n4 + 15n5 + n6),

g2 = (720 + 1764n + 1624n2 + 735n3 + 175n4 + 21n5 + n6),

g3 = (1 + n)(2 + n)(3 + n)(4 + n)(5 + n)(6 + n)(7 + n).

(86b)

If the higher-order terms are neglected in the governing equations of motion but not
in the constitutive relations, we obtain the third-order theory developed by Levinson [38].
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If one neglects the higher-order terms selectively in the constitutive relations, one obtains
the so-called simplified Reddy–Bickford beam theory. These ideas will be discussed shortly.

4.6. Equilibrium Equations in Terms of the Displacements

With the help of Equations (84a) and (84b), the equations of equilibrium,
Equations (76)–(78), can be expressed in terms of the generalized displacements (u, w, φx).
We obtain

− d
dx

{
Axx

[
du
dx

+ 1
2

(
dw
dx

)2]
+ B̄xx

dφx

dx
− α Exx

d2w
dx2

}
= f , (87)

− d
dx

[
dw
dx

{
Axx

[
du
dx

+ 1
2

(
dw
dx

)2]
+ B̄xx

dφx

dx
− α Exx

d2w
dx2

}]
− 1

4
d2

dx2

[
Axy

(
dφx

dx
− d2w

dx2

)
− βDxy

(
dφx

dx
+

d2w
dx2

)]
− 1

4 β
d2

dx2

[
Dxy

(
dφx

dx
− d2w

dx2

)
− βFxy

(
dφx

dx
+

d2w
dx2

)]
−α

d2

dx2

{
Exx

[
du
dx

+ 1
2

(
dw
dx

)2]
+ F̄xx

dφx

dx
− α Hxx

d2w
dx2

}
−Âxz

d
dx

(
φx +

dw
dx

)
− β2Dxy

d
dx

(
φx +

dw
dx

)
= q, (88)

− d
dx

{
B̄xx

[
du
dx

+ 1
2

(
dw
dx

)2]
+ D̂xx

dφx

dx
− α F̄xx

d2w
dx2

}
− 1

4
d

dx

[
Axy

(
dφx

dx
− d2w

dx2

)
− βDxy

(
dφx

dx
+

d2w
dx2

)]
+ 1

4 β
d
x

[
Dxy

(
dφx

dx
− d2w

dx2

)
− βFxy

(
dφx

dx
+

d2w
dx2

)]
+Âxz

(
φx +

dw
dx

)
+ β2Dxy

(
φx +

dw
dx

)
= 0, (89)

where
B̄xx = Bxx − α Exx, D̄xx = Dxx − α Fxx, F̄xx = Fxx − α Hxx,

D̂xx = D̄xx − α F̄xx, Āxz = Axz − β Dxz, D̄xz = Dxz − β Fxz,

Âxz = Āxz − β D̄xz, α =
4

3h2 , β =
4
h2 = 3α.

(90)

4.7. Exact Solutions for Bending

In this section we present exact solutions to the linear equations of equilibrium of the
RBT for FGM beams without the effect of the modified couple stress. First, the equations of
equilibrium in terms of the stress resultants can be obtained from Equations (87)–(89) by
omitting the nonlinear terms and time-depedent terms:

−dNxx

dx
= 0 (91)

−dN̄xz

dx
− α

d2Pxx

dx2 = q (92)

−dM̄xx

dx
+ N̄xz = 0 (93)
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Integrating the equations with respect to x, we obtain

Nxx = K1 (94)

N̄xz + α
dPxx

dx
= −

∫ x
q(ξ) dξ + K2 (95)

Mxx = −
∫ x ∫ ξ

q(η) dη dξ + K2x + K3 ≡ F(x). (96)

where K1 and K2 are constants of integration.
Expressing Nxx and Mxx in Equations (94) and (96) in terms of the generalized dis-

placements, and solving for du/dx and dφx/dx in terms of d2w/dx2, we obtain

du
dx

=
P1

D̄∗xx
+

D̄xx

D̄∗xx
K1 −

B̄xx

D̄∗xx
F(x) +

J1

D̄∗xx

d2w
dx2 , (97a)

dφx

dx
=

P2

D̄∗xx
− Bxx

D̄∗xx
K1 +

Axx

D̄∗xx
F(x) +

J2

D̄∗xx

d2w
dx2 , (97b)

where (see Equations (87) and (88))

P1 = D̄xx M(0)
T − B̄xx M(1)

T , P2 = Axx M(1)
T − Bxx M(0)

T ,

J1 = α(D̄xx Exx − B̄xx Fxx), J2 = α(Axx Fxx − Bxx Exx) ,

D̄∗xx = Axx D̄xx − Bxx B̄xx, D∗xx = Axx Dxx − Bxx Bxx.

(97c)

Integrating the two equations in (97a) and (97b), we obtain

D̄∗xx u(x) = −B̄xx

(
−
∫ x ∫ ξ ∫ η

q(ζ) dζ dξdη + K2
x2

2
+ K3x + K4

)
+ J1

dw
dx

+ (P1 + D̄xx K1)x, (98)

D̄∗xx φx(x) = Axx

(
−
∫ x ∫ ξ ∫ η

q(ζ) dζ dξdη + K2
x2

2
+ K3x + K5

)
+ J2

dw
dx

+ (P2 − Bxx K1)x, (99)

where K4 and K5 are the constants of integration.
We return to Equation (95) and write it in terms of the generalized displacements (the

differential of the constant part involving P1, P2, and K1 is set to zero):

0 = −Âxz

(
φx +

dw
dx

)
+

(
−
∫ x

q(ξ) dξ + K2

)
− α

d
dx

(
Exx

du
dx

+ F̄xx
dφx

dx
− αHxx

d2w
dx2

)
= − Âxz

D̄∗xx

[
Axx

(
−
∫ x ∫ ξ ∫ η

q(ζ) dζ dξdη + K2
x2

2
+ K3x + K5

)
+ J2

dw
dx

+ (P2 − Bxx K1)x + D̄∗xx
dw
dx

]
− 1

D̄∗xx

d
dx

[
P3 F(x) + α(Exx J1 + F̄xx J2 − α HxxD̄∗xx)

d2w
dx2

]
+

(
−
∫ x

q(ξ) dξ + K2

)
. (100)

where
P3 = α(Axx F̄xx − B̄xx Exx), D̂∗xx = D̄∗xx − P3 = AxxD̂xx − B̄xx B̄xx. (101)
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Integrating Equation (100) once and collecting the like terms together, we obtain

0 = − Âxz

D̄∗xx
(D̄∗xx + J2)w +

α

D̄∗xx
(α D̄∗xx Hxx − Exx J1 − F̄xx J2)

d2w
dx2

− Âxz

D̄∗xx

[
Axx

(
−
∫ x ∫ ξ ∫ η ∫ ζ

q(µ) dµ dζ dη dξ

+ K2
x3

6
+ K3

x2

2
+ K5 x + K6

)
+ (P2 − Bxx K1)

x2

2

]
+

D̂∗xx
D̄∗xx

(
−
∫ x ∫ ξ

q(η) dη dξ + K2x
)
− P3

D̄∗xx
K3

= −c1 w + c2
d2w
dx2 + g(x), (102)

where

c1 =
Âxz

D̄∗xx
(D̄∗xx + J2) =

ÂxzD∗xx
D̄∗xx

,

c2 =
α

D̄∗xx
(α D̄∗xx Hxx − Exx J1 − F̄xx J2),

(103)

g(x) = − Âxz

D̄∗xx

[
Axx

(
−
∫ x ∫ ξ ∫ η ∫ ζ

q(µ) dµ dζ dη dξ + K2
x3

6
+ K3

x2

2

+ K5 x + K6

)
+ (P2 − Bxx K1)

x2

2

]
+

D̂∗xx
D̄∗xx

(
−
∫ x ∫ ξ

q(η) dη dξ + K2x
)
− P3

D̄∗xx
K3. (104)

It is clear from Equation (102) that the analytical solution to the RBT is not algebraic
but hyperbolic (because c1 > 0 and c2 > 0). The homogeneous solution of Equation (102) is

wh(x) = K7 cosh µx + K8 sinh µx, µ =

√
c1

c2
. (105)

The total solution w(x) is obtained by adding the particular solution, wp(x) due to g(x):
w(x) = wh(x) + wp(x). In addition, there are eight constants of integration, including
the two constants of integration introduced in Equation (105). In the RBT, one is required
specify −dw/dx in addition to φx (or their dual variables, Pxx and M̄xx, respectively),
providing the required eight boundary conditions.

The second-order derivative appearing in Equation (102) comes from Pxx of
Equation (92). If we neglect the second-order derivative of w in Equation (102), by reason-
ing that they are higher-order terms (i.e., very small compared to the other terms in the
equation), we obtain

0 = − ÂxzD∗xx
D̄∗xx

w− Âxz

D̄∗xx

[
Axx

(
−
∫ x ∫ ξ ∫ η ∫ ζ

q(µ) dµ dζ dη dξ

+ K2
x3

6
+ K3

x2

2
+ K5 x + K6

)
+
(

Axx M(1)
T − Bxx M(0)

T − BxxK1

) x2

2

]
+

D̂∗xx
D̄∗xx

(
−
∫ x ∫ ξ

q(η) dη dξ + K2x
)
− P3

D̄∗xx
K3, (106)
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The solution to these equations is (after a lengthy algebra)

u(x) =
1

Axx

(
NT

xx + K1

)
x, (107)

φx(x) =
1

Dxx

(
−
∫ x ∫ ξ ∫ η

q(ζ) dζ dξdη + K2
x2

2
+ K3x

)
+

17
56

1
Axz

(
−
∫ x

q(ξ) dξ + K2

)
+

1
Dxx

MT
xx x +

1
Dxx

K5, (108)

w(x) = − 1
Dxx

(
−
∫ x ∫ ξ ∫ η ∫ ζ

q(µ) dµ dζ dη dξ + K2
x3

6
+ K3

x2

2

+ K5 x
)
− 1

Dxx
MT

xx
x2

2
− 1

Dxx
K6 −

2
7

1
Axz

K3

+
17
14

1
Axz

(
−
∫ x ∫ ξ

q(η) dηdξ + K2x
)

, (109)

The corresponding solutions obtained using the first-order shear deformation theory
(TBT) of beams are:

u(x) =
1

Axx

(
NT

xx + K1

)
x, (110)

φx(x) =
1

Dxx

(
−
∫ x ∫ ξ ∫ η

q(ζ) dζ dηdξ + K2
x2

2
+ K3 x

)
+

1
Dxx

MT
xx x +

1
Dxx

K5, (111)

w(x) = − 1
Dxx

(
−
∫ x ∫ ξ ∫ η ∫ ζ

q(µ) dµ dζ dηdξ + K2
x3

6

+ K3
x2

2
+ K5 x

)
− 1

Dxx
MT

xx
x2

2
− 1

Dxx
K6

+
1

Axz

(
−
∫ x ∫ ξ

q(η) dη dξ + K2 x
)

, (112)

A comparison of Equation (112) with Equation (109) shows that the shear correction factor
predicted by the “simplified" RBT is Ks = 14/17, which is slightly smaller than the value
suggested for rectangular cross-section beams, which is Ks = 5/6. Of course, the TBT
solution is different from the RBT solution. Particularly, the expression for φx in the RBT
contains a term due to transverse shear coefficient.

As an example, we present here the exact solutions using the simplified RBT of a
functionally graded beam with both ends pinned and subjected to a uniformly distributed
load of magnitude q0. We take the origin of the x-coordinate at the left end of the beam
(i.e., 0 ≤ x ≤ L). For this case, the boundary conditions at both ends, x = 0 and x = L, are:

u = w = 0, M̄xx = 0 → Mxx = 0. (113)
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Use of these boundary conditions yield

u(x) =
Bxx

D∗xx

q0L3

12
x
L

(
1− 3

x
L
+ 2

x2

L2

)
+

J1P3

ÂxzD∗xx

q0L
2

(
1− x

L

)
, (114)

φx(x) = −Axx

D∗xx

q0L3

12
x
L

(
1− 3

x
L
+ 2

x2

L2

)
− 1

Dxx

q0L3

24

(
1− 2

x
L

)
− MT

xxL
2Dxx

(
1− 2

x
L

)
+

J2P3q0

2D∗xx Âxz

(
2J2 + J1

Bxx

Dxx

)(
1− 2

x
L

)
, (115)

w(x) =
Axx

D∗xx

q0L4

24
x
L

(
1− 2

x2

L2 +
x3

L3

)
− B2

xx
DxxD∗xx

q0L4

24
x
L

(
1− x

L

)
+

M(1)
T L2

2Dxx

x
L

(
2− x

L

)
+

P3q0L2

2ÂxzD∗xx

(
2− J1

Bxx

Dxx

)
x
L

(
1− x

L

)
. (116)

5. Summary

In this paper three different beam theories, namely, the classical, first-order, and third-
order beam theories are presented for beams, accounting for the through-thickness variation
of the material, modified couple stress effect, and the von Kármán nonlinearity. Exact
solutions for bending of the three theories are presented for several boundary conditions.

Numerical examples are also presented to illustrate the accuracy of various models
and bring out certain salient features of functionally graded beams. A study of the FGM
beams also revealed that the dimensionless bending deflections (w̄ = w D̂xx/q0L4) are not
monotonic functions of the power-law index/exponent n because the coupling stiffness
Bxx is not a monotonically increasing or decreasing function of the modulus ratio.

Finite element models of the nonlinear theories presented herein can be found in the
monograph by Reddy [34], which also contains detailed discussions of obtaining analytical
and numerical solutions. A companion paper on FGM circular plates will appear following
the publication of this paper (see Reddy, et al. [40]). Extensions of the theories presented
herein to buckling and vibration [34,41–43], and to account for nonlocal effects [44], are
also awaiting. Extension of the theories and solutions to curved beams is another major
topic for interested researchers.
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