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Featured Application: This paper establishes the proof-of-concepts for using on-chain/off-chain
load balancing as an enabler for Blockchain deployment on lightweight computing resources. In
this way, a Block-chain of an arbitrarily large number of nodes can be deployed over any combi-
nation of com-puting resources, from cloud servers and PCs to Raspberry Pi 3. While the illus-
trations corre-spond to visual content tracking (fingerprinting), the advanced on-chain/off-chain
load bal-ancing approach can potentially serve any other multimedia application (of comparable
com-plexity) that requires synergies with Blockchain solutions.

Abstract: To bridge the current gap between the Blockchain expectancies and their intensive com-
putation constraints, the present paper advances a lightweight processing solution, based on a
load-balancing architecture, compatible with the lightweight/embedding processing paradigms. In
this way, the execution of complex operations is securely delegated to an off-chain general-purpose
computing machine while the intimate Blockchain operations are kept on-chain. The illustrations
correspond to an on-chain Tezos configuration and to a multiprocessor ARM embedded platform
(integrated into a Raspberry Pi). The performances are assessed in terms of security, execution time,
and CPU consumption when achieving a visual document fingerprint task. It is thus demonstrated
that the advanced solution makes it possible for a computing intensive application to be deployed
under severely constrained computation and memory resources, as set by a Raspberry Pi 3. The
experimental results show that up to nine Tezos nodes can be deployed on a single Raspberry Pi 3
and that the limitation is not derived from the memory but from the computation resources. The
execution time with a limited number of fingerprints is 40% higher than using a classical PC solution
(value computed with 95% relative error lower than 5%).

Keywords: Blockchain; Tezos; on-chain/off-chain load balancing; multiprocessor architecture

1. Introduction

In the context of the 2007–2008 worldwide financial crisis, Blockchains emerged as an
attempt to ensure trust and to enhance the security side of financial transactions in peer-to-
peer networks. Blockchains are specialized computing machines, optimized to perform a
reduced set of repetitive operations related to user/message/transaction authentication,
and achieved by public-key protocols, hash computation, and consensus protocols. Their
potential benefits, including decentralized trust and resilience, are generally put into
balance against their highly intensive computing requirements. Illustrating this point, it
was reported that in 2008 the BitCoin [1] energy consumption was 16% larger than the
whole energy consumption of Ireland [2].

Since then, Blockchain is no longer intrinsically connected to financial applications and
has gradually become an appealing solution for a large variety of business verticals, such
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as industry 4.0 [3], logistics [4], agriculture [5], e-health [6], and fake news detection [7],
to mention but a few. Yet, the applicative needs of such verticals are generally catered for
by conventional, general-purpose computing machines, increasingly accommodated by
elastic cloud resources.

Faced with these challenges, conventional Blockchain architectures reach their inner
limitations and often become prohibitive in terms of memory, computation and energy-
resources consumption required to achieve a predefined task into a limited time lapse [8].
Moreover, a second type of limitation relates to the complexity of code development:
each Blockchain comes across with specific programming languages and with different
syntactic constraints.

To jointly solve these limitations and having in view a lightweight generation of
Blockchains, the present paper advances a distributed on-chain/off-chain architecture,
allowing the global applicative logical workload to be securely distributed between on-
chain and off-chain resources, while keeping the global orchestration of the underlying
execution processes. We understand off-chain resources to mean: a general-purpose
computing machine with conventional computing and storage resources (elastic or not)
and with a generic programming language (e.g., C or Python).

The applicative illustrations correspond to the Tezos Blockchain and to a scanned
document tracking system based on visual fingerprinting. Note that scanned documents
are characterized by their inner semantic/digital representation duality: actually, a unique
document, from the point of view of human understanding, can have multiple digital
representations, as illustrated in Figure 1. This is the result of the fact that the scanning
conditions are never identical and, even in would-be identical conditions, the physical
characteristics of each sensor result in a unique scanned document. Consequently, digital
documents cannot be directly tracked by Blockchains (for which a single bit change in
the digital representation corresponds to a new document) and solutions related to visual
fingerprinting should also be investigated. Visual fingerprints are compact and salient
visual content features computed from the content itself, which can uniquely identify
duplicated and/or replicated versions of it in a reference database. It is also referred to as
content-based copy detection (CBCD) or near duplicate detection [9].

Figure 1. Digital documents: heterogeneous content (text, image, etc.) with various digital represen-
tations for the same semantic content.
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In a nutshell, the main contributions of the paper relate to the methodological, experi-
mental and applicative levels, as follows:

• methodological level: conception, specification and implementation of an on-chain/off-
chain load-balancing solution, thus making it possible for the intimately constrained
computing, storage and software resources of any Blockchain to be abstractly extended
by general-purpose computing machine resources;

• experimental level: specifying an experimental testbed and carrying out the under-
lying experiments for achieving the proof-of-concepts for complex Blockchain appli-
cation execution (namely visual fingerprinting) on lightweight computing resources
(namely, a multiprocessor ARM embedded platform, integrated into a Raspberry Pi);

• applicative level: the methodological framework developed in this study makes it
possible for a Blockchain of an arbitrarily large number of nodes to be deployed over
any combination of computing resources, from cloud servers and PCs to Raspberry
Pi; in this way, even low resource devices (Raspberry Pi) can host up to nine nodes
executing complex applications (namely visual fingerprinting).

The paper is structured as follows: Section 2 analyses the state-of-the-art Blockchain
applicative perimeter and introduces some basic notions related to visual fingerprinting
and to lightweight/embedded architectures. Section 3 is devoted to the presentation of
the advanced solution. Section 4 describes the applicative set-up, while Section 5 presents
the experimental results. Section 6 discusses the research results. Section 7 concludes the
paper and identifies the short-term perspectives for our future work.

2. State-of-the-Art
2.1. Blockchain at a Glance

Be Alice and Bob, two out of the N users in a network, exchanging peer-to-peer
messages in an authenticated and decentralized way. The messages sent by Alice to Bob
are first authenticated by one or a group of users in the network, according to a protocol
everybody agreed on. Once authenticated, the message is stored (together with the Alice’s
and the authenticator’s IDs) into a ledger that is distributed to all the users. Assuming a
malicious user or a group of users wants to modify a local copy of the ledger, the other
users can identify this modification and are able to fix it by recovering the unaltered version
of the ledger.

The paragraph above is the Blockchain narrative. Note that in this description, the
actual nature of the messages is not relevant; they can be related to digital currency
transfer (as initially thought) or to any other kind of information (permission granting
process, notification, etc.). According to [10,11], the Blockchain is an information storage
and distribution technology, which is transparent, secure, and operates without a central
control body. By extension, a Blockchain is a database that contains the history of all the
exchanges made among its users, since its creation. This database is secure and distributed;
it is shared by its different users, without intermediaries, thus allowing any authorized
user to check the validity of the information chain.

Transactions between users are grouped in blocks. Each block is validated by the
nodes of the network (e.g., the so-called miners or bakers). Once validated, the block is
timestamped and added to the Blockchain. Then the transaction becomes visible not only
to the receiver, but also to the entire network.

Blockchains consider the so-called consensus algorithms to preserve their security
side. In this context, several types of consensus algorithms are proposed in the literature
such as the Proof of Work (PoW), the Proof of Stake (PoS), or the Proof of Authority (PoA);
they are considered by themselves or in conjunction with some optimization mechanisms,
for instance, the Practical Byzantine Fault Tolerance (PBFT). One of the most complex and
energy-intensive consensus solutions is PoW that was used in several Blockchains, such
as Bitcoin, Ethereum and IoTA [12]. To reduce computation requirements while keeping
a prescribed level of security, the PoS solutions have been advanced and are currently
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considered by Blockchains, such as Tezos, Peercoin, Nxt, Blackcoin, or ShadowCoin, to
mention but a few.

A Smart contract is a software installed on the Blockchain that automatically executes
a logical work description that is a pre-programmed contractual commitment. It is not
a legal document in itself, but it automates the execution of a contractual commitment.
Each Blockchain comes with its Smart contract programming language, as for example
the Solidity language for Ethereum, the Go language for Hyperledger, or the Michelson
language for Tezos. Both similarities and differences among such programming languages
exist; the differences might relate to the data types, to the instruction set, to the syntax, to
the concept of transaction fee, etc.

The intensive computing behavior of the Blockchains is derived from both the con-
sensus algorithm and from the execution of the complex operations, (at least) logically
imbricated with Smart contracts execution.

For instance, the PoW algorithm is known to be a priori incompatible with lightweight
implementation. Thus, it was shown in [13,14] that an Ethereum-based system cannot be
implemented on a Raspberry Pi 3 platform. The implementation of Ethereum PoW on
the ARM (Advanced RISC Machine) architecture of the Raspberry Pi 3 made the platform
crash, even when a single node is implemented. In contrast, such an implementation is
possible when using a Field-Programmable Gate Array (FPGA) platform to replace GPUs
for consensus implementation. While such state-of-the-art limitation relates to existing
Blockchain solutions, early PoS prototype algorithms with nodes deployed on a Rasberry
Pi have also been recently advanced [15]. Yet, to the best of our knowledge, no study has
been reported on the deployment of PoS algorithms on Raspberry Pi.

In order to make provision for load-balancing in Smart contract execution, the ref-
erence architecture of Enterprise Ethereum Alliance (EEA) considers both on-chain and
off-chain processing and storage [16]. According to the EEA principles, the load-balancing
is expected to dynamically occur, according to the actual level of processing.

In the present paper, we will advance an on-chain/off-chain load balancing solution for
PoS Blockchains and we will demonstrate that in this way, a complex multimedia operation
(scanned document fingerprinting) can be deployed on a Raspberry Pi 3 platform. Note, we
will not modify the existing consensus algorithms, thereby, keeping the initial Blockchain
wise security level.

2.2. Video Fingerprinting Basic Concepts

Video fingerprinting methods are meant to identify duplicated and slightly replicated
versions of a given video sequence (query) in a reference video database [17–19]. They
are also commonly referred to as content-based copy detection (CBCD) or near duplicated
content detection.

Any fingerprinting method encompasses two main steps. Firstly, some visual content-
based features (fingerprints) that are able to concisely and accurately represent that query
are computed. Secondly, such features should be matched with the reference database,
according to a similarity metric and a threshold pre-set using functional and/or theoreti-
cal criteria.

Fingerprinting systems are characterized by three main properties. Firstly, the unique-
ness property requires for two video sequences with different content to have two different
fingerprints (in the sense of the similarity measure and of its underlying threshold). Sec-
ondly, the robustness property requires that any query video sequence and its replicas
obtained through different distortions have identical fingerprints (here again, in the sense
of the similarity measure and of its underlying threshold). Finally, the scalability property
relates to the system’s ability to deal with large databases.

From the methodological point of view, fingerprinting computation can be achieved
by various means [9]; we mention here-after only a few: 2D-DWT (Discrete Wavelet
Transform) coefficients, 3D-DCT (Discrete Cosine Transform) coefficients, pixel differences
between consecutive frames, visual attention regions, quantized block motion vectors,
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MPEG-7 features, such as the color-layout descriptor, invariant moments of frames edge
representation, dominant-edge orientation of keyframes. For each and any fingerprint, a
different matching rule is devised so as to ensure the check of any potential suspect video
sequence against a (massive) prerecorded database.

Hence, the complexity of visual fingerprinting applications is given both by the
fingerprinting computation and by its matching. In the present paper, the focus is set on
the way in which such a visual fingerprinting application can be coupled to Blockchain,
while ensuring an end-to-end lightweight implementation, demonstrated by a deployment
on an embedded platform. Consequently, we will not design a new fingerprinting method,
but will integrate an existing one, based on DWT coefficients [9] and designed for tracking
camcorder video sequences.

2.3. Multimedia Multiprocessor Embedded Architecture

The multimedia application deployment on embedded systems has undergone a
remarkable evolution, and different platforms have become adequate and efficient for the
implementation of different applications. While some platforms have been considered for
implementation and testing, others have enabled prototyping and the implementation of
optimized architectures for multimedia applications.

The existence of parallel applications has increased the importance of multi-core
processors that resulted in the emergence of GPGPUs (General Purpose GPUs). The
Graphics Processing Unit is a coprocessor, originally developed to accelerate graphics
applications, and that consists of hundreds of cores and is capable of processing thousands
of threads. The cores of a GPU execute the same instruction sequence but possibly on
different data elements, thus turning the GPU into a predilection solution for a large variety
of applications, particularly involving matrices, such as deep learning, machine learning,
augmented reality, or virtual reality, to mention but a few. Yet, GPUs intrinsically come
across with high energy consumption [20], thereby becoming unsuitable for a lightweight
solution we are targeting in the present paper.

Consequently, alternative solutions are searched for, and the FPGA family is a good
candidate (note that server manufactures such as Intel have also preferred FPGAs for their
lower energy consumption [21]).

In fact, with the advent of heterogeneous computing systems such as the Xilinx
Zynq UltraScale+ multiprocessor system-on-chip (MPSoC) [22], different processing units
can be embedded in the System-on-Chip (SoC) to meet the growing requirements of the
applications (performance/energy constraints). Moreover, hardware solutions offered by
FPGA platforms provide the expected speed-up, while reducing the energy consumption.
By connecting an FPGA-based accelerator to a programmable Central Processing Unit
(CPU), performance and energy benefits are obtained while retaining more flexibility than
an Application Specific Integrated Circuit (ASIC).

For instance, in [23], the embedded experimentation of the Viola Jones face detection
algorithm is based on a mixed HW/SW architecture; in this way, thanks to the processing
parallelism, a system more stable than a classical PC is obtained. For an identical stability,
the implementation of a massively parallel architecture on FPGA becomes faster.

Compared to GPU, FPGA is certainly less efficient, but its energy consumption is lower.
The use of a heterogeneous architecture based on parallel processors with a hardware IP
was presented in [24]. The application is implemented on a multi-core Zynq platform using
dual ARM processors. The face detection application provided a 7.8 times gain, compared
to a classical dual ARM processor architecture.

Raspberry Pi is a particular case of a multiprocessor ARM embedded platform that,
despite its low computation and storage resources, continuously gains popularity thanks
to its low cost and its use in education/academic programs. In [25], a new face detector
adapted to on-board systems has been proposed. Based on the construction of face detection
networks with low computational cost and sufficient capacity, this efficient method uses
convolution factorization to build the network with scattered connections. The EagleEye
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runs on the embedded device based on the ARM Cortex-A53 (Raspberry Pi1 3b+ [26–29])
at 21 FPS with the input of VGA resolution with better functional accuracy than methods
with the same order of computational complexity.

This concise state-of-the-art brings to light that FPGA is considered today’s main-
stream embedded solutions for multimedia applications, and that Raspberry Pi is the
challenger. Yet, the applicative borders between FPGA and Raspberry Pi are not clearly
drawn. Our paper studies whether a lightweight implementation of a PoS Blockchain
supporting a video fingerprinting application can be deployed on a Raspberry Pi 3 or not.

3. The Advanced Solution: On-Chain/Off-Chain Load Balancing

This section presents the on-chain/off-chain load balancing solution that we advanced
in order to reduce the computation effort on the Blockchain side. As the overall computation
task assigned to the Blockchain is unitary from the logical point of view, we will also keep
a unitary logical execution while balancing on-chain/off-chain the operations. Hence, the
advanced solution should be tightly coupled to the Smart contract execution flow.

In the sequel, we will present this solution for the particular case of the Tezos
Blockchain [30,31]: however, this is undertaken for the sake of clarity and the concept is
independent with respect to the Blockchain peculiarities.

3.1. Conventional Smart Contract Workflow

Tezos is a Smart contract platform, featuring formal verification for Smart contracts: a
mathematical proof that all deployed Smart contracts are designed and executed according
to their design is thus provided.

While the formal verification is a precious tool to help Smart contract programmers,
the underlying Smart contract deployment is still a complex process that requires several
steps, as illustrated in Figure 2 and explained here-after:

1. The Programming step writes a Michelson program that converts a logical contract (if
. . . then series) into a Tezos script.

2. The Formal Verification step executes the Tezos command “typecheck script” (with
the proper parameters); this command does not apply any action on the Blockchain,
yet its output informs the developer about the Smart contract correctness.

3. The Deployment step executes the Tezos command “originate” with the proper
parameters (Smart contract name, owner, transaction cost, ...). The Smart contract is
added to the new block (the Smart contract keys are generated) and is ready to be
invoked.

4. The Call/Execute step executes the Tezos command “transfer” with its parameters
(Smart contract ID, Smart contract monetizing conditions, Smart contract parameters,
. . . ); the action is added to the Blockchain, the Smart contract is executed, and the
results are stored in the Blockchain.

While this basic Smart contract deployment workflow perfectly caters to the needs
of legacy, financial-related operations (a simple transfer from one account to another,
assuming a given condition is met), their limitations appear when dealing with more
complex-use cases.

For instance, the Tezos’ Michelson language is bound to process integer values and
cannot be extended (while keeping backward compatibility) so as to process floating
point values.

Moreover, as an example of applicative limitation, the Blockchain operation cost
steadily increases with the size and complexity of the Smart contract. In order to overcome
these limitations, two solutions can be considered.

First, the mapping of the operations from floating point to integers can be a solution for
this fundamental limitation but it increases both the size and the computational complexity
of the Smart contracts.

Consequently, we designed an architecture for ensuring an on-chain/off-chain code
balancing, as described in the next section.
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Figure 2. Tezos Smart Contract Workflow.

3.2. New Smart Contract Workflow of On-Chain/Off-Chain Balancing

In order to overcome the conventional Smart contract limitations (see Figure 2) for
complex applications, we designed the architecture presented in Figure 3.

Figure 3. On-chain/off-chain code balancing.

The new architecture ensures that the computational load, which is formally described
as a list of tasks to be fulfilled by the Blockchain-based application, is balanced between
on-chain and off-chain computing.

On the one hand, the Blockchain Smart contract code is generated to take charge of
the transactional aspects (monetizing, legal articles) of the global task. It is also in charge of
the orchestration (synchronization) of the actions.

On the other hand, a general-purpose computing machine (a Python machine, in our
example) is deployed for executing the complex operations that are not Blockchain natives.
The corresponding code (written in Python, in our example) is paired with the transactional
Smart contract, and it is executed under its control.

The connector serves as an entry and exit point for both on-chain and off-chain entities.
Firstly, it is a tool that scans the Blockchain state, block generation and transaction made
in order to notify the off-chain entity whenever an action or intervention is requested.
Secondly, it collects the required data (block ID, transaction ID, needed action, parameters,
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. . . ) and passes them to the external (Python) script. From the external script point of view,
this data is the invoker of the entry parameters and the execution. The script decodes the
entry parameters, parses them, executes the requested operations and encodes the results.
The encoded result is sent back to the connector that will first check the authenticity and
integrity and then transfer it to the on-chain entity. Finally, the resulting data is added to
the Blockchain as a proof of accomplishment. The connector transfers the results to the
Smart contract that finishes its execution. The connector has access to both on-chain and
off-chain entities thanks to a REST API (the Tezos node provides a JSON/RPC interface [32]
and we developed the off-chain part).

Of course, in such a system that mixes multiple processing environments, the data
communication between the entities is usually considered as a security failure point, and
particular attention should be paid in this respect. Firstly, the data exchanged through the
connector are encrypted by an https mechanism: in this way, the off-chain virtual machine
is controlled only by trusted entities. Secondly, specific security constraints are set to Smart
contract programming, in order to ensure the integrity and the non-repudiation of all
accepted requests; implicitly, an attacker that was able to pass the https level of security is
thereby referred from rewriting the chain. Thus, the contract will record whatever actions
trigger its entry points. Moreover, if an outcome in the contract depends on at least one
user argument, the contract will not accept any additional user-supplied inputs until the
off-chain process finishes the in-progress tasks.

4. Experimental Set-Up

This section describes the experimental set-up; it is structured into three sub-sections,
accordingly, the hardware/software background for experiments, the presentation of the
on-chain/off-chain solution code, and the fingerprinting method and database, respectively.

4.1. Hardware/Software Experimental Platform

To validate the efficiency of the proposed solution, a multiplatform deployment was
considered to jointly offer the user the simplicity of graphic user interfaces and the size
and low-energy consumption of an embedded platform.

The hardware part consists of a PC (acting as an interface) and a Raspberry Pi (acting
as the computing device). The PC has the following characteristics: CPU of 64-bit 6-
core Intel Xeon E5-1650, 3500 MHz, GPU of (2x) AMD FirePro W2100-2GB DDR3, RAM:
32 GB, 2133MHz, with dual Ubuntu/Windows OS. The Raspberry Pi has the following
configuration: CPU of 64-bit quad-core ARM Cortex-A53, 1200 MHz, GPU: Multimedia
VideoCore IV, 400 MHz, RAM 1 GB SDRAM LPDDR2, 900 MHz, operated by Raspbian
Buster Lite (ver. Sept. 2019), kernel version 4.19.

The task allocation on these two computing devices is illustrated in Figure 4. The PC
acts just as a kind of interface and it is in charge with the ingestion of the visual documents.
The rest of the computing tasks are performed on the Raspberry Pi (both fingerprinting
processing and on-chain/off-chain processing).

Figure 4. Task allocations on the two computing devices.

On the Raspberry Pi, the document fingerprint is first extracted by a devoted software.
Then, the on-chain/off-chain load balancing module is invoked. This module starts by
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an on-chain task, namely performing the first part of the Smart contract (parameters such
as sender and fingerprint). Then, the off-chain part is invoked, and the Python script
checks the fingerprint’s existence in the database and, if not present, adds it to the database.
Finally, the on-chain part executes the last part of the Smart contract.

4.2. On-Chain/Off-Chain Load Balancing Code

The software implementation is illustrated by the execution sequence (cf. Figure 5)
as well as by some excerpts from the code executed on the Raspberry Pi. The complete
software implementation is made available as open source under Apache license.

Figure 5. Execution sequence diagram.

We assume that the query fingerprint is already extracted (off-chain) and the user
verifies whether it is present in the blockchain or not.

While the sequence diagram in Figure 5 shows the life-cycle of the fingerprinting appli-
cation, it can be considered as a generic workflow for our on-chain/off-chain load balancing.

When the user wants to check the uniqueness of a digital document, the fingerprint
computation is launched through the graphic interface. Then, a transaction to the Smart
contract address precising the entry point and passing the fingerprint as an argument is
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made. As soon as the Smart contract is triggered, it blocks the access of other users to
avoid conflicts and avoid any potential security issues. When the block containing that
transaction is processed and validated (e.g., by the miner or baker), the user receives the
transaction receipt containing its details and the connector receives a notification event that
is subscribed to. The connector fetches the user’s request and forwards it to the Python
script where the document fingerprint is compared with all previous fingerprints processed
by the system, and then returns the matching process results to the connector. At this stage,
the connector uses a moderator account to make a transaction to the Smart contract with
the results. The Smart contract authorizes the moderator transaction, allowing the user to
access again and notify the user via an Event.

This process is illustrated here-after through 4 code samples, labeled by (a)–(d).
(a) On-chain: user initializes a Tezos node and transfers the operation fees from its

address to the Smart contract address (with the required arguments)
# User: connect to tezos blockchain
$ ./tezos-init-sandbox-client.sh
#User: call the ‘left’ smart contract entry point by making a
#transaction to the smart contract address with the required fees
$ tezos-client transfer $PRICE from $CLIENT_ADDRESS to $SMART_CON
TRACT_ADDRESS –arg “Left (Pair “$DOCUMENT_NAME” “$DOCUMENT_FINGERPR
INT”)” –burn-cap 20

(b) On-chain: user inquires the Blockchain status
#> if the transaction passes successfully:
# > the smart contract lock further access to that entry point
# > a blockchain scanner notifies the related python virtual environment

(c) Off-chain: fingerprinting matching in the Python virtual environment
>>> if (isValidFingerprint(documentFingerprint)):

exists = matchFingerprintWithDatabase(documentFingerprint)
>>> if(exists):

documentName = getDocumentByFingerprint(documentFingerprint)
transfer(from=ADMIN_ADDRESS, to=SMART_CONTRACT_ADDRESS,

args=[“Right”, True, documentName])
>>>else:

addDocument(documentName, documentFingerprint)
transfer(from=ADMIN_ADDRESS, to=SMART_CONTRACT_ADDRESS,

args=[“Right”, False, documentName, documentFingerprint])
(d) On-chain: user gets the updated Blockchain

#> if the transaction passes successfully:
# > the smart contract entry point is again available
# > a blockchain scanner notifies the client about the results

4.3. Fingerprinting Method and Database

In our study, we consider the camcorder fingerprinting method advanced in [9]. For
scanned visual documents, the modules related to inter-frame synchronization are disabled.

The fingerprinting method is based on the 2D-DWT (2D Discrete Wavelet Transform)
and on a mathematical decision rule for the detection of replicas.

The fingerprint per se is represented by a set of 2D-DWT coefficients of the query im-
age. A previous in-depth statistical investigation on the 2D-DWT coefficients demonstrated
not only the stationarity of such coefficients but also the stationarity of their modifications
under computer-simulated near-duplicated modifications. Through its accurate repre-
sentation of visual content, the wavelet transform grants the fingerprints the uniqueness
property and limits the occurrences of false alarms (i.e., fingerprints extracted from differ-
ent video content have to be different). The fingerprint matching is carried out, based on a
repeated Rho test on correlation, which allows the detection of replicas, hence ensuring the
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robustness property (i.e., fingerprints extracted from an original video sequence and its
replicas should be similar in the sense of the considered similarity metric).

To evaluate the method performances, we created a 11,557 digital document database.
The digital documents are JPEG images obtained from 25 PhD theses defended in France
in various research fields (physics, biology, philosophy, . . . ) accessible on [33]. To illustrate
the process, some samples are shown in Figure 6; it can be noticed that the database features
a very heterogeneous visual content, mixing text, numerical values, scientific graphical
signs, graphical representations, and images. The database also features heterogeneity in
terms of layout, font size, and language.

Figure 6. Original images sampled from database.
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We also created a set of test images (attacked images). Each test image is composed
of two parts extracted from two database images with different ratios ([50% image1, 50%
image2], [67% image1, 33% image2], [75% image1, 25% image2]) as illustrated in Figure 7.

Figure 7. Attacked images sampled from database.

The resulting testing corpus is composed of 4 × 11,557 = 46,228 visual documents.

5. Experimental Results

In this section, we will describe the different experimental results obtained following
the implementation of our application.

Figure 8 presents the memory consumption evolution while changing the number of
deployed nodes: a quasi-linear behavior is thus brought to light. Yet, the experiments also
brought to light that the maximum number of nodes to be deployed on a Raspberry Pi 3
is 9 (an error message is obtained when trying to deploy the 10th node). Note that this
limitation is not derived from the memory: actually, after deploying the 9th node, only
about 25% from the total memory is required (241.2 M out of 1 G). The values reported in
Figure 8 are obtained as average values over 10 experiments; for each reported value, the
95% confidence limits are computed with a relative error lower than 5%.

Figure 8. Memory consumption depends on nodes number.
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These results demonstrate that the main limitation derives from the reduced comput-
ing resources: for more than 9 nodes, the maximal time imposed by the blockchain for
performing basic operations cannot be met on a Raspberry Pi 3. The Raspberry Pi stops as
illustrated in Figure 9.

Figure 9. System crashes with more than nine nodes.

In the sequel, we deployed 5 Tezos nodes, so as to reach a trade-off between functional
and non-functional needs.

Table 1 presents the execution time of the fingerprinting system (fingerprint extraction,
matching algorithm, eventually the adding of new fingerprinting to the database) on a
computer and on a Raspberry Pi, as a function of the visual document database size. By
analyzing the results presented in Table 1, firstly, it can be noticed that the Raspberry
Pi cannot process databases larger than 1000 documents (with 5 Tezos nodes running).
When the database contains only one document, the execution time on Raspberry Pi is
37.7 times larger than the one on the PC. However, for databases containing between 10
and 1000 documents, the ratios of the Raspberry Pi execution time to the PC execution time
vary between 7.5 and 9.8, with an average value of 9.13. For the two processing structures,
these values also show the different weights of the initialization operations in the overall
processing time.

Table 1. Overall execution time.

PC Raspberry Pi 3

1 7 ms 264 ms
10 42.2 ms 320 ms
50 69.1 ms 637 ms

100 103 ms 960 ms
500 375 ms 3.65 s

1000 704 ms 6.92 s
5000 3.41 s —-

10,000 6.78 s —-
11,557 7.77 s —-

The values reported in Table 1 are obtained as average values over 10 experiments.
The underlying 95% confidence limits can be computed with relative errors lower than 10%
for the case of a single visual document in the database and with relative errors lower than
2.5% for the rest of the cases. This difference can be explained by the fact that in the case of
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a single document in the visual database, the random effect of the initialization conditions
is higher than in the other cases.

Table 2 presents the execution time of Tezos Blockchain operations (Bake, Coin trans-
fert, Typecheck, and Smart contract deployment) when considering 5 Tezos nodes running,
on a PC and on a Raspberry Pi, respectively. The values reported in Table 2 are obtained as
an average over 10 successive experiments; their corresponding 95% confidence limits can
be computed with relative errors lower than 2.5%. For the four types of operations, the
ratios of the Raspberry Pi execution time to the PC execution time is 2.23, 3.63, 6.27 and
3.95, respectively. It can be noticed that the largest ratio corresponds to the execution of
the Typecheck operation: this result can be explained by the inner complexity of such a
command related to the formal verification of the Smart contract.

Table 2. Tezos basic operations execution time.

PC Raspberry Pi 3

Bake 0.994 s 2.216 s
Coin transfer 1.261 s 4.575 s

Typecheck 0.505 s 3.167 s
Deploy a Smart contract 1.836 s 7.263 s

By comparing the results reported in Table 1 to those reported in Table 2, it can be
noticed that fingerprinting-related operations induce a higher ratio of execution duration
between Raspberry Pi and PC; this result can be explained by the fact that the Raspberry
Pi considered in the experiments has a quad core CPU and our software implementation
features an inner-parallelism designed to match the Blockchain operation peculiarities.

Table 3 presents the execution time of the digital document tracking system measured
from the end-user perspective. It presents the time between the document sent and the
result reception (however, it does not include the time required for adding new documents
in the database). Table 3 shows that the Raspberry Pi execution time is 40% higher than
using a classical PC solution (value computed with 95% relative error lower than 5%).

Table 3. Tezos basic operations execution time (for a 1000 fingerprints database).

PC Raspberry Pi

Time 13.6 s 23.7 s

Note that the results presented in Tables 1–3 are meant to illustrate the performance
reductions when deploying the related operation on Raspberry Pi, as compared to a PC
execution. They show that there is no applicative need for using a PC, the Raspberry Pi
device being enough in this respect.

6. Discussion

The paper establishes the proof-of-concepts for using on-chain/off-chain load bal-
ancing as an enabler for Blockchain deployment on lightweight computing resources.
Accordingly, a Blockchain of an arbitrarily large number of nodes can be deployed over
any combination of computing resources, from cloud servers and PCs to Raspberry Pi.

Although the illustrations correspond to the Tezos Blockchain and to a visual finger-
printing application, these should not be considered as strong applicative constraints, as
explained here-after.

On the one hand, the Tezos Blockchain has many appealing conceptual and applica-
tive features, such as reliability and formal verification, on-chain governance and self-
amendment. Yet, the results reported in the present paper are generic with respect to these
peculiarities and can be considered as representative for any PoS Blockchain. Moreover,
our solution features horizontal scalability. Actually, any Blockchain has a decentralized
architecture, where nodes and groups of nodes are hosted on different computing resources.
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Hence, while our paper shows that up to 9 nodes can be hosted on a Raspberry Pi 3 device,
real-life Blockchain solutions are expected to deploy their required number of nodes over
a combination of multiple Raspberry Pi devices, PCs, cloud servers, etc., as illustrated in
Figure 10.

Figure 10. Nodes and groups of nodes can be hosted on different computing resources, from PCs to
Raspberry Pi.

On the other hand, the overall solution advanced in the paper is not only (horizon-
tally) scalable with respect to the Blockchain deployment but also with respect to the
fingerprinting application, which has an O(nlog(n)) complexity [9].

In Figure 10, a PC is represented as a computing device for the graphic user interface;
yet, it is not compulsory and can be replaced (without any impact in the experimental
results) by any other device operated by an operating system featuring graphic user
interface (as, for instance, a Raspberry Pi operated under Raspbian ver. September 2019).
Moreover, in Figure 10, the database is graphically represented near a Raspberry Pi; yet, no
particular constraint is applied to its storage in the Blockchain.

As a final remark, note that the applicative area of our solution is not restricted to
fingerprinting. The solution for on-chain/off-chain load balancing can be mutatis-mutandi
applied to any type of application, with limited impact in the codes of the modules
presented in Figure 3:

• the Smart contract code is slightly modified so as to cope with the new applicative
logic (yet the functions related to the on-chain/off-chain balancing are unchanged);

• the Secure REST Connector is not expected to suffer any modification;
• of course, the off-chain code will be completely changed so as to correspond to the

new application.

7. Conclusions

Nowadays, companies and governments are taking the digital transformation chal-
lenge, and the means for reaching success in such a transformation are very different,
belonging to technology, management, education, human acceptance, etc. One of the prob-
lems facing this transformation is digital documents tracking. While Blockchain is a priori
the most appealing solution, digital documents proved themselves to be a challenging-use
case that requires the coupling of Blockchain to visual fingerprinting.

With this paper, we establish a proof-of-concept for the coupling of a multimedia
application (visual fingerprint) and Blockchain technologies and for the deployment of the
underlying solution on a lightweight platform. To this end, we develop an on-chain/off-
chain load balancing solution that is available (pending on paper acceptance) as open
source. In this way, Smart contracts with very high computational complexity (the visual
document tracking management, in our case) can be deployed on a Raspberry Pi structure.
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The experimental results show that up to 9 Tezos nodes can be orchestrated on a
Raspberry Pi 3 in order to ensure a visual fingerprinting task. The overall (end-to-end)
computing time is 40% higher than using a classical PC solution. Note that all the values
reported in our study are computed with 95% relative errors lower than 10%.

The illustrations correspond to the Tezos Blockchain and to a visual fingerprint-
ing application: yet, the approach in itself is generic and does not depend on the
blockchain/application peculiarities.

These results make it possible for a PoS Blockchain of an arbitrarily large number of
nodes to be deployed over any combination of computing resources, from cloud servers
and PCs to Raspberry Pi.

The short-term perspectives consider both software and hardware aspects. Firstly,
stress tests and advanced security tests are required for the advanced on-chain/off-chain
code balancing workflow. Secondly, hardware accelerators will be studied in order to
reduce the overall execution time of the system (while observing pre-established energy
consumption constraints).
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