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Abstract: Due to extreme weather, researchers are constantly putting their focus on prevention and
mitigation for the impact of disasters in order to reduce the loss of life and property. The disaster
associated with slope failures is among the most challenging ones due to the multiple driving
factors and complicated mechanisms between them. In this study, a modern space remote sensing
technology, InSAR, was introduced as a direct observable for the slope dynamics. The InSAR-derived
displacement fields and other in situ geological and topographical factors were integrated, and their
correlations with the landslide susceptibility were analyzed. Moreover, multiple machine learning
approaches were applied with a goal to construct an optimal model between these complicated factors
and landslide susceptibility. Two case studies were performed in the mountainous areas of Taiwan
Island and the model performance was evaluated by a confusion matrix. The numerical results
revealed that among different machine learning approaches, the Random Forest model outperformed
others, with an average accuracy higher than 80%. More importantly, the inclusion of the InSAR data
resulted in an improved model accuracy in all training approaches, which is the first to be reported
in all of the scientific literature. In other words, the proposed approach provides a novel integrated
technique that enables a highly reliable analysis of the landslide susceptibility so that subsequent
management or reinforcement can be better planned.

Keywords: landslide potential; InSAR; spatial factors; machine learning; slope unite

1. Introduction

In Asian subtropical monsoon regions, July to September is a season of strong ty-
phoons. High rainfall intensity usually causes serious landslide events in mountainous
areas [1]. It is necessary to predict landslide occurrence and behavior and adopt appropriate
prevention policies and methods to improve disaster relief effectiveness and reduce casual-
ties and property loss during and after disasters. Landslide prediction aims to predict the
possibility of the occurrence of landslides in a specific area; available data are commonly
used, including conditional factors and historical landslides. These data are collected
from landslide inventories and static instruments, and their values are shown in spatial
analysis [2]. However, traditional landslide prediction, such as mathematical evaluation
models, lacks information about the temporal probability of landslides, i.e., time-series
landslide behavior. Landslide displacement time-series data can directly reflect ground
surface deformation and stability characteristics. Therefore, they have been recently used
to develop landslide prediction models. Generally, these time-series data are collected from
one-point survey equipment, such as surface extensometers and GPS devices [3]. However,
field GPS surveying projects, which depend on only one or two temporarily installed
reference stations, have many disadvantages [4]. In practice, steadily obtaining survey
data using these single reference stations is often difficult because of poor performance or
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failure. Therefore, the use of only the single-point method in landslide surveys would limit
the cost-effectiveness.

In recent years, remote sensing technology has effectively detected large-scale landslide-
sensitive areas and generated landslide inventories, which are crucial for predicting land-
slides before they occur or recur, especially in far or barely accessible areas [5]. In daytime
satellite images without shadows and clouds, landslide positions can be identified through
noticeable radiometric contrasts between land cover types [6]. Optical sensors cover the
electromagnetic spectrum from 390 nm to 1 mm, including the visible and infrared bands.
Such devices can measure the visual properties in the spectral characteristics of the land
surface, which can then be used to detect and map landslides. Researchers can also combine
time-series satellite images with digital elevation models (DEMs) to acquire 3D terrain,
which can be used to visually detect and predict potential landslides.

However, affected by monsoons, typhoons, and thunderstorms, mountainous areas are
usually shrouded in clouds at times; thus, the use of satellite images to monitor landslide
disasters could be limited by weather conditions. Compared with optical sensors, synthetic
aperture radar (SAR) sensors use a longer wavelength—microwaves; having all-weather
and all-day operational capability, SAR sensors can penetrate cloud cover and reduce the
limitation imposed by the atmosphere to remotely evaluate the accurate range and severity
of landslide disasters in almost real-time [7]. Although some particular meteorological
situations, such as thick rain cells, may disturb the backscattering coefficient, SAR remains
more powerful than optical sensors for long-term landslide observation [8]. Spaceborne
SAR, such as Envisat, ALOS PALSAR, RADARSAT, TerraSAR-X, and Sentinel-1, provide
high spatial resolutions and can clearly observe target objects in full-time and in almost
all-weather conditions.

Numerous applications of SAR data to ground displacement detection have demon-
strated their usefulness for landslide characterization and mapping [9]. Differential SAR
interferometry (DInSAR) is a commonly used method of ground deformation measure-
ment, and it can efficiently generate or update landslide inventory [10], which is critical
information about landslide behavior for landslide susceptibility assessment. DInSAR
calculates the phase variation of two SAR images acquired in the same region at different
times. Long-term InSAR observations are calculated as the deformation-induced phase
shift through the backscattered microwave signal between several coherent acquisitions.
The landslide behavior of time-series information, which depends on the millimetric mea-
surement accuracy and the metric spatial resolution, is obtained under most atmospheric
conditions [11].

Landslide prediction methods can be classified into three types: image analysis,
mathematical evaluation models, and machine learning methods [12]. Image analysis
uses geographic information systems, which can collect, store, manage, and analyze
geographical data. The risk of landslides can be predicted by analyzing disaster data,
such as history of landslides and land. The probability of landslides varies because it is
based on the number of data layers used for analysis. Mathematical evaluation models use
a single evaluation equation that is combined with the physical concepts of mechanics and
hydrographic data, such as rainfall, runoff, and infiltration data, for landslide susceptibility
assessment [13]. The use of such models is easy for simulation and fits a wide range of
environments. However, mathematical evaluation models require detailed data of the
geotechnical engineering and geological aspects of slope failure at sites [14], which makes
these models costly and impractical for large-scale areas.

In recent years, machine learning and data mining techniques, such as support vector
machine, artificial neural network, and decision tree (DT) models, have been applied
for landslide susceptibility modeling [15]. These methods incorporate different factors
that might cause landslides to evaluate the probability of landslide occurrence. Machine
learning algorithms enrich the quality and accuracy of generated susceptibility maps.
Researchers use and compare various machine learning models on the basis of different
data [16–19], integrate different machine learning models to improve accuracy [20–23],
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or develop new algorithms that are based on traditional machine learning models to
strengthen landslide prediction results [24–26]. These techniques perform better than do
classical methods. Most machine learning techniques achieve overall success rates of 75%
to 95% [27]. Although many applications have demonstrated the feasibility of data-driven
models for capturing nonlinear relationships and modeling the dynamic processes of
landslides on the basis of historical model data, certain limitations remain [28]. As shown,
landslide behavior involves temporal dependencies. However, common machine learning
models ignore this intrinsic temporal dependency, which involves the effect of preceding
actions on present actions in the model [29,30]. The solution proposed by this study is to
combine spatial-temporal data, including InSAR observables, as a landslide susceptibility
factor with other traditional geological and land cover factors into a model that can improve
the prediction accuracy of potential landslides. To our knowledge, integrating InSAR
observables and multiple geological factors for landslide susceptibility analysis is an
effective and pioneered contribution for landslide potential prediction research.

2. Methods

This research method effectively estimates the landslide potential of slopes through
four steps: (1) segmentation of slope units, (2) numerical indexing of related spatial factors,
(3) correlation between spatial factors and slope landslides, and (4) use of machine learning
methods. A displacement prediction analysis model was constructed following the above
process. Finally, a confusion matrix was used to verify the results of the displacement
prediction analysis. The overall research method and procedure are shown in Figure 1.

Figure 1. Flowchart of landslide susceptibility analysis based on the spatial factors with machine
learning approach.
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2.1. Segmentation of Slope Units

This study used the slope unit as the basis of analysis to show the topographic
characteristics of each slope. These slope units serve as a framework for the subsequent
geographical interpretation of environmental spatial factors. The method of slope unit
segmentation refers to the catchment overlap concept proposed by Xie et al. [31], as shown
in Figure 2. First, the water catchment area in a DEM is identified through the hydrology
module in the software ArcGIS, and the water line is turned into a ridge line by flipping the
DEM, which is divided into two slope units (left and right). When the hydrology module
identifies small catchment areas, the default flow accumulation value is set to 500 as the
threshold value for dividing the river area. Then, the slope units are cut out, and each area
becomes less than 30 ha. With the aid of a shadow map, aspect map, slope map, river map,
and satellite orthophoto overlay, the overlap between each slope unit is confirmed.

Figure 2. Schematic of dividing the slope units with the overlap method of catchment areas (modified
from [31]).

2.2. Numerical Indexing of Related Spatial Factors

In this study, the spatial factors were divided into four categories: terrain, location,
geological, and driving. The terrain category represents the geometric changes in surface
elevation and coverage distribution, including elevation, slope, aspect, terrain roughness,
profile curvature, vegetation index, and the displacement velocity gradient of InSAR. The
location category shows the distance of influencing factors, including roads, rivers, and
geo-faults. The geological category reflects the strength, folds, and dip slopes of rock
formations. The driving category is the rainfall factor. The index calculations of these
factors are described below. It should be mentioned that these spatial factors were first
selected based on suggestions reported in the relevant studies in the literature [16–20].
A significance test was then performed to identify the most influential factors that have the
high correlation with the landslides in the study areas. The results and discussion on the
significance test of spatial factors are presented in Section 3.2.
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2.2.1. Terrain Category

• Elevation, slope, and aspect

On the basis of the framework of the slope unit, the highest elevation in each unit
was extracted and represented as the elevation factor, as shown in Equation (1). According
to the height change caused by the horizontal movement distance, the slope factor is
expressed by a tangent function on average, as indicated in Equation (2). The aspect factor
refers to the direction of the maximum elevation change in the slope unit. It is calculated
by the angle with the true north direction, as shown in Equation (3), where the true north
direction is 0◦, and the angle increases to 360◦ in the clockwise direction.

Ielevation = max(Zi) (1)

Islope = tan θs =
∆Z
∆L

(2)

Iaspect =
180◦

π
tan−1[max(θs)] (3)

where Zi is elevation, ∆Z is the mean elevation difference, ∆L is the mean horizontal
distance, and θs is the main slope angle.

• Terrain roughness

Terrain roughness represents the degree of height change. When the undulating
terrain faces the effect of large gravity, the smaller resistance force makes the slope have a
higher possibility of landslide. The elevation standard deviation σ is used to describe the
degree of elevation change in the slope unit (Equation (4)).

σ =

√
∑ i(Zi − Z)2

ns − 1
(4)

where Z is the average elevation in a slope unit, and ns is the number of grids in the
slope unit.

• Profile curvature

The profile curvature is expressed as the slope steepness. This study used the spatial
analysis module of the software ArcMap to calculate the profile curvature of each slope unit
on the basis of a 3 × 3 moving grid, which is the default grid size in ArcMap. A negative
(positive) value of the curvature represents a convex (concave) slope.

• Vegetation index

Plants can effectively stabilize the rock and soil on slopes, but the exposed soil area may
suffer from repeated landslide and displacement problems. Hence, the vegetation index is
defined as the proportion of vegetation area in the slope unit, as shown in (Equation (5)).

Iveg. =
Aveg.

As
(5)

where Aveg. is the area of the vegetation and As is the area of the slope unit.

• Annual displacement velocity gradient of InSAR

InSAR technology calculates the phase difference to estimate the displacement of the
ground through more than two periods of SAR observations. The InSAR-derived ground
displacement can be regarded as a direct observation of ground stability and was thus
proposed as an essential index for landslide susceptibility analysis in this study. However,
the original displacements from InSAR observations suffer from various influencing factors,
such as vegetation changes and orbital variations of SAR satellites. In order to reduce
the periodical or systematic noises due to those uncontrollable factors and to extract a
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meaningful index for evaluating the ground stability, the annual velocity gradients derived
from InSAR displacement fields were used in this study. First, the annual displacement
information of InSAR is placed in the range from −1 to 1 by mean normalization, which is
shown in Equation (6), to unify the scale and reduce the systematic error of InSAR data.

Zsi =
ZSi − µ

max(Zsi)−min(Zsi)
(6)

where Zsi is the normalized InSAR displacement value, ZSi is the annual displacement of
InSAR, and µ is the average annual displacement.

The annual displacement velocity of InSAR is obtained as the slope value in first-
order linear fitting (Equation (7)). These discrete observation points are interpolated
with a regular grid size of 20 m to present the field of annual displacement velocity. For
highlighting the displacement positions, the field gradient is calculated with a 3 × 3
moving window, the same as for computing the profile curvatures. The index calculation
is expressed as Equation (8).

Zsi = V∆t + ∆Z (7)

IInSAR = ∇Vf(V) (8)

where V is the annual displacement speed of InSAR, ∆t is annual observation time, and ∆Z
is the difference in annual displacement.

2.2.2. Location Category

Potential displacements are affected by the distances between slope units and location
factors. In this study, three location factors were selected for analysis, namely, the river
distance, road distance, and fault distance. Through each shortest distance from the
centroid of the slope units to the three location factors, the formula of the location factors
Ilocation is expressed by Equation (9).

Ilocation(rivers, roads, f aults) = min
(√

(Xc − Xl)
2 + (Yc −Yl)

2
)

(9)

where (Xc, Yc) is the centroid coordinates of slope units, and (Xl, Yl) is the coordinates of
location factors (including rivers, roads, and faults).

2.2.3. Geological Category

• Rock Mass Strength

Rock masses with weaker strength are prone to landslides due to their difficulty in
resisting the disturbance of external forces. Franklin used the degree of rock structure
fracture and single compressive strength to classify the rock mass strength into seven
levels [32]. In this study, the slope unit was superimposed on the environmental geological
map produced by the Central Geological Survey of Taiwan, and the corresponding rock
mass strength information was used as the rock mass strength index.

• Folds

When a rock is squeezed into curved folds, the fold layer becomes prone to landslides.
In this study, the fold factor is defined as the number of folds in the slope unit, as shown in
Equation (10).

I f old = ∑ n f (10)

where nf is the number of folds in a slope unit.
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• Dip Slopes

Dip slopes mean that a stratum has the same inclination as that of the slope; a slope
landslide may be formed by sliding along the layer. In this study, the dip slope index is
defined as the ratio of the dip slope area to the slope unit area, as shown in Equation (11).

Idip slope =
Ad
As

(11)

where Ad is the area of the dip slope and As is the area of the slope unit.

2.2.4. Driving Category (Rainfall)

The density of rainfall data collected by rainfall stations is much lower in mountainous
areas than that in urban areas. Relevant studies have mostly used distance as an interpola-
tion reference to obtain the rainfall in a whole area through grid interpolation. This study
considered the distance and elevation factors of rainfall stations and added the aspect
factor to construct a rainfall interpolation model, as shown in Equation (12). In this model,
the elevation parameter α, distance parameter β, and aspect parameter γ are obtained
through the least squares adjustment, and the parameter weight is shown in Equation (13).

Irain = α

(
∑
iH

WiH · Ri

)
+ β

(
∑
iL

WiL · Ri

)
+ γ

(
∑
iθ

Wiθ · Ri

)
(12)

WiH ∝
1

∆H2 ; WiL ∝
1

∆L2 ; Wiθ ∝
1

∆θ2 (13)

where Irain is the rainfall index, WiH is the elevation weight, WiL is the distance weight, Wiθ
is the aspect weight, Ri is the rainfall observation at Station i, α is the elevation parameter,
β is the distance parameter, γ is the aspect parameter, ∆H is the elevation difference, ∆L is
the distance difference, and ∆θ is the aspect difference.

2.3. Correlation between Spatial Factors and Slope Landslides

Significant factors were detected through the spatial factors and the displacement
correlation score. The Spearman method was adopted to arrange the data in order of
numerical value, thereby improving the limitation of the normal distribution assumption
in the correlation analysis. The correlation coefficient γs is distributed between 1 and
−1; a positive (negative) value indicates a positive (negative) correlation. The closer the
coefficient value to 0, the more unlikely it is to affect the displacement. Its sequential linear
relationship is described in Equation (14).

γs = 1−
6∑ ∆2

i
n(n2 − 1)

(14)

where γs is the correlation coefficient, ∆ is the difference between the spatial factor and
displacement, and n is the number of samples.

Finally, a significance test was conducted through the correlation coefficient to check
the significance of each factor. This test is shown in Equation (15).

t = 1− γs − ρ0√
1−γ2

s
n−2

(15)

where ρ0 is 0, and it is the null hypothesis (indicating no correlation). If the significance
level t is greater than 0.99, the null hypothesis will be rejected; that is, the factor is correlated
with the displacement.
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2.4. Use of Machine Learning Methods

Machine learning is applied to establish prediction models, which are used in landslide
potential and displacement prediction, by inputting the spatial factors and displacement
observations. Widely used machine learning algorithms for classification prediction include
naive Bayes, DT, random forest, adaptive boosting (AdaBoost), and extreme gradient
boosting (XGBoost).

• Naive Bayes

As the probability model of naive Bayes assumes that the factors are independent
of each other and conform to a Gaussian distribution, naive Bayes classification helps
clarify a large number of complex classification problems. The early-stage spatial factors
correspond to the landslide and nonlandslide slope units, and they are regarded as training
samples to establish a prediction model. The later-observed spatial factors are inputted
into the model to determine the landslide probability of each slope unit. The naive Bayes
prediction model is based on the probability density function of the Bayesian classification
method [33], as shown in Equation (16).

P(wi |x ) =
P(x|wi )P(wi)

P(x)
,
{

j 6= i
j = 1, 2

(16)

where P(wi |x ) is the probability of the classifying wi occurring in the slope unit x, P(x|wi )
is the probability of the slope unit x occurring in the classifying wi, P(wi) is the probability
of classifying wi, and P(x) is the probability of the slope unit x.

• DT

A DT assumes that the factors are independent of each other, and the category proba-
bility of the DT path is defined by the factor characteristics [34]. This algorithm adopts a
dichotomy method, which is similar to a double-forked tree branch, to calculate the Gini
coefficient value at the node. Finally, the gain value in each path is summed, and the largest
accumulator will be predicted to belong to a category, as shown in Equation (17).

gain = ∑ pi

(
1−∑ p2

i

)
(17)

where pi is the probability. If the node has only one category, pi will be 0. If the numbers of
two categories are the same, pi is 0.5.

• Random forest

Random forest is a collection of multiple DTs and adds the use of bagging. The
observation data are taken out of the number of samples and trained as n types of classifiers.
According to the sample difference in each DT, the random uncertainty of the data is
considered. Under the same weight, the classifier uses the summed majority as the best
classification tree to predict the classification [35]. Equation (18) represents the probability
of the c-th factor in the t-th DT, and the average probability value gc of the category is
obtained according to the sum of multiple DTs. Finally, the category of the slope unit x is
determined according to the maximum gc value (Equation (19)).

P(c|vi(x) ) =
P(c|vi(x) )

∑n=1
l P(cl|vi(x) )

(18)

gc(x) =
1
t

t

∑
i=1

P̂(c|vi (x)) (19)

where P is the probability, c-th is the category, v is the node, l is the number of categories,
t is the number of DTs, and gc is the average probability of the c-th category.
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• AdaBoost

Boosting increases the weight of wrong data in a classification model, and the wrong
information is trained to strengthen the identification. The derived new classifier will
reduce the chance of early error [36]. The iterative process of the AdaBoost calculation is
extremely sensitive to noise and abnormal data; therefore, these should be reduced so that
the process can focus on difficult-to-classify feature factors. AdaBoost analysis initially
assumes that the sample weights are equal. After the k-th iteration, samples are selected
on the basis of the weight Wk to train the classifier Ck, as expressed by Equation (20).{

D =
{

x1, y1, · · · , xn, yn
}

Wk(i) = 1
n , i = 1 · · · , n

(20)

where D is the sample category, (xi, yi) is the sample information, n is the number of
samples, and Wk is the weight distribution of all samples in the k-th iteration.

The classification error Ek confirms the correctness of the classification and updates
the weight Wk + 1, as shown in Equation (21). The iterative calculation of classification is
completed when the error Ek is less than the preset threshold.

Wk+1(i)←
Wk(i)

Zk
×

 e−
1
2 ln 1−Ek

Ek , if yk(x
i) = yi

e
1
2 ln 1−Ek

Ek , if yk(x
i) 6= yi

(21)

where Wk + 1 is the updated weight, Zk is the normalization coefficient, Ek is the error, and
yk is the prediction category.

• XGBoost

The XGBoost function is composed of two components: the prediction error of boost-
ing and the complexity of DT. The feature factors are combined and branched into a
DT, and a new boost function is learned from the previous calculation residuals [37].
In Equation (22), the first component calculates the error between the prediction and actual
observation, and the other component indicates the complexity of the regularized DT,
which covers the number of nodes and the node probability value.

f =
n

∑
i=1

E(yi, yki) +
K

∑
k=1

Ω(fk) (22)

where E is the error between the prediction and actual observation and Ω(fk) is the
complexity of the DT.

3. Results

The experiment based on the slope unit was conducted for the following two parts of
test analysis. In the first part, the correlation analysis of the spatial factor and the landslide
unit was adopted to detect the significant spatial factor. In the second part, the spatial factor
indicators and landslide units observed from 2007 to 2009 were applied to run the machine
learning models. Then, the 2010 spatial factors were inputted into those models, and the
landslide slope units were estimated. The prediction was compared with the landslide
location announced by the Central Geological Survey of Taiwan’s Ministry of Economic
Affairs (MOEA) through a confusion matrix to verify the feasibility of this study.

3.1. Study Areas

Experimental cases in Siaolin Village and the Putunpunas River area (Kaohsiung,
Taiwan) were selected to verify this study method. Both areas continued to experience
a large number of landslides after the typhoon Morakot in 2009. In the Siaolin Village
area, there were 128 slope units (covering 15.81 km2), and Provincial Highway 29 is the
main external traffic road. In the Putunpunas River area, there were 349 slope units
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(covering 61.21 km2), and the Southern Cross-Island Highway presents a north–south
vertical, as shown in Figure 3.

Figure 3. Geographical locations of experimental areas—(1) Siaolin village; (2) Putunpunas River.

The observation time of the spatial factors ranged from hours to years. For establishing
a common timescale, a year was deemed the basis of unit time, and the observed data
time was a total of four years (from 2007 to 2010). The 14 spatial factors used were the
elevation, slope, aspect, terrain roughness, profile curvature, vegetation index, annual
displacement velocity gradient of InSAR, water distance, road distance, fault distance, rock
mass strength, folds, dip slopes, and an annual rainfall, as shown in Figure 4.

Figure 4. Cont.
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Figure 4. Fourteen spatial factors used in this study. These observations in 2017 are for Siaolin Village
(left) and Putunpunas River (right).

3.2. Significance Test of Spatial Factors

The factor scales were unified from 1 to −1 through numerical standardization to
solve the inconsistency of the factor value distribution. Then, the correlation between the
spatial factors and landslides based on the slope units was examined. The correlation
coefficient values were expressed as positive or negative. As seen in Figure 5, the correlation
coefficients of Siaolin Village (yellow bar) were between −0.47 and 0.43, and those of
Putunpunas River (dark-blue bar) were between −0.42 and 0.36. Hypothesis significance
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testing was performed, and the probability of obtaining the test resulted in the p-value,
as shown in Table 1. Then, the significant spatial factors were screened on the basis of
a 99% reliability as the test threshold. There were five significant spatial factors in the
Siaolin Village area (rock mass strength, aspect, terrain roughness, slope, and dip slopes)
and six significant spatial factors in the Putunpunas River area (rock mass strength, aspect,
vegetation index, water distance, terrain roughness, and dip slopes).

Figure 5. Histogram of correlation coefficient between landslides and the 14 spatial factors in the slope units.

Table 1. Correlation coefficients and p-values, quantified according to the relationship between
landslides and the 14 spatial factors in the slope units.

Spatial Factor
Siaolin Village Putunpunas River

Correlation
Coefficient p-Value Correlation

Coefficient p-Value

Rock mass strength −0.47 1.00 −0.30 1.00
Aspect −0.25 1.00 −0.22 1.00

Vegetation index −0.06 0.49 −0.42 1.00
Water distance −0.04 0.37 −0.21 1.00
Annual rainfall 0.13 0.85 −0.13 0.98

Terrain roughness 0.31 1.00 0.17 1.00
Slope 0.27 1.00 0.05 0.66
Folds 0.07 0.57 −0.11 0.95

Dip slopes 0.24 0.99 0.36 1.00
Elevation 0.16 0.93 0.03 0.37

Profile curvature 0.11 0.81 0.07 0.78
Annual displacement velocity gradient

of InSAR 0.08 0.62 0.02 0.29

Road distance 0.07 0.59 0.13 0.98
Fault distance 0.02 0.28 0.01 0.23
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3.3. ML Prediction and Verification

According to the five machine learning methods used in this research, the relevant
parameters were set as shown in Table 2. In these machine learning calculations, three years
of spatial factor data (from 2007 to 2009) were used as input for learning, and the landslide
prediction of the slope units was based on the 2010 spatial factors. Finally, the landslide
location announced by the Central Geological Survey (MOEA, Taiwan) in 2010 was used to
verify the accuracy of slope unit prediction.

Table 2. Parameters and settings required for the machine learning methods.

ML Parameters Values

Naive Bayes Smoothing 10−9

DT

Criterion Gini
The maximum of depth 20

The minimum of samples split 10
The minimum of samples leaf 5

Random Forest

Criterion Gini
The maximum of depth 20

The minimum of samples split 2
The minimum of samples leaf 5

The number of estimators 100

AdaBoost

Criterion Gini
The maximum of depth 20

The minimum of samples split 2
The minimum of samples leaf 5

The number of estimators 10
Algorithm SAMME

Learning rate 0.1

XGBoost

The maximum of depth 5
The number of estimators 1000

Learning rate 0.1
The minimum of child weight 1

Gamma number 0
Subsample number 0.8
Colsample bytree 0.8
Objective binary Logistic

nthread 4

The prediction accuracy of machine learning prediction is shown in Table 3. From the
correct rate, the addition of the InSAR factor increased the accuracy of prediction by 0% to
6%. For Siaolin Village, the random forest method had the highest prediction accuracy rate
(82.95%), followed by XGBoost (79.31%), AdaBoost (78.49%), naive Bayes (70.93%), and DT
(68.02%). Putunpunas River showed a similar trend; the best prediction was observed from
the random forest method (80.51%), followed by XGBoost (78.80%), AdaBoost (75.64%), DT
(68.19%), and naive Bayes (68.19%).

The prediction results of the best learning method (random forest) were used to com-
pare and evaluate the predicted classification through confusion matrixes. In Figure 6,
the correctly predicted landslide slope units are colored red, and the correctly predicted
noncollapsed slope units are colored cyan. In addition, the erroneously predicted land-
slide slope units are marked with green diagonal stripes, and the erroneously predicted
nonlandslide slope units are marked with red diagonal stripes.
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Table 3. Average prediction accuracies before and after including InSAR data in different ML meth-
ods.

ML
Siaolin Village Putunpunas River

With InSAR
(%)

Without InSAR
(%)

With InSAR
(%)

Without InSAR
(%)

Naive Bayes 70.93 70.85 68.19 68.19
DT 68.02 62.02 75.45 75.07

Random Forest 82.95 79.84 80.52 78.79
AdaBoost 78.49 77.52 75.64 75.64
XGBoost 79.31 75.97 78.80 75.80

Figure 6. Visual illustration of the landslide prediction results—(left) Siaolin Village; (right) Putun-
punas River area.

The confusion matrixes of Siaolin Village and Putunpunas River are shown in
Tables 4 and 5. In Siaolin Village, the correct prediction rates of landslide and noncol-
lapsed slope units were 78.72% and 94.30%, respectively; the average accuracy rate of
the overall prediction was 82.95%. In Putunpunas River, the correct prediction rates of
landslide and noncollapsed slope units were 89.67% and 66.18%, respectively; the average
accuracy rate of the overall prediction was 80.52%.

Table 4. Confusion matrix for the case of the Siaolin Village analysis.

Actual

Predictied
Lanslide Nonlanslide Average

Lanslide 74 (TP) 2 (FN) -

Nonlanslide 20 (FP) 33 (TN) -

Correct rate (%) 78.72 94.30 82.95
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Table 5. Confusion matrix for the case of the Putunpunas River analysis.

Actual

Predictied
Lanslide Nonlanslide Average

Actual

Lanslide 191 (TP) 46 (FN) -

Nonlanslide 22 (FP) 90 (TN) -

Correct rate (%) 89.67 66.18 80.52

4. Discussion

Throughout the time series, the relevant spatial observation data showed changes
in slopes. This study used these environmental observation data to construct the spatial
factor indicators on the basis of the slope unit conditions. Significant spatial factors were
then determined from the correlation analysis. According to the spatial characteristics of
the slope units, the machine learning methods were applied to construct the calculation
models, and the landslide potential of the slope units was evaluated.

This study was implemented with two experimental cases: Siaolin Village and Putun-
punas River (Kaohsiung, Taiwan). The experiment collected four-year spatial data (topog-
raphy, locations, geology, driving categories, and landslide locations) from 2007 to 2010.
Then, these data were used to construct the 14 spatial factors through indexed analysis.
A common timescale (year) was established for the analysis to resolve the differences in
timescales of the various spatial factors. The spatial factor datasets from 2007 to 2009 served
as the input for the correlation analysis and machine learning, and the 2010 spatial factor
data were used to calculate the output of potential evaluation. In the Siaolin Village area,
the significant spatial factors were the rock mass strength, aspect, terrain roughness, slope,
and dip slopes; the significant spatial factors in the Putunpunas River area were the rock
mass strength, aspect, vegetation index, water distance, terrain roughness, and dip slopes.
These significant factors in both study areas were all in the geological category, including
rock mass strength, terrain roughness, and dip slopes. Obviously, the geological conditions
in these areas highly influence the landslide trend.

The machine learning algorithms used in this research achieved accuracies of 60–80%
in landslide classification. Among them, the random forest method exhibited the best calcu-
lation in Siaolin Village, where it yielded a prediction accuracy rate of 82.95%; its prediction
accuracy rate in Putunpunas River was 80.50%. The random forest method effectively
performed independent training for high-dimensional, multi-feature factors. In addition,
the random forest algorithm exhibited strong anti-interference capabilities, such as an
imbalance in the number of classifications and missing parts of the feature data, so it could
avoid excessive parameter setting and reduce overfitting problems. Moreover, the addition
of the InSAR factor increased the accuracy of prediction up to 6%.

To further verify the proposed approach, the model established based on the training
data from the two study areas was applied to another area in northern Taiwan. In Decem-
ber 2020, a landslide covering a slope area of around 4000 m2 and 10,000 m3 in earth volume
occurred in this region. By feeding the local spatial factors into the model, the landslide
susceptibility of each slope unit was obtained. Figure 7a,b illustrate the validation results
from using 13 spatial factors (excluding InSAR data) and 14 spatial factors (including In-
SAR data), respectively. It shows that a medium (50–75%) landslide potential was obtained
for the landslide area if only the geological factors were considered. However, when the
InSAR data were included, the model gave a high (>75%) landslide potential for that slope
unit. In other words, the InSAR data provided an essential contribution for improving
the prediction accuracy, as also revealed in the two study areas previously mentioned.
Furthermore, it should be stressed that the model used here was established based on the
training data in the two study areas in southern Taiwan, but it can still perform well in this
validation case in northern Taiwan. This gives an encouraging indication that the model
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established based on the proposed methodology is valid not only in the study areas but
could be also applicable elsewhere.

Figure 7. Landslide susceptibility analysis for the 2020 landslide case in northern Taiwan: (a) with
InSAR data; (b) without InSAR data.

Overall, this research reveals that InSAR observables and multiple geological factors
should be integrated for landslide susceptibility analysis with machine learning technology.
Future studies can refine the current timescale of annual observations into months or
days to enhance the calculation accuracy. Furthermore, mechanical factors, such as fluid
shearing forces and soil slippage, can be considered to improve the prediction model.

5. Conclusions

Slope instability is affected by the topography and geological conditions, and artificial
construction, such as tree cutting for planting cash crops and building roads, increases
the vulnerability of the landform. The prevailing extreme climate now promotes the
possibility of landslide disasters in the event of short-term heavy rainfall. This study
introduced the modern InSAR technology, terrain, geological, and rainfall observation
data to construct spatial factors based on slope units. Through Spearman correlation
analysis and verification, significant impact factors in the experimental areas were detected.
More importantly, machine learning was applied for the first time to construct prediction
models combining spatial factors and landslide issues. Finally, two field experiments
confirmed the feasibility of the landslide susceptibility prediction analysis proposed in this
study. The results prove that a better-than-80% model accuracy can be achieved by the
Random Forest algorithm, and the InSAR observable is able to increase the accuracy of
prediction for all training models. Relevant management will be able to follow the potential
landslide slope unit to provide vegetation restoration and slope reinforcement. Eventually,
this novel strategy will provide the benefits of prevention and rescue for slope landslide
disasters in a forward-looking manner. Finally, it should be noted that this study only
used the landslide cases in Taiwan as examples. Further studies can be conducted using
the proposed methodology for the cases with various geological and climatic conditions
around the world using the training data in that region.
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