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Abstract: This article focuses on the possible drawbacks and pitfalls in the GPR data interpretation
process commonly followed by most GPR practitioners in archaeological prospection. Standard
processing techniques aim to remove some noise, enhance reflections of the subsurface. Next, one
has to calculate the instantaneous envelope and produce C-scans which are 2D amplitude maps
showing high reflectivity surfaces. These amplitude maps are mainly used for data interpretation
and provide a good insight into the subsurface but cannot fully describe it. The main limitations are
discussed while studies aiming to overcome them are reviewed. These studies involve integrated
interpretation approaches using both B-scans and C-scans, attribute analysis, fusion approaches,
and recent attempts to automatically interpret C-scans using Deep Learning (DL) algorithms. To
contribute to the automatic interpretation of GPR data using DL, an application of Convolutional
Neural Networks (CNNs) to classify GPR data is also presented and discussed.

Keywords: Ground Penetrating Radar; archaeological prospection; data interpretation; Convolu-
tional Neural Networks; AlexNet

1. Introduction

The interpretation of Ground Penetrating Radar (GPR) data collected from archaeo-
logical surveys using the common-offset systems is often a challenging task that requires
time, experience, and skill. The collected GPR data from such environments are complex.
Two-dimensional reflection profiles called B-scans are collected. These are tomographic
images exhibiting reflections from the near-surface layers that can be highly inhomoge-
neous and disturbed by multiple anthropogenic activities that took place during different
historical periods [1]. As a result, B-scans are complex and non-intuitive to interpret,
making it difficult to identify the reflections related to the archaeological context. Fur-
ther, the archaeological surveys with GPR follow more or less the same approach that is
now established as a standard. The latter involves processing the collected survey grids
by applying standard methods and techniques at the collected GPR B-scans to remove
noise while enhancing reflections from the subsurface [2,3]. Then, a pseudo 3D or 2.5D
approach is followed to extract amplitude maps of the subsurface called C-scans. Details
on the process of producing C-scans are given in [4]. The next step is to browse the re-
sulted C-scans studying the presented reflections and interpreting the reflectors. What
can follow is to apply image rendering techniques such as the iso-amplitude surface to
generate 3D models of the recorded amplitude values [4,5] using software such as VOXLER,
which might provide a better understanding of the distribution of the reflections in the
space. In the next step, selected C-scans that describe the subsurface are imported into a
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Geographic Information System (GIS), where the important reflections can be digitized
manually. The latter allows the production of 2D maps to visualize the most important
findings. The above-mentioned process can produce useful insights on each GPR survey
applied. However, several drawbacks and pitfalls exist that might have a negative impact
on data interpretation.

One pitfall is related to the fact that B-scans are often bypassed during interpretation.
This may lead to losing information that cannot be projected in the plan view of the final
images. Another pitfall is that the standard processes applied on GPR data focus only on
the amplitudes of the reflection. Hence, the interpretation is limited only to information
that can be described by the reflected signal’s amplitude, which cannot entirely describe
the complexity of the GPR data. An additional issue to consider is that the targets might be
invisible to the GPR instrumentation, meaning that the contrast of their physical properties
compared to the ones of the surrounding media is not detectable by the GPR method.
With the downsides mentioned earlier in mind, this article reviews approaches that help
improve the data interpretability, overcoming limitations of the conventional interpretation
approach. An overview of the approaches is presented in Figure 1. Last, the automatic data
interpretation with Deep Learning (DL) is discussed as an approach to assist GPR data
interpretation and an example of Convolutional Neural Networks’ (CNNs) application to
classify GPR C-scans collected from two archaeological sites is presented.
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logical prospection.

2. GPR Data Cross Interpretation

A downside discussed in Reference [6] when following the standard process is that
the interpretation focuses on the C-scans, often ignoring B-scans entirely, which for some
archaeological case studies might lead to losing important information related to the targets’
properties (e.g., actual size). The C-scans only show projections of the recorded reflections
along the horizontal plane. So, in the case of dipping layers, the target may be either
lost or misplaced. Hence, an integrated interpretation using topographically corrected
B-scans along with the C-scans is mandatory to understand the true nature of the recorded
reflections. Further, B-scans can provide information regarding the polarity changes of
the waveforms, which is useful in identifying voids or tombs [6–8]. Further, B-scans can
provide information regarding the conservation state of the buried structures, with wall
erosion appearing as non-reflective events in the data [6]. This non-reflective event is
caused by depolarization of EM waves on the surface, and when it happens, targets such as
walls will more likely be invisible if the standard approach for processing and interpretation
is followed [9]. Other examples that show the importance of integrating B-scans, C-scans,
and iso-surface amplitudes for data interpretation are presented in Reference [10].
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3. Attribute Analysis

Attribute analysis was initially performed in seismic data to enhance target detection
and improve their interpretability. Although it has not yet fully been incorporated in GPR
data processing routines from archaeological prospection, examples found in the literature
show a promising lead in improving data imaging. The main concept is to calculate specific
attributes aside from the conventional instantaneous amplitude, to highlight archaeological
targets that are less sensitive to amplitude changes and might end up being invisible.
This analysis is target-directed, meaning that more effort is required to find the most
appropriate ones. A few examples found in the related literature are presented in the
following paragraphs.

Several attributes are calculated and studied in Reference [11] aiming to improve
interpretation on complex datasets that exhibit archaeological remains of the Roman period
buried at different depths. This approach calculates the attributes under investigation in the
volumetric GPR data after applying denoising and other processing techniques to improve
the signal-to-noise ratio. Namely, the tested attributes are the instantaneous amplitude,
the cosine of instantaneous phase, edge detection attributes, the dominant frequency, the
similarity and the energy. Their results showed that each attribute highlights specific
information. Hence, performing a target-oriented and multi-attribute approach along
with the standard process is suggested. In a similar study, RMS amplitude, average peak
amplitude, instantaneous phase, and maximum peak time are extracted and compared
to characterize an ancient wall, a kiln, and a tomb [12]. Again, the results indicate that
attribute selection should be target-oriented.

In another study, the energy, coherency, and similarity attributes are calculated to
interpret data collected with a 3D radar system at two medieval chapels [13]. The results
show that coherency and similarity can improve the interpretability of the data and target
detection as information invisible to the standard amplitude maps was visualized, reveal-
ing more details on detected tombs and burial chambers along with their conservation state.
Energy and similarity also helped improve the data interpretability of Roman structural
remains found at deeper levels and under complex subsurface layers [13]. Excavations that
followed were in agreement with the resulted GPR interpretation. Additionally, small tar-
gets of a prehistoric period settlement were also enhanced by an integrated multi-attribute
approach of instantaneous amplitude, energy, and similarity, which were visualized using
iso-surfaces [14]. Excavations that followed validated the GPR interpretation. In another
example, the coherence attribute and the conventional instantaneous amplitude are com-
pared and fused into a single image, enhancing the interpretation of data collected with a
3D GPR system from three Scandinavian Iron age sites exhibiting trenches, pitfalls, and
postholes [15]. Some of the sites are multiphased exhibiting archaeological remains that
are either Roman or Medieval. The authors used a simple normal blending method and
contrast normalization to fuse the images. Finally, an integrated instantaneous attribute
approach is performed in Reference [16], highlighting patterns of an ancient road.

A different set of attributes utilizing image texture analysis is extracted from GPR
data collected in three archaeological sites in Italy to characterize targets of different
historical periods [17]. These are textural attributes based on the gray-level co-occurrence
matrix, namely contrast, homogeneity, energy, and entropy. This approach improved
pattern discrimination of the observed targets as well as interpretability of the complex
environment when combined displays of the calculated attributes are employed.

4. Multi-Disciplinary Approach

In this section, integrated approaches applied in archaeological prospection are re-
viewed. In these approaches, the conventionally processed GPR data are combined with
information acquired from data collected on the same area by different sensors and meth-
ods. This multi-disciplinary approach can affect the GPR interpretation in three ways. First,
it adds information invisible to the GPR system. Second, the added information increases
the understanding of the observed reflections, and third, this information (e.g., ground
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control points from excavations) can be used for ground truth. The fusion of the various
types of data and information is performed in two different ways that are described in the
following paragraphs. The first is using a platform such as GIS to project and visualize the
various data holistically at a common positioning system. The second embeds the useful
information by applying certain methods and techniques to create space that can be an
image or a model.

4.1. GIS-Based Integration

The multi-disciplinary approach is gaining increasing popularity in archaeological
prospection as it helps the understanding of the complex buried past. Several studies exist
in the recent literature showing improvements in GPR data interpretability by identifying
some targets that are difficult to detect solely when following the conventional approach
described in the introduction of this article. An example is the identification of ancient roads
at the archeological site of Naxos in Sicily that were imprinted as linear fragments in the
resulted GPR C-scans [18]. Their interpretation was only possible when the corresponding
C-scans were superimposed in the ancient city’s reconstructed plan and aerial photo.
Another similar example is related to the identification of anomalies as part of a Roman
villa when superimposed to an older aerial photo [19]. Additionally, several anomalies
observed with data collected from a GPR survey at the necropolis in Lecce were easier
to interpret when the C-scans were georeferenced and superimposed in the ancient city
map [8]. GPR interpretation of a structural complex was also enhanced by superimposing
the data collected at the Ancient Mantineia to an old excavation map [20]. In another
example, GPR and Terrestrial Light Detection and Ranging (T-LiDAR) techniques were
employed, combining in this way information ”visible” from the surface and the ”invisible”
one, in order to visualize the buried Roman structures detected from GPR [21].

In the studies mentioned above, the GPR data were combined with spatial informa-
tion on the surface as well as archaeological information obtained from surface investiga-
tions, ancient sources, and excavations. Other studies employed manifold geophysics, a
prospection approach that uses multiple geophysical methods to survey the area under
investigation [22]. The effectiveness of using several geophysical methods is shown in
Reference [23], where magnetics, EM, and GPR were employed to survey a Neolithic settle-
ment. GPR could map better houses but it could not spot ditches or burned areas revealed
by magnetics, while EM gave information that helped understand settlement limits. This
information was extracted by superimposing and comparing georeferenced images of
each method that were imported into GIS. More examples of this approach showing the
contribution and limitations of each sensor involved in similar Neolithic settlements are
presented and discussed in references [24,25]. Other studies included geochemical meth-
ods to understand better and characterize the archaeological remains [26,27]. Further, the
integration of multiple sensors and hence their information can lead to creating a holistic
3D model, being more immersive in reconstructing the past [28,29].

4.2. Data Fusion

Data fusion in archaeological prospection is an alternative approach for combining
quantitative information acquired from different sensors employed in geophysical methods
and remote sensing techniques. This is performed by mainly applying statistical methods
and transforms to project the different information of each sensor in the same space. The
main challenge of this approach is to find effective methods in transforming the various
data into combinable representations. An early attempt shows improvements in visualizing
the depth, location, and geometry of archaeological targets measured by GPR, magnetic
and dipole-dipole geoelectric methods, where the integration of normalized data were
performed into a shared space [30]. Other methods, commonly applied in image analysis
and computer vision, are explored in Reference [31] to describe more complex targets
measured by GPR, magnetic gradiometry, electrical resistivity, magnetic susceptibility, soil
conductivity, and aerial thermography. The results revealed the limitations and benefits of
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each method while showing the potential to improve data interpretation. Similar studies,
where integration methods are compared, are conducted using synthetic data [32], real
data measured by multiple geophysical methods from different sites [33], or both synthetic
and real data [34]. Other attempts involved developing a methodology that integrates
GPR data with multispectral satellite images to enhance the interpretability of detected
archaeological targets in the near-surface layers [35,36]. The developed methodology is
based on a regression model aiming to correlate GPR and ground spectroradiometer data
using the vegetation indices that are subsequently projected on high resolution image of the
area of interest. The proposed methodology is tested using data collected from a Neolithic
tell in eastern Hungary. Linear regression [35] and Bayesian Neural Networks (BNNs) [36]
are examined with the former showing more potential. Further, the potential of 3D data
fusion following a multi-disciplinary approach is discussed in Reference [37].

5. Deep Learning Algorithms to Interpret GPR Data

The automatic interpretation of GPR data from archaeological prospection is rather an
unexplored but emerging research topic due to the recent developments of Deep Learning
(DL) algorithms. Especially, the Convolutional Neural Networks (CNNs) are effective in
performing various computer vision tasks like classification, object detection, and image
segmentation [38]. These tasks can be useful in the GPR data interpretation process to
identify targets faster and help to discriminate complex patterns that characterize the GPR
images. CNNs are based on representation learning [39], where important information,
called features, is extracted automatically from the data. The latter is the main difference
over traditional Machine Learning (ML) algorithms, where the features are handcrafted
and extracted manually. A semi-automatic approach following the traditional ML methods
is given in Reference [40], where the geometry of the interpreted anomalies is extracted
and visualized in 3D. However, this method is found to be sensitive to noise and requires
preprocessing steps, including manual interpretation.

Few studies exist in the literature exploring the automatic GPR data feature extraction
capability of DL algorithms. An example utilizes a modification of CNNs, known as
Fully Convolutional Networks (FCNs), that performs image segmentation through the
U-net architecture [41]. In this study, the trained model takes as an input a GPR C-scan
and outputs the linear features in segments that are attributed to structures. The results
show high potential in detecting linear features compared to the manual interpretation
performed in GIS. However, the authors mention limitations related to challenging training
network processes and requiring a large amount of data.

Even though similar studies for archeological prospection are currently lacking, there
are some interesting examples that use GPR data derived from civil engineering appli-
cations, which show that DL is a promising direction worth investigating. In some of
these examples, classification of cavities, pipes, manholes, and subsoil background from
urban streets is performed, using as CNNs’ training data both B-scans and C-scans [42], a
combined representation of B-scans and C-scans [43], and 3D data [44]. Other approaches
use object detection algorithms based on CNNs to locate rebars in concrete [45], pavement
distress [46], and internal defects in tunnel lining [47]. The above-mentioned examples
give an insight into the capabilities of the various CNN-based algorithms and must be
adapted to GPR data from archaeological prospection.

6. CNN Application to GPR Data

In this example, the application of CNNs using AlexNet architecture [48] is presented
and evaluated as a tool that provides useful insights, contributes to data interpretation,
and classifies ancient, buried structures from GPR C-scans.

6.1. Dataset Construction

The training datasets were constructed from scratch using data collected from several
archaeological sites, 50 of them being located in Greece, 1 in Cyprus, and 1 in Naxos,
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Sicily. Data collection was conducted under the framework of research projects of the
Laboratory of Geophysical-Satellite Remote Sensing and Archaeo-environment (GeoSatRe-
SeArch Lab), Institute for Mediterranean Studies - Foundation for Research and Technology
Hellas (IMS-FORTH), Rethymno, Greece. All data were collected using the Noggin smart
cart system, equipped with a 250 MHz antenna. The data were processed in MATLAB
following standard methods and techniques, and C-scans were extracted (Figure 2). A
preprocessing step was then followed by applying an overlapping sliding window to crop
square subregions of selected C-scans. This step was mandatory in order to increase the
number of images used for training. For the classification, three classes were defined based
on dominant features observed in the data: unidentified geophysical anomalies, structures,
and noise in stripe form. In total, 18,375 examples were selected manually, 6125 per class.
One question raised was how to split the selected examples into a training and test set.
For this reason, two datasets (A and B) were defined, each following a different splitting
approach to examine which one leads to better generalization. For dataset A, the test set
examples were derived exclusively from a single archaeological site, while for dataset B,
the examples were split into training and test sets randomly.
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Figure 2. Data processing overview to produce C-scans used for CNN training data. The presented
examples were collected from Demetria’s archaeological site in Magnesia, Greece. Trace reposition
and zig-zag correction were applied only for survey grids that required it. The B-scans show the
effect of the applied workflow before (top) and after (middle).

6.2. Training AlexNet and Testing the Generalization

The AlexNet implementation and training were performed in Python using the Ten-
sorflow library and Keras API. For training, the Stochastic Gradient Descent (SGD) with
momentum was used. In order to improve performance, Batch Normalization (BN) [49]
was applied after each convolutional layer. Dropout [50] was applied with a rate of 0.5
after the first two fully connected layers. Further, tuning of the batch size and learning
was performed using the RandomGrid search of Keras Tuner library. Training included 50
epochs and the weights yielding performance improvements were saved. Two models were
obtained, representing the learning achieved from each dataset. Model A is constructed
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from training with dataset A and Model B, from training with dataset B. To test their gener-
alization, an evaluation set was made containing 100 examples from archaeological sites
excluded from the training process. These sites are Ancient Halos in Magnesia, Thessaly,
Greece, and Sissi in Heraklion, Crete, Greece. The selected examples that represent the
three classes were used to make predictions. Similar images of the same feature positioned
differently were also used to test the models’ prediction robustness. The evaluation set is
presented in Figure 3.
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6.3. Prediction Results

The prediction results are summarized in the confusion matrices (Figure 4). The results
indicated that Model B performs overall better than Model A, reaching a classification
score of 92% over 85%. This shows that the random splitting approach should be preferred
as it is easier to train and generalizes better. However, Model A was better than Model B in
the predictions made for the anomaly class. More specifically, Model A was 100% accurate
having predicted all 32 examples correctly, while Model B predicted 30 out of 32 examples
correctly (Anomaly class in Figure 4). On the other hand, Model B is more accurate for the
other two classes, predicting correctly 29 out of 32 noise examples. Model B predicted 25
and 33 out of 36 structure examples, whereas Model A, 28.

All of the misclassified examples are presented in Figure 5. The incorrect predictions
made by Model B for the Anomaly class are examples #21 and #23 that were classified as
structures. These examples are different views of the same structure resulting from the
overlapping sliding window approach. In addition, example #23 is a marginally correct
prediction by Model A (52.7% as an anomaly and 47.3% as a structure). Further, example
#24, which is another view of the same feature, is correctly classified by both models. This
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shows a non-robust behavior that should be considered for future improvements and
highlights the need to successfully apply data augmentation techniques.
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As for the noise class, Model A made seven mistakes, while Model B made three.
Example #38 was classified as a structure by Model B, and more likely, was mistaken
as a wall. Similarly, examples #39 and #40 were mistaken as structures by both models,
with example #39 being a marginally negative prediction for Model A (43.3% as noise,
56.7% as structure). However, Model B performed better in identifying correctly noise
derived from the surface such as plowing lines, as presented in examples #42, #43, #58, and
#59. Example #57 has three different noise types appearing in three different orientations:
vertical, horizontal, and diagonal. Model B prediction was accurate, while Model A gave
mixed results, having classified 53.3% as an anomaly, 28.6% as noise, and 18.1% as a
structure.

The structure class incorrect predictions for Model A are #82 to #87, #89, and #95,
which were classified as an anomaly instead of structure. Examples #82 to #85 are different
views of the same structural feature, which bears a unique pattern probably due to a
collapsed roof. Model B was also mistaken (examples #82 and #84) but it managed to
predict examples #83 and #85 correctly, with the latter being a marginal case. Example
#85 shows this particular not well-preserved structure at a different depth. The rest of the
examples were derived from a structural complex, and Model B was overall more accurate
than Model A.

The obtained results indicate that Model B generalizes better than Model A suggesting
that the random approach to split the test set and training set is preferable in this case
scenario where available data were not enough to provide enough and unique examples
from different case studies. However, the results imply that further data are required in the
training datasets to improve the prediction robustness.

7. Discussion

In this paper the drawbacks of the conventional GPR data interpretation process
were discussed, and studies aiming to overcome these pitfalls were reviewed. What
becomes clear is that GPR data from archaeological prospection are quite complex and
site-dependent. No straightforward process exists in both processing and interpreting
the data, which requires a deeper understanding of the GPR method. Therefore, it is
recommended to follow a target-directed analysis while taking into account both B-scans
and C-scans to get the most out of GPR recorded information. Attribute analysis used
in seismic data seems to be beneficial in enhancing archaeological remains not very well
described by the traditional instantaneous envelope. Further, developments in hardware
and computational systems allow using multiple sensors to collect information from the
area of interest. This combined information can improve interpretation significantly leading
to a complete understanding of the buried past. At the same time, it allows generating
more intuitive visualizations through highly detailed and immersive 3D models. This
can be expanded in fusion approaches that aim to merge the information acquired from
the different sensors, reducing, in this way, interpretation uncertainties. However, the
approaches mentioned above come at the price of significantly increasing time spent in data
collection, processing time, and interpretation. On this matter, the automatic interpretation
using DL algorithms may have a potential to aid data interpretation and be embedded in
the process by using trained models to detect and identify complex patterns. Even though
DL algorithms are widely used in computer vision tasks such as image classification, object
detection, and image segmentation for image analysis, they have not yet been explored with
GPR data derived from archaeological prospection. The main reason is the limitation in
data availability. For this reason, an example to classify C-scans produced by the traditional
interpretation approach was performed.

For the classification task, CNNs with AlexNet architecture were used. The obtained
results showed great potential to classify patterns attributed to ancient structures, noise
and geophysical anomalies not identified as a structure. This choice of classes produced
interesting results and showed that if enough data exists, a complete analysis of the sub-
surface conditions mapped in GPR C-scans can be achieved with CNNs. Some practical
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insights were obtained during the training dataset construction, which was proven chal-
lenging due to the limited GPR images featuring structures which are rarer to find. At
the same time, they are more often noisy and exhibit other geophysical anomalies of the
subsurface that are not a structure. For this reason, an overlapping and sliding window
crop approach was mandatory to effectively increase the images to a number that allowed
learning. Further, two different splitting approaches were tested to examine which one
can lead to better performance and generalization. These were tested on an evaluation set
that was made using 100 new GPR examples from the sites of Ancient Halos in Magnesia,
Thessaly, Greece, and Sissi in Heraklion, Crete, Greece. The results showed how great
an impact this has had on the learning process, with the random approach performing
better. However, considering the small number of examples in the evaluation, more tests
are required to reach a safer conclusion. Overall, the results of this application suggest that
CNNs and deep architectures are a promising lead to improve GPR data interpretation
processes, and could be combined with the different approaches reviewed in this paper.
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