
applied  
sciences

Article

PDCA 4.0: A New Conceptual Approach for Continuous
Improvement in the Industry 4.0 Paradigm

Paulo Peças 1,* , João Encarnação 2 , Manuel Gambôa 2 , Manuel Sampayo 2 and Diogo Jorge 3

����������
�������

Citation: Peças, P.; Encarnação, J.;

Gambôa, M.; Sampayo, M.; Jorge, D.

PDCA 4.0: A New Conceptual

Approach for Continuous

Improvement in the Industry 4.0

Paradigm. Appl. Sci. 2021, 11, 7671.

https://doi.org/10.3390/app11167671

Academic Editors: José A.

Yaguë-Fabra, Guido Tosello and

Roque Calvo

Received: 19 July 2021

Accepted: 16 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
2 Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;

joao.encarnacao@tecnico.ulisboa.pt (J.E.); manuel.gamboa@tecnico.ulisboa.pt (M.G.);
manuel.sampaio@tecnico.ulisboa.pt (M.S.)

3 EfficiencyRising, Lda. (Erising), 1800-082 Lisboa, Portugal; diogojorge@erising.pt
* Correspondence: ppecas@tecnico.ulisboa.pt

Featured Application: The proposal of a conceptual approach towards the application and evolu-
tion of continuous improvement in the context of Industry 4.0.

Abstract: Continuous improvement (CI) is a key component of lean manufacturing (LM), which
is fundamental for organizations to remain competitive in an ever more challenging market. At
present, the new industrial revolution, Industry 4.0 (I4.0), is taking place in the manufacturing and
service markets, allowing more intelligent and automated processes to become a reality through
innovative technologies. Not much research was found regarding a holistic application of I4.0′s
technological concepts towards CI, which clarifies the potential for improving its effectiveness. This
clearly indicates that research is needed regarding this subject. The present publication intends to
close this research gap by studying the main I4.0 technological concepts and their possible application
towards a typical CI process, establishing the requirements for such an approach. Based on that
study, a conceptual approach is proposed (PDCA 4.0), depicting how I4.0 technological concepts
should be used for CI enhancement, while aiming to satisfy the identified requirements. By outlining
the PDCA 4.0 approach, this paper contributes to increasing the knowledge available regarding the
CI realm on how to support the CI shift towards a I4.0 industrial paradigm.

Keywords: Industry 4.0; continuous improvement; lean manufacturing

1. Introduction

Continuous improvement (CI) is a key component of lean manufacturing (LM) [1],
being generally defined as a culture of sustained improvement targeting the elimination
of waste in all systems and processes of an organization [2]. In highly dynamic and
demanding markets, the CI of production processes and other value chain activities is
crucial for organizations to remain competitive [3]. In this regard, the current fourth
industrial revolution, Industry 4.0 (I4.0), is taking place in manufacturing companies,
causing the shifting, or at least the adaptation, of the LM and CI paradigms [4]. Recently,
several approaches on the integration between the LM realm and I4.0 were formulated,
and authors reached important conclusions on how both paradigms can work together to
enhance manufacturing performance and flexibility [5,6].

Approaching LM in its purest form does not require information technology [7]. How-
ever, both LM and I4.0 paradigms aim to solve present and future challenges in manufactur-
ing [8]. Among the publications that study the applicability of I4.0, several mention CI as a
part of LM (e.g., [4,8,9]), whereas others focus exclusively on CI (e.g., [10–12]). The existing
contributions in the literature show, directly or indirectly, the potential of CI enhancement
under a I4.0 context, referring to various I4.0 technological concepts to support this trans-
formation. However, they do not propose a holistic methodology or a complete strategy
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for the CI shifting towards I4.0. Therefore, the present article proposes PDCA 4.0: a new
conceptual approach for CI in the I4.0 environment, aiming to cover the knowledge gap
found in the literature.

A thorough literature review was performed to craft a complete and reality-adapted
conceptual approach. For the systematization of the review and to organize the concep-
tual approach, the application of CI was formalized as a project-based activity, with the
following eight subsequent actions: CI’s documentation management, problem identifica-
tion, problem mapping, and the problem-solving sequence, with the Plan-Do-Check-Act
(PDCA) cycle at its core, i.e., diagnosis, root cause analysis, countermeasures, implementa-
tion, follow-up, and standardization. To support the build-up of the approach, the work
begins with the study of the roots of traditional CI practices in order to understand their
purpose and identify their current limitations. Secondly, the design principles of I4.0 were
studied and 10 of I4.0′s technological concepts were considered for the analysis. Thirdly,
conceptual, empirical, and practical approaches to the application of I4.0 technologies on
LM/CI tools and methods were studied, and their potential was discussed. This analysis
allowed for the identification and characterization of the challenges and limitations of
conventional CI practices, based on published literature, which, analyzed together with the
potential of the I4.0 concept, allowed for the statement of eleven functional requirements
for the implementation of CI/LM in the Industry 4.0 paradigm.

The article concludes by proposing a new conceptual PDCA 4.0 approach, including
how the technological solutions should be used and explaining the mechanisms of interac-
tion and data management (satisfying the identified requirements). By outlining the PDCA
4.0 approach, this paper contributes to increasing the knowledge available regarding the
CI realm on how to support the CI shift towards a I4.0 industrial paradigm.

2. Lean Manufacturing and Continuous Improvement

LM is rooted in the Toyota production system (TPS) [11,13]. TPS integrates a set of
methods and tools with a management philosophy, aiming at the constant identification
and elimination of waste [14]. TPS principles follow the logic of a house, with CI at its
core [13]. Bhuiyan and Baghel [2] define CI as a culture of sustained improvement that
aims at eliminating waste in all organizational systems and processes involving people.
CI consists of solving problems that were previously identified. Therefore, preliminary
tasks of identifying opportunities for improvement are essential to this matter. This section
presents a summary of conventional CI practices and how a typical management process
of CI projects works. An analysis on their challenges and limitations is the other main
objective of this section.

2.1. Problem Identification and Mapping

At an early stage of a CI project, several methods can be used to enhance the identifi-
cation of improvement opportunities. Using tools for key process indicators (KPI) analysis,
mapping the value chain, or “simply” considering workers’ suggestions are typical prac-
tices at the beginning of a CI project. KPIs are defined as a set of indicators aiming to
analyze and control the process under investigation [15]. Dashboards are typically used
to represent them [15,16]. The mapping activity can be performed using tools such as
SIPOC (suppliers, input, process, output, customers) and value stream mapping (VSM) [17].
Problems and waste identified in this phase result in opportunities for improvement that
can be prioritized through a matrix of effort vs. impact [18].

2.2. Problem Solving

With an efficient identification process, several problems will be solved in the problem-
solving phase. CI has its origins in the PDCA cycle: a problem-solving method consisting
of a four-step iterative cycle: Plan, Do, Check, and Act [11,19]. The PDCA cycle’s logic is
patent in several problem-solving methodologies, such as the eight disciplines (8D) [20]
and the A3 problem solving [20–22]. This last one is a visual tool in an A3 sheet format that
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enhances the communication of complex problems existing in the production system and
stands out for being one of the most complete tools for LM and CI-specific problems [22].
Based on [23,24], a PDCA problem-solving structure can be systematized in the follow-
ing steps: diagnosis (including problem description and problem analysis), root cause
analysis, countermeasures’ definition (which includes the definition of the target value),
implementation, follow-up, and standardization.

Thus, as referred to in Section 2.1 before assigning a problem for the problem-solving
approach, two activities are necessary: the KPI analysis and the value chain mapping
for the identification of potential problems. These are a crucial part of the planning
phase of the PDCA cycle or culture [15,17]. One activity that is usually not mentioned
in problem-solving strategies is the information management, representing the tasks of
managing the PDCA projects and controlling its development, usually carried out in an
obeya room [25]. Therefore, based on these PDCA related activities, the sequence depicted
in Table 1 was used in this research to systematize the literature analysis and the proposed
approach explanation.

Table 1. Typical process for managing and executing CI projects.

Phase General Problem Identification Problem Solving

Activity Information
Management

KPI
analysis Mapping Diagnosis Root

Causes Countermeasures Implementation
Follow-up
and Stan-

dardization

PDCA P D
C A P P P P P D C A

2.3. Challenges and Limitations

An analysis about the challenges and limitations of the conventional CI practices
is important in order to identify gaps that can be mitigated by the proposed PDCA 4.0
approach. A comprehensive survey was carried out through the use of the Google Scholar
search engine, using the keywords “Limitations of Continuous Improvement”, “Limitations
of Problem Solving”, “Limitations of Kaizen”, and “Limitations of Lean Manufacturing”.
In total, 16 related publications were found. Three major aspects were identified among the
selected publications regarding the challenges and limitations of CI practices (Figure 1).
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The typical pen-and-paper format of documentation [7,10,22] implies several con-
straints in CI projects and is not ideal to achieve an effective documentation management,
as is further described. Despite their team building usefulness, the existence of Obeya
rooms made the access to CI information by all the elements involved in the CI projects
difficult [25]. Some authors describe the limitations of the traditional pen-and-paper value
stream mapping (VSM) [7,17], indicating that this aspect is also relevant in the mapping
activity. According to Hambach et al. [10], due to the physical format of CI documentation,
the lack of aggregated and simplified information about the status of problem-solving
projects may constrain the implementation and follow-up activities. In addition, pen-and-
paper formats do not allow for the storage of CI information in a computer system [22],
resulting in the inexistence of a database with previous problem-solving projects, which
is a need addressed by some authors [10,26]. Therefore, the inexistence of an effective
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information system (IS) and its regular documentation management leads to not using
knowledge acquired in previous CI initiatives, which might result in reworks in finding
root causes and countermeasures.

The inexistence of an IS, or its lack of application for CI purposes, leads to more
challenges and limitations. In addition, the absence of an automatic data collection and
result analysis platform also contributes to limit and constrain the CI project’s impact
and assertiveness. Regarding the KPI analysis activity, production planning using ERP
combined with manual Excel sheets is a conventional practice in organizations that do
not support reliable and real-time data collection to the dashboards [27]. This difficulty
is also felt for the VSM because it offers only a “photograph” of the system, and a small
change in the real situation would change its validity [7]. Concerning the diagnosis, various
authors point out that data are typically collected and analyzed manually, which is very
time-consuming [11,28]. Other authors even mention the lack of access to process the data,
which makes them impossible to measure, control, and improve [11,26,29]. This indicates
the lack of connection between physical production objects and virtual IS [11,28]. This
limitation also spans the follow-up and standardization activities [11]. Multiple authors
also address the lack of an IS as a cause for an inefficient communication system that
constrains the dissemination of improvements [11,30], which is relevant to the follow-up
and standardization. According to Vo et al. [30], the cellular way in which traditional
businesses operate, together with the absence of an IS system linked to CI, contributes to
minimizing collaboration and knowledge sharing, with the best practices being contained
only in their corresponding departments. As a consequence, best practices are not used for
subsequent improvements [11].

Using basic data analysis tools, instead of data analytics software integrated in the IS
to process Big Data, corresponds to another limitation for CI practices [11,26]. Relevant to
the diagnosis, Meister et al. [26] state that advanced analytics techniques are necessary due
to the increasing number of production parameters, mentioning that conventional tools,
such as Excel, present limitations and are not sufficient to solve new complex problems. In
fact, the problem-solving process is positively benefited by the advanced manufacturing
analytics (MA) techniques, as they boost execution speed [26]. The same authors also point
out the inability of basic MA practices to correlate variables and determine the root causes
of a given problem. This results in the waste of time and resources by the “firefighting”
approach, or simply because it takes longer to solve the problems [26]. Moreover, the
existence of a limitation arising from the lack of the use of simulation and optimization
techniques in order to provide assistance for improving decision-making is evident in
the literature, with multiple authors addressing the combination of these methods with
LM [12,31–33]. This implies a possible difficulty in the virtual testing of countermeasures
before their physical implementation. Associated with the lack of these technologies in
order to predict process anomalies, Rittberger et al. [11] refer to the challenge of problem
prediction and prevention in advance, which is something that is not conventionally
possible. Thus, the KPI analysis and mapping activities are also affected by this limitation.

Table 2 synthesizes these literature findings, where the CI activities defined in Table 1
are matched with their respective challenges and limitations. Clearly, the conventional CI
practices face several obstacles, which the article in hand addresses with the development
of a holistic PDCA 4.0 approach towards CI using I4.0 principles and technologies.
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Table 2. Challenges and limitations of conventional practices for each CI activity.

Challenges Information
Management

KPI
Analysis Mapping Diagnosis Root Causes Countermeasures Implementation Follow-Up and

Standardization

I

Project status
information
can only be
consulted in
Obeya Rooms

X X

Insufficient
information on

the current
status of
problem-
solving
projects

X X

Lack of access
to previous

problem-
solving
projects

X X X

II

Manual data
collection and

analysis
X X X X

Inefficient
system for

communicat-
ing best
practices

X

III

Use of basic
analytics tools X X

Lack of use of
simulation and
optimization
techniques

X X X

3. Industry 4.0 and Continuous Improvement

Several authors propose the use of I4.0 principles and associated technologies as a way
to overcome some of the challenges and limitations of CI. In this chapter, a brief overview
of the I4.0 design principles and technological concepts is given in Section 3.1. (For a more
detailed analysis, refer to Appendix A) and, after that, in Section 3.2, a discussion about
the existing publications on CI in the context of I4.0 is presented.

3.1. Industry 4.0 Design Principles and Technological Concepts

I4.0 denotes an unprecedented transformation in both industry flexibility and agility.
Nowadays, the business world recognizes the huge opportunities for growth offered by
this innovation stream [34]. Several authors point out the advantages of integrating I4.0
technologies with LM [1,4,7,12] and, more specifically, with CI [10,11,35]. In order to un-
derstand why the I4.0 trend is so important to CI projects, knowledge about I4.0 design
principles and I4.0 technological concepts must first be acquired. In order to systematize the
Industry 4.0 knowledge and describe its elementary constituents, Hermann et al. [36] con-
ducted an extensive study resulting in four design principles of Industry 4.0, summarized
in Figure 2.
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Along with I4.0 transition comes the availability of new or improved technologi-
cal concepts to foster the business models transition [37,38]. There is a proliferation of
publications about these technologies addressing their identification, association, and re-
lationships between [39–43]. Bibby et al. [44] summarized I4.0′s technologies into eight
different technological concepts: additive manufacturing, Cloud, manufacturing execut-
ing systems, Internet of Things and cyber-physical systems, Big Data, sensors, e-value
chains, and autonomous robots. This clustering is simple, objective, and well-grounded
by previous work. Nevertheless, other authors propose an organization of technologies
driven by the type of use [41,43,45,46], which is very useful for process-based analysis,
such as the one made in this study. Based on these two approaches, an organization of the
technological concepts just for the practical depiction of the proposed approach PDCA 4.0
is used (Figure 3). In total, 10 technological concepts are considered in this study: Internet
of Things (IoT), cyber-physical systems (CPS), Big Data (BigData), Cloud (Cloud), sensors
and actuators (Sens&Act), autonomous robotics (AutRob), simulation and virtualization
(Sim&Virt), additive manufacturing (3DP), manufacturing execution systems (MES), and
e-value chains (eVC). The description and justification of each technological concept is
presented in Appendix A.
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3.2. Approaches towards the Applicability of I4.0 to LM/CI

There are several published documents fostering the use of LM/CI in the context of
I4.0 that were considered in the design of the proposed PDCA 4.0 approach. It should
be noted that there is no clear distinction between CI and LM tools, as both are a part
of the same management philosophy [13,14]. In fact, LM is supported by CI practices,
implying the use of lean tools. The documents were selected by using the following list of
keywords in the Google Scholar search engine: “Continuous Improvement 4.0”, “Kaizen
4.0”, “Lean Manufacturing 4.0”, “Industry 4.0 Continuous Improvement”, “Industry 4.0
Kaizen”, and “Industry 4.0 Lean”. In total, 47 documents were found; those that contribute
to this area of knowledge are discussed in this section. Three main types of approaches
were identified: (i) conceptual approaches that study the applicability and impact of I4.0
towards LM/CI; (ii) empirical approaches that are based on perceptions extracted from the
industry regarding the same subject; (iii) and practical approaches in which the application
of I4.0′s technologies to LM/CI is demonstrated through use cases.

3.2.1. Conceptual Approaches

Among the 23 publications on the conceptual application of I4.0 technologies to
LM/CI found in the literature, 19 of them do not mention their applicability towards
CI in a direct and structured way. After analyzing the content of these 23 papers, the
findings were assigned according to their relevance to each of the CI activities. As an
example, Sim&Virt, through augmented/assisted reality (AR/AsR), enables real-time
remote support in manual operations [8,12], relevant to the documentation management,
implementation, and follow-up and standardization activities. The result is exposed in
Tables A1 and A2 (Appendix B).

From this study, it can be stated that IoT and Cloud have the potential to cover all CI
activities, with IoT having the main role of enabling data transmission and access [9,47],
and Cloud the sharing of information [9,12] and cloud-based data storage [12,48], as well
as cloud computing capabilities [35,48,49]. Sim&Virt is also quite overarching, allowing
the use of AR/AsR to aid in manual operations [8,12] and observe the current state of
a process [11], and the use of virtual reality (VR) to facilitate training [8]. Additionally,
simulation technologies can be used to test countermeasures before their real life imple-
mentation [12,31,50]. For this, a factory digital twin coupled with simulations can also be
used for CI [51]. Big Data also possess a high degree of applicability, associated with data
analytics [9,12], predictive analysis [11,12,52,53], data mining [53], correlation analysis [47],
root cause analysis [11,53], and machine learning [11,43,53], as well as advanced analytics
for planning [8]. CPS, on the other hand, has relevancies to the collection and access to
real-time data [9,54], and can predict machine failures [52,55]. AutRob, besides improving
manufacturing flexibility and productivity [9] through the automation of routine tasks [11],
also makes the automatic detection of machine failures possible [1,9], as well as automated
logistics systems [8,9,12]. It can also be used in collaboration with operators [9]. Sens&Act
is a fundamental technological concept, as it is used to collect production data, including
machine performance and object location [12]. MES is mainly used to collect data, as
well as to display KPIs and data charts [56,57]. On the other hand, eVC allows for the
connectivity between stakeholders of the value chain and the information exchange along
the supply chain, with on-demand access to value chain information through digital plat-
forms [43]. 3DP is essentially connected with mass customization [12] and smart product
development [9], permitting the test of product designs.

3.2.2. Empirical Approaches

The empirical approaches to the application of I4.0 technologies to LM/CI are carried
out mainly through surveys for data collection regarding perceptions extracted from the
industry. Some of these insights are listed in Table A3 (Appendix C). It can be stated
that there are difficulties associated with I4.0′s concepts; namely the lack of knowledge
about their impacts, as well as high cost factors [58–60]. A simultaneous approach for the
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adoption of I4.0′s technologies and LM (and CI) is needed [58,59,61]. Furthermore, several
benefits of I4.0′s integration with LM are indicated [61].

Regarding the greater synergies between LM and I4.0 technologies, cloud comput-
ing/machine learning are related with waste prevention/increased productivity, Big Data
are interconnected with the concept of zero defects, and AR/VR with visual manage-
ment [59,60]. Tortorella et al. [62] studied the correlations between LM principles and I4.0
technologies. As examples, for the principle of “digitally controlled processes”, digital
sensors/interfaces and the remote control of production are considered as facilitators for
the identification of abnormal product/process conditions [62]. The authors also mention
technologies such as AR/VR with low correlation values, presenting a low adoption level.
However, they state that these applications cannot be disregarded, as the topic of I4.0 is
recent, and new relationships may arise as the manufacturer’s awareness escalates [62].
Dombrowski et al. [59] cover CI-related interdependencies, concluding that CI has the
biggest correlation with Big Data, followed by cloud computing, RFID/identification, and
sensors/actuators. Some additional references are made towards AR/VR, automated
guided vehicles, and smart glasses [59]. Regarding technologies with greater considera-
tion for implementation, IoT, big data analytics, and cloud computing received greater
consideration for implementation, followed by additive manufacturing, AsR/AR, and
robotics [61].

3.2.3. Practical Approaches

In the literature, multiple practical approaches were also found, in which the applica-
tion of I4.0′s technologies toward LM/CI are demonstrated through use cases. The corollary
of this study is presented through Tables A4 and A5 (Appendix D). This table summarizes
various use cases of I4.0′s technologies, connecting them to the different CI activities in
which they are relevant. As an example, the use case referring to a data collection system
for an actual machine using sensors and a CPS, allowing for the real-time visualization of
KPIs [63], can be considered as more relevant to KPI analysis and the diagnostic activities.

Only one publication [30] references a more complete description of a CI process,
including most of CI’s activities. The authors mention the use of web-based monitoring
tools to collect data, MES to monitor manufacturing processes in real-time, and root cause
analysis with the aid of digital boards and 3D printing to test product designs [30]. Other
use cases cover fewer CI stages, such as a data collection system for an actual machine
through the use of sensors and a CPS, allowing for the real-time visualization of KPIs [63],
a Big Data tool stack that processes a high volume of data, feeding predictive models
based on machine learning, and a descriptive analysis module that, through graphs, aids
in accessing recent problems and their root causes [64]. An approach that is more closely
related to problem identification through mapping refers to an RFID (Sens&Act)-based
system that can collect data, such as the quantity of items in a given place and cycle
times [65], having the potential to be adapted for a real-time VSM [66]. Additionally, a
value stream analysis based on a Big Data model [67] and the combination of VSM with
a simulation [68] are described in the literature. More associated with the development
and testing of countermeasures, a publication mentions scheduling solutions based on
real-time simulations [69]. Regarding implementation activities, multiple publications
report developments in task organization through Kanban boards; namely a web-based
board [70], a board operated with a smartphone [71], and a computer-aided task board
that tracks a physical panel in real-time [72]. Other use cases, such as a highly flexible
measurement-aided welding [73] and a safe human–robot collaborative assembly cell
based on a CPS [74], were also found. Lastly, some use cases of AR/AsR (Sim&Virt)
were deemed relevant for follow-up and standardization regarding the production [1,75],
maintenance [76], and quality control [77] activities, while also facilitating the management
of documents regarding work instructions.

Many of the practical approaches that were found are specifically related to one LM
tool, covering different CI activities. Use cases related to TPM, namely an online root
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cause analysis [78] and condition monitoring for machines [8,79], essentially cover the KPI
analysis, diagnosis, and root cause stages. Other studies describing the incorporation of
CPS in Jidoka [80,81] are also associated with these activities in a similar fashion.

3.2.4. Discussion

In summary, a body of knowledge exists regarding the application of I4.0′s technolo-
gies to CI, although many of the studied approaches relate to CI in an indirect way. In fact,
most of the conceptual approaches found in the literature directly reference LM tools, which
means that their functionalities were posteriorly analyzed in terms of their applicability
to CI, which is a more specific practice of the same management philosophy. Regarding
practical approaches, SMED is only briefly mentioned within this subject, and only a few
use cases relating to mapping were found, although the only suitable use case towards
VSM is not purposefully applied for that method. Few approaches refer to documentation
management and improvement implementation activities, although the technologies to do
so are readily available. In terms of general CI practices, the existing knowledge regarding
conceptual, empirical, and practical approaches is very limited, as only a few publications
that directly study this subject were found. Nonetheless, they do not offer comprehensive
and extensive maps of the applicability of I4.0 towards typical CI processes. These findings
further confirm the need for a more holistic and direct approach towards CI.

4. Functional Requirements for PDCA 4.0

Based on the compilation of several conceptual, empirical, and practical approaches
regarding the application of I4.0 technologies to LM/CI (Tables A1–A5) and the challenges
and limitations of conventional CI practices (Table 1 of Section 2), the functional require-
ments of a new conceptual PDCA 4.0 approach are defined. In total, 11 requirements
are stated. Each one of them is briefly presented and substantiated with examples taken
from the three types of approaches mentioned above. Table 3 presents the match of the
technological concepts with each of the 11 requirements for PDCA 4.0.

Table 3. Technological concepts for PDCA 4.0′s functional requirements.

PDCA 4.0′S Functional Requirements

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

I4.0
Technological

concepts

IoT X X X X X X X X X X X

CPS X X X

Big Data X X X X X X

Cloud X X X X X X X X X X

Sens&Act X

AutRob X

Sim&Virt X X X X X

3DP X

MES X X X

eVC X X

4.1. Automatic Data Collection System (R1)

As conventional practices depend heavily on the manual collection of data, which im-
plies serious limitations in the process, an automatic data collection system is proposed for
the CI team in order to have readily available data. This requirement is patent in conceptual
approaches that mention that such systems are enabled by the application of Sens&Act to
collect data [82], as well as IoT for the intelligent monitoring of the production and supply
chain management functions [47]. Real-time data collection from the production system is
also enabled by using MES [56,57], this being the primary reason for its deployment [57].
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Regarding data generated outside of the factory, eVC can increase connectivity and allow
information exchange along the supply chain [43,45]. After further refinement, the col-
lected data can be stored in Cloud databases that constitute the heart of a factory digital
twin [51]. Lastly, the concept of Big Data, as it is associated with the gathering of data from
sensor readings [43], and because it is needed in order to establish a digital twin [43], is
also associated with this requirement. Based on an empirical study, the use of digital sen-
sors/interfaces facilitates the identification of abnormal product/operating conditions [62].
Additionally, IoT can be used as a supporting mechanism to interconnect products and
processes [62]. Finally, this requirement is also present in practical use cases, such as a
sensor-based data collection system that measures different machine parameters [63] and
data collection by MES to support root cause problem solving [30].

4.2. Advanced Analysis Tool (R2)

When data are collected automatically from sensors, an advanced analysis tool capable
of handling a high volume of data is required. This way, it is possible to use advanced data
analytics tools in an automatic fashion, avoiding Excel sheets and the limitations of simpler
analysis tools. This requirement is evident in conceptual approaches that point out that the
concept of Big Data, and therefore big data analytics, can process a high volume of data into
information that can be used to improve the system’s performance [8,12]. This technology
can be used to perform simple data analysis [9,12] as well as advanced data analytics, such
as machine learning [11,43,53], data mining [43,53], root cause analysis [11,53], correlation
analysis [47], and predictive analysis [11,12,52,53]. As an example, Rittberger et al. [11]
suggest that a machine learning algorithm can be used in conjunction with a problem-
solving database in order to infer cause–problem relationships. On a support point of
view, other authors mention that IoT enables data transmission from machines to end
user software [9], which is pertinent to this requirement. The Cloud concept is also
relevant, as it can provide cloud computing capacity for data analytics [35,42,83] as well
as enable data transfer from cloud storage to analysis tools [12]. Empirically, a study
mentions that Big Data, namely big data analytics, and IoT, were given higher consideration
for implementation [61]. Other authors present Big Data as the most interdependent
technological concept towards CI [59]. Regarding practical approaches, as described earlier,
a Big Data tool stack that allows data to feed predictive and descriptive analysis modules
already exists [64], as well as a value stream analysis based on a Big Data model [67].

4.3. Problem Prediction System (R3)

A system that predicts problematic situations before they happen is required to
anticipate problems, which is something that is not possible in conventional practices. This
requirement is present in conceptual approaches that mention the potential of Big Data,
namely big data analytics, for helping employees to determine cause-and-effect correlations,
as well as trends to predict problems that are occurring in a process [11]. In a more
specific approach towards machines, CPS architectures with embedded analytics (machine
learning) can be applied to monitor, predict, and diagnose machine failures [52,55]. IoT is a
relevant support technology for this requirement, as it enables real-time operation/machine
monitoring [47,55]. Multiple practical use cases that demonstrate this requirement also
exist, such as CPS-based systems with the ability to predict equipment failure [8,80,81,84],
aided by machine learning algorithms and cloud computing [8,84].

4.4. Real-Time Visualization System to Consult Production Data (R4)

A real-time visualization system is needed so that relevant information is displayed
in real-time, enabling the user to have knowledge about the current state of the produc-
tion system, and avoiding decision making based on obsolete data. This requirement
is present in conceptual studies that indicate the role of MES to determine KPIs, create
reports, and provide user interfaces to visualize and manage shop floor operations [56,57].
Data from the value chain can also be visualized through digital platforms, enabled by
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eVC [43]. A digital twin, integrating different types of data from the manufacturing site
and recreating a production line in a digital space, can also be used as the basis for the
display of production and product information [51]. Other authors refer to CPS as useful
for real-time data collection, which allows for effective KPI monitoring [9]. Lastly, AR/AsR
devices (Sim&Virt) can also be used to display relevant process information, aiding users
in problem-solving actions [12]. From a support perspective, IoT may be applied in order
to provide real-time visualizations of information [47], and Cloud may be applied in order
to access the collected data [9,12]. This requirement is further present in practical use cases;
namely a data collection system that uses a CPS in order to monitor and visualize KPIs
in real-time [63], and a RFID (Sens&Act)-based system used to collect data from the shop
floor and present process data, with the potential to be integrated with VSM [65].

4.5. System That Analyzes Countermeasures’ Impact before Their Implementation (R5)

The analysis of the countermeasures’ impact before their real-life implementation
is also defined as a requirement for PDCA 4.0, as it can aid in developing viable and
feasible countermeasures towards existing problems. Conceptually, this requirement is
evidenced as the future of modelling, and the simulation will allow for the creation of near
to real-time models with low building cycles, providing a tool for decision making and
semi-autonomous problem solving [31]. Therefore, when connected to Big Data sources
(stored in the Cloud), this technology can be used to test improvements to the production
system, evaluating their impact in a virtual environment [12,31]. In this context, a digital
twin of the manufacturing site that uses a simulation can be used towards CI [51]. This
requirement can be further supported by on-demand cloud computing resources that allow
high-speed simulation analytics [85], as well as IoT to transmit data between machines and
sensors to software tools [9]. Regarding practical use cases, this requirement is present
in scheduling solutions based on both real-time simulations [69] and the combination
of VSM with simulation models in order to validate current and future states, aiding in
decision-making processes [68].

4.6. System That Prioritizes CI Projects (R6)

The prioritization of CI projects, constituting a hierarchy of problems to be solved,
is also important because it guarantees the awareness of the impact vs. the effort of a
CI project, allowing for the implementation of the most effective improvements. This
requirement is justified by the difficulty in establishing consensus regarding the starting
points towards process improvement [86]. Furthermore, the lack of resource availability
for CI [87] reinforces the need to focus efforts correctly. I4.0 can play a role in the scope of
this requirement, as simulations can be used to analyze the possible impact of countermea-
sures [12,31,51]. Big Data (big data analytics) has the potential to improve upon conceptual
methodologies for the prioritization of projects and the allocation of resources, such as the
one proposed by Allan et al. [86]. Similarly to the previous requirement, cloud computing
and IoT can be used to support this need.

4.7. Dynamic Planning of Improvement Activities with Alarmistic (R7)

In order to assist the implementation process of CI projects, a dynamic planning tool
that displays the activities to be carried out, those that are being carried out, and those
already carried out is needed. Regarding conceptual approaches, Krishnaiyer et al. [49]
propose a cloud Kanban framework in order to monitor and control the resource consump-
tion and production of an enterprise. In the scope of planning, Mayr et al. [8] mention
advanced data analytics towards planning. For this, MES also plays an important role,
as it supports advanced production planning (Gantt charts, for example) and resource
allocation [56,57]. This requirement is also present in practical case studies that mention
the advantages of digital Kanban boards in terms of its flexibility for visualizing assigned
tasks [70–72]. As examples, Nakazawa et al. [71] developed a digital Kanban board that is
controlled by a smartphone, and Bacea et al. [72] developed a virtual Kanban board that
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tracks physical task cards through a camera. These use cases demonstrate the importance
of device interconnectivity, relating to the IoT technological concept.

4.8. Digital Support for CI Documentation (R8)

As it enables easy access to information regardless of the users’ location, the digital
support for CI documentation is also a requirement for PDCA 4.0, along with a database
for its storage and future access. This requirement is patent in the conceptual approach
by Hambach et al. [10], in which the authors mention the advantages of a digital CI sys-
tem in terms of data storage and access through document management systems, digital
communication that is independent of space and time, and data visualization. For this,
cloud-based data storage is essential in order to allow for more effective data sharing within
departments [48], a concept that is aligned with the life cycle of technical documentation
in the context of I4.0 [88]. Data exchange through IoT is therefore also fundamental for
this requirement, being supported by authors who argue that technical documentation
should be connected to IoT in order to facilitate communication between machines and
humans [89]. Related to this requirement, a database for CI documentation storage is
necessary. This way, through a library search, knowledge from past situations (state of
the project, diagnostic, root causes, countermeasures, and their degree of success) can be
accessed and used for present CI projects. This is present in conceptual approaches that
mention the need for problem-solving databases to aid future CI projects [10,26]. In fact,
Rittberger et al. [11] propose that successful improvement initiatives should be filed as
standards in a database that contains problem information; namely its root causes and coun-
termeasures. Once again, this is supported through the use of Cloud data storage [12,48], as
well as IoT, to ensure data exchange between different devices [9], making documentation
accessible everywhere.

4.9. Organizationally Transversal System for Consulting Best Practices (R9)

A transversal system for consulting best practices is defined as a requirement for
PDCA 4.0, as it will enable knowledge sharing across the company regardless of the
user’s location, avoiding information retention in organizational silos, and facilitating
the standardization of new countermeasures. This requirement is present in conceptual
approaches that mention that although AR/AsR (Sim&Virt) enables users to access real-
time information about process data [11], it can also be used to remotely support employees
in performing manual operations, such as maintenance or production tasks [8,12]. This
way, work instructions can be shared with the operator [8], guaranteeing that best practices
are shared across the organization, facilitating their standardization. In a similar context,
VR can also facilitate the employees’ training [8]. According to the literature, the use of
these technologies is supported by Cloud and IoT [90,91]. Empirically, AR and VR are
considered as interdependent with CI, although to a lesser extent when compared with
visual management [59]. This requirement is further demonstrated in practical use cases.
Several publications cover the application of these technologies through use cases in the
context of production, maintenance, and quality control activities [1,75–77]. As an example,
Kolberg et al. [1] mention the use of AR on manual workstations for the identification of
both tasks and relevant information.

4.10. Automatic and Intelligent Work System (R10)

An automatic and intelligent work system is also defined as a requirement for PDCA
4.0, as it can ensure a more efficient process of implementing countermeasures regarding
new machine parameters and work sequences, guaranteeing their immediate standardiza-
tion. This requirement is justified in conceptual publications, as one study mentions that
employees may lack the capacity to implement countermeasures during the implementa-
tion (“Do”) phase, suggesting the automation of routine tasks [11]. In this scope, authors
argue that autonomous robots both increase manufacturing flexibility [9], easily adapting
to changes and thus allowing for automated logistics systems [9,12], and communicate fail-
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ures automatically, calling other systems for fault-repair actions [1]. In fact, the connectivity
achieved through IoT enables a new level of automation [92]. From a practical point of
view, this requirement is demonstrated through a use case by Tuominen [73], who describes
a measurement-aided welding cell that is able to adjust itself in order to produce different
products, and also has the ability to inspect weld beads. Nikolakis et al. [74] describe a CPS
system for enabling human–robot collaboration based on a safety distance evaluation.

4.11. Rapid Prototyping System (R11)

A rapid prototyping system is specified as a requirement, as this will enable a faster
process of testing countermeasures. This requirement is justified, as conceptual studies
mention the additive manufacturing’s ability to produce customized products, being
a highly flexible manufacturing process [12], potentiating smart product development
processes [9]. In this context, IoT is useful to directly connect printers to the Cloud,
enabling their remote control and monitoring [73]. Regarding practical use cases, one
publication in the context of root cause problem solving describes the utilization of 3D
printing to test improved product solutions [30].

In a final analysis, observing Table 3 it can be stated that IoT, Cloud, and Big Data are
the most wide-ranging technological concepts regarding the 11 requirements for PDCA 4.0.
This result is aligned with the base technologies for I4.0 identified by Frank et al. [43]. In fact,
IoT is relevant to all the requirements, being the medium by which connectivity is achieved
between various objects and software. Cloud, with cloud-based services such as data
storage and computing power, is also applicable to the majority of the requirements. Big
Data, referring to advanced data analytics, is pertinent to the PDCA 4.0′s functionalities that
make use of such technologies. Sim&Virt is also a very ample concept, supporting decision
making through simulation and optimization techniques, and also virtualizing the physical
documentation and the physical processes that take place in the shopfloor. Sens&Act,
despite directly covering only one requirement, is a base technological concept to PDCA
4.0, as it is the means through which data are collected, feeding the other technological
concepts as well as most of the CI activities. The least overarching technology corresponds
to 3DP and AutRob, each matching to a specific requirement.

In the following section, the PDCA 4.0 approach is proposed based on satisfying these
11 requirements, where the match between the requirements and the CI activities is carried
out as the approach design is specified.

5. PDCA 4.0′s Framework Dynamics

As previously stated in Section 3.2.4, a more holistic and direct approach towards
the application of I4.0 to CI is needed. Supported by both the previous analyses of the
applicability of I4.0′s technological concepts and the definition of the requirements for a
new CI approach (matching visible in Figure 4), the vision for PDCA 4.0 is defined. Figure 5
visually represents its framework.



Appl. Sci. 2021, 11, 7671 14 of 29
Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 29 
 

 

Figure 4. I4.0 technological concepts for the PDCA 4.0 methodology. Figure 4. I4.0 technological concepts for the PDCA 4.0 methodology.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 29 
 

 

Figure 5. PDCA 4.0 framework. 
Figure 5. PDCA 4.0 framework.



Appl. Sci. 2021, 11, 7671 15 of 29

In the beginning of the CI process, namely the activities of KPI analysis, mapping, and
diagnosis, Big Data collected automatically from the production system (R1) by Sens&Act
and MES systems are stored in Cloud databases (Cloud), which also contain data regarding
the whole value chain via eVC. The various types of data can then be integrated, forming
the heart of a factory digital twin (Sim&Virt) that represents a virtual model of the physical
world. The role of IoT is the same throughout this framework, ensuring connectivity and
data transmission between machines and software. With these technologies, data coming
from the shop floor, as well as from the value chain, can be used by CI teams for data-driven
PDCA, avoiding situations where data are insufficient, obsolete, or inexistent.

The stored data can then be processed by advanced big data analytics (Big Data) (R2),
generating information regarding KPI analysis and mapping activities, through which the
current state of the production system is known. A prediction of the future state may also
be possible via predictive analytics (Big Data) (R3). For analytics (Big Data) and simula-
tion services (Sim&Virt), cloud computing (Cloud) can be a supporting technology for
providing the necessary computing ability. The information can be displayed in real-time
to employees (to assist those responsible for the improvement to make decisions) through
CPS, MES interfaces, eVC digital platforms, and AR/AsR devices (Sim&Virt) (R4), with its
goal being the identification of negative critical aspects existing (or that may exist) in the
organization. More specifically towards equipment, machine fault detection and prediction
is possible through AutRob and CPS with embedded machine learning algorithms (R10).
The PDCA database (R8) allows access to digitalized information regarding already identi-
fied problems, supporting the process of finding critical parameters and factors. This can
also correspond to the employee’s suggestions that are stored in the database (Cloud). All
of these advanced data processing systems must have a user-friendly and simple-to-use
interface, where the user (who is not an expert in data analytics) simply has to ask for
a correlation analysis to the interface, and receives the output of several data analytics
algorithms in the form of degree of influence and/or level of correlation (allowing an
informed root cause analysis).

When the critical aspect is identified, an automatic diagnosis can be achieved via
an advanced data analysis tool (Big Data) (R2) that retrieves historical and current data
from the factory digital twin (Sim&Virt) in order to construct a diagnosis regarding the
critical aspect. Predictions for the future state (Sim&Virt) (R3) can also be used in order
to give emphasis to the hindered performance of the production system. This type of
information could also be accessed and visualized through the same technologies stated in
the previous paragraph (R4). Additionally, for the next stage of the CI process, advanced
big data analytics, such as correlation analysis and root cause analysis, or a machine
learning algorithm that infers cause–effect relationships based on a historical problem-
solving database (R8), can be used to help the CI team determine the root causes of a
problem. These functionalities ensure that manual, simple, and inefficient analysis tools
are avoided, allowing the CI team to save time in carrying out these tasks. In addition, they
make sure that the real source of the identified problems is addressed, avoiding superficial
quick fixes.

For the next activity, the development of countermeasures, simulation models with
low building cycles (Sim&Virt), can be used to predict the effect of improvement solutions
in a virtual factory environment through software (R5), as well as 3DP, in order to test
solutions regarding product designs (R11). These technologies aid the decision-making
process, allowing the CI team to find the most effective and feasible solutions to problems,
all while offering a low-risk and faster way to test changes to the system/product.

The results of the simulations (Sim&Virt) can also be used to further better the decision-
making process by allowing to prioritize CI projects according to their impact and perceived
effort (R6), ensuring a more effective implementation of countermeasures. Big Data analysis
techniques can also be used in conjunction with the results of simulations, enabling the
automatic hierarchization of projects (R6).
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Regarding the planning of activities, MES can be used to support the planning process
through Gantt charts and resource allocation information. Additionally, cloud Kanban
boards (Cloud) can be used to enable remote access to assigned tasks (R7). A system to con-
sult best practices (Sim&Virt) (R9) further enhances the implementation of countermeasures
by giving employees access to important information regarding work procedures, aiding
them in performing new tasks. VR (Sim&Virt), namely AsR, can also help in this regard, as
it facilitates employee training in a virtual environment. The automation of tasks (AutRob)
(R10) is also pertinent to the implementation stage, aiding people in implementing the
developed countermeasures, which accelerates the process. This implies an automatic and
intelligent work system that easily adapts to changes in manufacturing (R10).

For the follow-up and standardization activities, data collected from the production
system (R1), regarding the new system performance, can once again be used to identify
critical aspects, allowing to evaluate whether or not the improvement initiatives were
successful and if new problems arose. This constitutes a CI cycle over which successive
problem-solving needs are identified and undertaken. More related to standardization,
best practice sharing through AR/AsR devices (Sim&Virt) (R9) facilitates the normalization
of improvement solutions through the remote access to documentation such as work in-
structions by the employees in the shopfloor. Furthermore, autonomous and collaborative
robotics (AutRob) allow for a more flexible and intelligent work system (R10), easily adapt-
ing to changes. This potentiates the immediate standardization of new work procedures
and work parameters, project impact and effort, and thus its hierarchization, as well as
implementation planning information.

Lastly, information management is essential to the success of the improvement. Con-
trary to the usual pen-and-paper practices, having all the information digitized is crucial to
store it in a database (Cloud) (R9) that enables everyone involved in the project to easily
access important data.

Regarding the connection of the technological concepts with the CI activities, Figure 4
highlights the embracing way that they are interconnected. It is possible to see that most
technologies relate to all CI activities by analyzing the large amount of complete circular
crowns around the center. Only some technological concepts are less overarching. AutRob
is present only in the check and act phases, being important for the implementation, follow-
up, and standardization stages. CPS is more embracing but does not contribute to root cause
identification and the development of countermeasures. Finally, 3DP has a more specific
use, only relating to the activity of countermeasure development. In this figure, it can be
seen that IoT, Cloud, and Sim&Virt are also important for documentation management.

Regarding I4.0’s design principles, this framework allows to achieve the principle
of interconnection through IoT-enabled data sharing. This way, information availability
and exchange are ensured, which is crucial for a data-based CI approach. Information
transparency is also guaranteed through systematic Big Data collection, forming the heart
of a factory digital twin. This data are then used in conjunction with real-time display
systems and several advanced analysis tools, such as data analytics and simulations
for the relevant stages of a CI project. Decentralized decisions are also promoted in
this framework, as it implies the use of technologies that support the decision-making
process, helping to establish both root causes of critical aspects and the estimation of the
countermeasure’s impact on the production system/product. Thus, this solution allows for
the access to information in order to support the different actors of a CI project in decision
making. Finally, technical assistance is also assured through technologies that enable the
remote guidance of operators during maintenance, production, or quality control activities,
displaying relevant information and best practices for those tasks. This is also apparent in
the machine’s ability to automatically detect failures.

6. Conclusions

Several publications regarding conceptual, empirical, and practical studies on the
application of I4.0′s technologies towards LM and CI were analyzed, with their findings
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being organized according to the stages that constitute a typical CI project. It was found
that the I4.0′s technologies mentioned in the literature have the potential to enhance a
data-driven and more intelligent approach towards CI. It was also found that a holistic
and structured framework towards an approach that combines I4.0 and CI was needed,
as the vast majority of the authors focus solely on single aspects that are relevant to
the subject. Thus, 11 requirements for the proposed approach were established based
on functionalities or needs that are identified in the literature, as well as the relevant
technologies for their materialization. These requirements were then worked in order to
constitute a framework for PDCA 4.0. This framework uses I4.0′s technological concepts
to collect production data and constitute a factory digital twin, enabling the identification
of critical aspects related to the system’s performance through KPI analysis and mapping.
These critical aspects are then diagnosed through intelligent data analysis and visualization
tools, also enabling the determination of their root causes. Countermeasures can then
be tested through simulations and/or through prototypes of the product design. This
framework also aids the implementation of the improvements through the prioritization of
projects, as well as their actual planning, and their follow-up and standardization activities.
Another key component of this framework is related to information management, in which
documentation needs to exist in a digital format in order to be stored in a PDCA database,
making it accessible to everyone, everywhere. In summary, the application of I4.0 to CI
contributes to a faster, more transparent, and efficient data-driven process, allowing to
surpass traditional barriers related to such projects.

As future work, the authors are already implementing the PDCA 4.0 approach in
industrial companies, allowing to publish and discuss the impact, pros, and cons of the
proposed approach. Another direction of research is to understand how aligned PDCA is
with the concept of Industry 5.0. A deep and robust understanding of what Industry 5.0 is
must be carried out prior to this analysis, but one can say that PDCA 4.0 is highly centered
in humans (supporting human-based decisions and enriching humans’ activities) and also
fosters the sustainability performance (the application of CI has a high impact on resources
efficiency, people’s motivation, and the improvement of working conditions).
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Appendix A. Description of the I4.0 Technological Concepts Considered in This Study

Internet of Things [IoT]—The technological concept “IoT” refers to a network char-
acterized by physical devices capable of connecting to the wireless internet. The base
components are made up of built-in electronics, such as sensors and transmission hard-
ware. It allows for the rapid generation of data, leveraging the information flow within
an organization through physical devices capable of interacting with each other and with
control systems, through a network infrastructure [42,43,93].

Cyber-physical Systems [CPS]—According to several authors [36,94,95] “IoT and
CPS” should be divided into two different concepts, differing from the categorisation
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presented by Bibby et al. [44]. The technological concept “CPS” refers to systems capable
of combining computational modelling, statistical data and physical data in real-time. The
physical devices (machines or production lines) and the physical processes are digitized,
creating a digital system identical to the physical system [43].

Big Data [BigData]—Some authors, such as Frank et al. [43], separate Big Data from
data analytics. However, both concepts are interdependent, and that is why many au-
thors [40,41,44] choose not to separate them. The technological concept “Big Data” refers
to this large data volume [41] and to the technologies of its collection, processing, provi-
sioning, and analysis [44]. This concept is necessary in order to generate factory digital
twins [43]. Data analysis refers to data mining, machine learning [43], statistical analysis,
and predictive analysis, among others [40]. Regarding cybersecurity, some authors consider
it as a separate category [12]. However, there are approaches who do not find it reasonable
to approach this concept in an elementary way [40,44]. Following this last choice, and
since cybersecurity technologies are associated with data and information, they are now
included in the technological concept of Big Data.

Cloud [Cloud]—The technological concept “Cloud” is unanimously adopted by other
authors, such as [40], with similar descriptions and associated technologies. This concept
refers to any IT services provisioned and accessible from a cloud computing provider [41].
It consists of three IT combinations: internet services, web-based applications, and infor-
mation management [44].

Sensors and Actuators [Sens&Act]—The logic behind this clustering follows the work
by Bai et al. [41], which is entitled “Sensors and Actuators” instead of simply “Sensors”.
Additionally, Bibby et al. [44] do not address actuators in their article, while other au-
thors [41,43] argue that it is an important topic to be included. This technological concept
“Sens&Act” includes basic technologies for the digitalization of objects and physical param-
eters [43]. It includes all devices that respond to a physical stimulus and transmit a resulting
impulse [41]. This concept is also associated with RFID (radio frequency identification) [41].

Autonomous Robotics [AutRob]—This technological concept includes autonomous,
collaborative, and intelligent robots and equipment, with embedded sensors, dexterity,
artificial intelligence, and machine learning [44]. As there is no common line in the literature
about the place of artificial intelligence and machine learning, the present classification
follows the same choice of Bibby et al. [44] of having just one technological concept (AutRob)
where all of these associated technologies are included.

Simulation and Virtualization [Sim&Virt]—This technological concept includes virtual
tools that provide support to the decision-making process. In this scope, assisted reality
(AsR), augmented reality (AR), and virtual reality (VR) are emerging technologies that
create partial and complete virtual environments, capable of enhancing tasks and speeding
up training [43]. Bibby et al. [44] do not individually address the virtualization technologies,
namely VR and AR, which is something that happens in several later works [43,45,46]. This
indicates the relevance of including a category for these technologies. The literature also
suggests that both the simulation and digital twin have an impact on LM practices [8,9]. Ito
and Ishida [51] defined the concept of a digital twin as a replica of the real world created in
a digital space, bringing together different types of data on site. The replica can be used
with artificial intelligence or simulations in order to help to make improvements in the
context [51]. Therefore, their inclusion in this technological concept is adequate.

Additive Manufacturing [3DP]—This technological concept is unanimously adopted
by other authors, such as [40,41,43], with similar descriptions and associated technologies.
Additive manufacturing (AM) or 3D printing (3DP) is a process by which products are
produced autonomously, layer by layer [44]. It consists of versatile machines and flexible
production systems that transform 3D digital models into physical products [40]. This
technology is used especially for rapid prototyping and the creation of custom-made
tools [44].

Manufacturing Execution Systems [MES]—MES is a useful tool for organizations
that require the accurate traceability of parts, components, and assembly activities to
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monitor quality, cost, and lead times. The purpose of MES is to initiate, guide, respond,
and report shop floor activities as they occur [96]. MES also plays a key role in the central
distribution of information [44]. Regarding ERP systems, Bibby et al. [44] include an
exclusive classification group: MES is an I4.0 technological concept, and the rest (ERP,
SCADA) already existed before I4.0 began. However, other authors define more complete
technological categories, integrating MES/SCADA [40] or MES/SCADA/ERP [43]. All
things considered, in the present classification approach, SCADA and ERP are directly
associated to MES.

e-Value Chains [eVC]—Supported by the digitalization of value chain activities [44],
this technological concept consists of collaborative digital platforms [43] together with
suppliers, customers, and other parts of the organization. This allows for continuous
connectivity, collaboration, and cooperation [44], fostering the synchronization of the pro-
duction with stakeholders [43]. Slightly different classifications exist in the literature, such
as smart supply chain [43]. Furthermore, several other authors mention this technological
concept indirectly [4,45]. Despite not being a technological concept, as mentioned in the
literature as the base concepts (IoT, Cloud, etc.), eVC includes essential technologies for
horizontal integration, and for this reason, this category must be included.

Appendix B. Conceptual Approaches for the Application of I4.0 to LM/CI

Table A1. Conceptual approaches for the application of I4.0 to LM/CI.

Follow-up and
Standardization

3 Enabling data
transmission and
access [9,47]
3 Data interchange
between machines,
systems, and
sensors in order to
end user software
tools [9]

3 Collect and
access real-time
data [9,54]
3 Predict machine
failures [52,55]

3 Data analysis
[9,12]
3 Predictive
analysis
[11,12,52,53]
3 Machine
learning [11,43,53]

3 Cloud-based data
storage [12,42,83]
3 Information
sharing across
organization [9,12]
3 Cloud computing
[35,42,83,85]

3 Collection of
production data
[12,82]

Implementation

3 Enabling data
transmission and
access [9,47]
3 Data interchange
between machines,
systems, and
sensors in order to
end user software
tools [9]

3 Collect and
access real-time
data [9,54]

3 Advanced
analytics for
planning [8]
3 Data analysis
[9,12]

3 Cloud-based data
storage [12,42,83]
3 Information
sharing across
organization [9,12]
3 Cloud computing
[35,42,83,85]
3 Cloud Kanban [49]

Countermeasures

3 Enabling data
transmission and
access [9,47]
3 Data interchange
between machines,
systems, and
sensors in order to
end user software
tools [9]

3 Cloud-based data
storage [12,42,83]
3 Information
sharing across
organization [9,12]
3 Cloud computing
[35,42,83,85]

3 Collection of
production data
[12,82]
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Table A1. Cont.

Root causes

3 Enabling data
transmission and
access [9,47]
3 Data interchange
between machines,
systems, and
sensors in order to
end user software
tools [9]

3 Root cause
analysis [11,53]
3 Correlation
analysis [47]
3 Machine
learning [11,43,53]

3 Cloud-based data
storage [12,42,83]
3 Information
sharing across
organization [9,12]
3 Cloud computing
[35,42,83,85]

3 Collection of
production data
[12,82]

Diagnosis

3 Enabling data
transmission and
access [9,47]
3 Data interchange
between machines,
systems, and
sensors in order to
end user software
tools [9]

3 Collect and
access real-time
data [9,54]
3 Predict machine
failures [52,55]

3 Data analysis
[9,12]
3 Predictive
analysis
[11,12,52,53]
3 Data mining [53]
3 Correlation
analysis [47]
3 Machine
learning [11,43,53]

3 Cloud-based data
storage [12,42,83]
3 Information
sharing across
organization [9,12]
3 Cloud computing
[35,42,83,85]

3 Collection of
production data
[12,82]

Mapping

3 Enabling data
transmission and
access [9,47]
3 Data interchange
between machines,
systems, and
sensors in order to
end user software
tools [9]

3 Collect and
access real-time
data [9,54]
3 Predict machine
failures [52,55]

3 Data analysis
[9,12]
3 Predictive
analysis
[11,12,52,53]
3 Machine
learning [11,43,53]

3 Cloud-based data
storage [12,42,83]
3 Information
sharing across
organization [9,12]
3 Cloud computing
[35,42,83,85]

3 Collection of
production data
[12,82]

KPI
analysis

3 Enabling data
transmission and
access [9,47]
3 Data interchange
between machines,
systems, and
sensors in order to
end user software
tools [9]

3 Collect and
access real-time
data [9,54]
3 Predict machine
failures [52,55]

3 Data analysis
[9,12]
3 Predictive
analysis
[11,12,52,53]
3 Data mining [53]
3 Correlation
analysis [47]
3 Machine
learning [11,43,53]

3 Cloud-based data
storage [12,42,83]
3 Information
sharing across
organization [9,12]
3 Cloud computing
[35,42,83,85]

3 Collection of
production data
[12,82]

Doc.
Management

3 Enabling data
transmission and
access [9,47]
3 Data interchange
between machines,
systems, and
sensors in order to
end user software
tools [9]

3 Cloud-based data
storage [12,42,83]
3 Information
sharing across
organization [9,12]

IoT CPS Big Data Cloud Sens&Act
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Table A2. Conceptual approaches for the application of I4.0 to LM/CI (Continued).

Follow-up and
Standardization

3 Flexible
adaptation to
changes [9]
3 Minimization of
human errors [8]

3 AR/ER allow for
real-time remote
support in manual
operations [8,12]
3 Display of data
through digital
twin [51]
3 VR facilitates
training [8]
3 AR/ER to
analyze current
process condition
[11]

3 Data collection
[56,57]
3 KPIs and charts
in real-time [56,57]

3 Information
exchange along
supply chain
[43,45]
3 On-demand
access to
information
through digital
platforms [43]

Implementation

3 Flexible
adaptation to
changes [9]
3 Automation of
routine tasks [11]
3 Collaboration with
operators [9]
3 Minimization of
human errors [8]
3 Automated
logistics [8,9,12]

3 Simulation of
countermeasures
and their impacts
[12,31,50]
3 AR/ER allow for
real-time remote
support in manual
operations [8,12]
3 VR facilitates
training [8]

3 Support
planning and
resource allocation
[56,57]

Countermeasures

3 Simulation of
countermeasures
and their impacts
[12,31,50]
3 Simulation
through digital
twin [51]
3 Supporting the
creation and
planning of
standard work
procedures [9]

3 Small batch
production (mass
customization) [12]
3 Smart product
development
processes [9]

Root causes

Diagnosis

3 Automatic
detection of machine
failures [1,9]

3 AR/ER to
analyze current
process condition
[11]
3 Display of data
through digital
twin [51]

3 Data collection
[56,57]
3 KPIs and charts
in real-time [56,57]

3 Information
exchange along
supply chain [43]
3 On-demand
access to
information
through digital
platforms [43]
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Table A2. Cont.

Mapping

3 Automatic
detection of machine
failures [1,9]

3 AR/ER to
analyze current
process condition
[11]

3 Data collection
[56,57]
3 KPIs and charts
in real-time [56,57]

3 Information
exchange along
supply chain [43]
3 On-demand
access to
information
through digital
platforms [43]

KPI
analysis

3 Automatic
detection of machine
failures [1,9]

3 AR/ER to
analyze current
process condition
[11]
3 Display of data
through digital
twin [51]

3 Data collection
[56,57]
3 KPIs and charts
in real-time [56,57]

3 Information
exchange along
supply chain [43]
3 On-demand
access to
information
through digital
platforms [43]

Doc.
Management

3 AR/ER allow
real-time remote
support in manual
operations [8,12]

Aut
Rob Sim&Virt 3DP MES eVC

Appendix C. Empirical Approaches for the Application of I4.0 to LM/CI

Table A3. Empirical approaches for the application of I4.0 to LM/CI.

Subject Insights References

A simultaneous approach is needed

3 Companies feel that the adoption of I4.0 technologies must be
simultaneous with the adoption of LM practices; therefore, a
common approach based on LM and I4.0 systems is necessary.

[58,59,61]

Difficulties with I4.0 concepts

3 Companies find it difficult to deal with some I4.0 technologies
and concepts and to foresee the potential of Industry 4.0; thus,
they face problems when selecting the relevant and most
promising I4.0 technologies for their processes.
3 High-cost factors and other associated risks, such as
cybersecurity, prevent smooth integration.
3 The effects of Industry 4.0 are still incipient even in
manufacturers from developed economies; therefore, research
should be carried out in this regard.
3 Most companies perceive a greater positive impact through LM
than I4.0 technologies; this is because they claim high levels of
LM implementation, regardless of technologies.

[58–60]
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Table A3. Cont.

Subject Insights References

Benefits of integrating I4.0 into LM

3 This integration contributes positively to reducing
manufacturing waste and operating costs in addition to
improving productivity efficiency; the effectiveness of factors
including supplier feedback, JIT, and supply development
systems can be improved by increasing the use of big data
analytics, sensors, cloud computing and other IoT devices; this
improved integration will increase the organization’s sustainable
results, guaranteeing the timely delivery of the product,
optimization of the supply network, and logistical reliability;
based on the analysis of the data generated by the customer, it is
possible to improve the level of customization offered.

[61]

Greater synergies between LM and I4.0

3 The greatest synergies achieved by companies are between
cloud computing/machine learning and waste
prevention/increased productivity, Big Data and the principle of
zero defects, AR/VR and visual management.

[59,60]

3 Some of the greatest correlations with LP principles and I4.0
were identified. Some examples are digital sensors/interfaces and
the remote control of production to facilitate the identification of
abnormal product/process conditions; IoT as a supporting
mechanism to assure interconnectivity among
products/processes.

[62]

Frequent interdependencies related to
CI

3 Big Data, RFID/identification, cloud computing, and
sensor/actuators have been indicated by many companies as
technologies that are interdependent with CI processes.

[59]

Rare interdependencies related to CI

3 Only a few companies indicated AR/VR, automated guided
vehicles, and smart glasses as technologies that are
interdependent with CI processes.

[59]

3 Companies struggled with the integration of AR/VR, having
the lowest mean adoption level [62]

I4.0 technologies of greatest
consideration for implementation

3 IoT, big data analytics, and cloud computing received greater
consideration for implementation, followed by AM, AR, and
robotics.

[61]
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Appendix D. Practical Approaches for the Application of I4.0 to LM/CI

Table A4. Practical approaches for the application of I4.0 to LM/CI.

References Use Cases Doc. Man-
agement

KPI
Analysis Mapping Diagnosis Root

Causes Countermeasures Implementation
Follow-Up

and Standard-
ization.

[30]

Web-based
monitoring tools to
collect data, MES to

monitor
manufacturing

processes in real-time,
root cause analysis

with the aid of digital
boards, and 3D
printing to test

product designs.

X X X X

[64]

Big Data tool stack
that processes a high

volume of data,
feeding predictive
models based on

machine learning and
a descriptive analysis
module that, through

graphs, aids in
accessing recent

problems and their
root causes.

X X X

[63]

Data collection system
for an actual machine
using sensors and a

CPS, also allowing for
the real-time

visualization of KPIs.

X X

[65]

RFID-based system
that can collect data

(e.g., quantity of items
in a given place and

cycle times). This
system has the
potential to be

adapted for the VSM,
allowing a real-time
representation of the
production system.

X

[67]

Value chain analysis
capable of

determining
inventory stocks

based on a Big Data
model that collects

product information.

X

[1,75–77]

Augmented/extended
reality applied to

manual workstations
for the identification

of tasks and the
display of

individualized
information.

Applicable to
maintenance,

production, and
quality control

activities.

X X X

[69]

Scheduling solutions
based on real-time

simulations, allowing
to reach on-demand
production and JIT

delivery.

X

[67]

Value stream analysis
based on a Big Data
model that collects

information from the
products and

processes.

X
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Table A4. Cont.

References Use Cases Doc. Man-
agement

KPI
Analysis Mapping Diagnosis Root

Causes Countermeasures Implementation
Follow-Up

and Standard-
ization.

[68]

Combination of VSM
with simulation

models to validate
current and future
states, allowing for
decision makers to

perform
comprehensive
analyses on the

system.

X X

[70]

Web-based digital
Kanban board that
allows to visualize
and limit WIP for

software development
projects. Quality of
communication and

motivation were
improved.

X

[71]

Large screen digital
Kanban that can be

operated with a
smartphone and uses

a short-focus
projector.

X

[72]

Implementation of a
computer-aided task
board with real-time

tracking features.
Tickets are created

online, printed, and
pinned to the physical

board, which is
tracked by a camera.
This application can

track physical
changes in real-time,
updating the board

online.

X

Table A5. Practical approaches for the application of I4.0 to LM/CI (continued).

References Use Cases Doc. Man-
agement

KPI
Analysis Mapping Diagnosis Root

Causes Countermeasures Implementation
Follow-Up

and Standard-
ization.

[73]

Measurement-aided
welding cell

consisting of two
handling robots, a

welding robot, and an
optical measurement
system. This system

allows the user to
quickly change

between
manufactured

products, offering the
chance to produce low

volume orders.

X X

[74]

CPS for enabling a
safe human–robot

collaborative
assembly cell, where
humans, industrial
robots, and moving
robots (AGVs) may

operate. The system is
based on real-time

evaluations regarding
safety distances and a
closed loop control for

triggering collision
preventive actions.

X
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Table A5. Cont.

References Use Cases Doc. Man-
agement

KPI
Analysis Mapping Diagnosis Root

Causes Countermeasures Implementation
Follow-Up

and Standard-
ization.

[80]
Jidoka—A Jidoka

system based on a
CPS.

X X

[81]

Jidoka—Incorporation
of a CPS in a milling
machine, allowing it
to schedule material

flow and detect
failures automatically.

X X X

[79]

TPM—
Transformation of the
maintenance model
from preventive to

predictive through the
real-time collection of

data. Use of data
mining to monitor

defect rates and
registered

breakdowns.

X X

[8]

TPM—Machine
learning-based

condition monitoring
along with cloud

computing to improve
TPM practices.

X X

[78]

TPM—Online root
cause analysis,

tracking maintenance,
and repair activities.

X
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