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Abstract: Because of continuous competition in the corporate industrial sector, numerous companies
are always looking for strategies to ensure timely product delivery to survive against their competitors.
For this reason, logistics play a significant role in the warehousing, shipments, and transportation of
the products. Therefore, the high utilization of resources can improve the profit margins and reduce
unnecessary storage or shipping costs. One significant issue in shipments is the Pallet Loading
Problem (PLP) which can generally be solved by seeking to maximize the total number of boxes to be
loaded on a pallet. In many previous studies, various solutions for the PLP have been suggested in
the context of logistics and shipment delivery systems. In this paper, a novel two-phase approach is
presented by utilizing a number of Machine Learning (ML) models to tackle the PLP. The dataset
utilized in this study was obtained from the DHL supply chain system. According to the training
and testing of various ML models, our results show that a very high (>85%) Pallet Utilization
Volume (PUV) was obtained, and an accuracy of >89% was determined to predict an accurate loading
arrangement of boxes on a suitable pallet. Furthermore, a comprehensive analysis of all the results
on the basis of a comparison of several ML models is provided in order to show the efficacy of the
proposed methodology.

Keywords: logistics; machine learning; pallet loading problem (PLP); classifiers

1. Introduction

Because of the advancements in transportation technology, a large number of products
are shipped to the customers globally using a wide variety of transport vehicles such
as trucks, planes, ships, etc., on a daily basis. These products are first packed in boxes
and placed on pallets and then loaded into trucks, containers, and other transportation
options [1]. This whole process necessitates optimizing the smallest volume of the uti-
lization of resources at each step in a cost-effective manner. For instance, an efficient and
optimized procedure of pallets loading can lead to a significant amount of cost savings.
Hence, it is quite evident that efficient utilization of pallets may entail the reduction of
goods traffic, thereby preserving the company’s time, resources, and the involved costs.
Therefore, an efficient solution to the Pallets Loading Problem (PLP) is extremely significant.
In general, there are two broad classes of PLP based on the sizes of the loaded boxes [2].
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The first is the uniform PLP, which is generally applied for identical or homogeneous types
of boxes, whereas the second is termed the mixed PLP, which categorizes non-identical
types of boxes [3]. Furthermore, this classification of boxes can be further categorized on
the basis of the box sizes in the system, termed as weakly heterogeneous and strongly
heterogeneous [4,5]. Additionally, as a rule, there can be no overlap and overhang for the
boxes to be loaded onto the pallets.

The Pallet Loading Problem is undeniably a complex and multifaceted task [6].
Barros et al. [6] studied the complexity of an arrangement of cargo in a pallet and proved
through principal component analysis and multiple linear regression that the number
of boxes is a strong predictor of complexity in this challenging problem. Moreover, the
Distributor’s Pallet Loading Problem (DPLP) is an NP-hard problem and has multiple
layers of complexity stemming from various constraints imposed on it, such as the stability
of a layer to sustain upper layers, the compression limit of each layer to sustain the weight
of the layers placed on top of it, and the weight limit imposed by the company carrying out
the packaging [7]. Nonetheless, loading boxes onto a container in such a manner that the
3D volume is utilized to the maximum is also a computationally demanding problem since
it requires addressing various constraints, such as the orientations in which a box can be
loaded as well as stability constraints [8]. Finally, cargo security during the transportation
process needs to be thoroughly accounted for, and it can be enhanced through the selection
of a proper stretch film and an appropriate cargo wrapping model [9].

For many industries, logistics activities such as transportation and storage play a
key role in delivery, cost reduction, and the safety of goods. For this purpose, pallets are
utilized as the most significant strategic equipment in the logistics of shipment and delivery.
Similarly, another important factor is to utilize an optimal number of pallets for any freight,
which may save an enormous amount of costs [1]. Consequently, many recent studies have
focused on solving the PLP for different 3-dimensional (3D) pallet sizes to reduce the total
number of pallets as well as the optimal sorting of boxes in an efficient manner [10]. Other
studies have focused on the use of Artificial Intelligence (AI) and Machine Learning (ML)
methods to schedule and control freight loading operations, supply chain management,
and logistics in the manufacturing industry [11–14].

This research study originated as a part of the research initiative by the DHL supply
chain, which focuses on determining the optimal classification methods to load boxes on
the pallets, also taking into account the humidity and storage duration. It was reported
that the stability, the strength of the pallet, and the mechanical strength of the box are
adversely affected by changes in humidity [15]. DHL operates in more than 220 countries
and territories globally, and it is one of the world’s major shipping companies. It de-
livers goods to more than 120,000 destinations from its 5000 offices, using more than
76,000 delivery vehicles [16]. Hence, it is absolutely imperative for DHL to drive state-of-
the-art research to find efficient solutions to the PLP to ensure its smooth operation. The
ultimate objective of any algorithm addressing the PLP is to arrange a given number of
homogeneous or heterogeneous-sized boxes in an optimized manner in terms of space
or costs in a certain container or pallet. To solve a PLP, several performance measures,
such as pallet utilization, the stability and strength of the pallets, the constraints related
to humidity or storage duration, etc., are considered, irrespective of the aforementioned
categories. Generally, the stability of the pallets increases when their utilization improves.
Therefore, many studies have focused on maximizing the utilization of pallets to improve
overall stability. In general, it was reported that the multi-pallet loading problem is an
NP-hard problem, and researchers have used non-linear integer programming or stochastic
search methods to solve it [5]. The non-linear method guarantees an optimal solution, but
it is a computationally expensive method, especially if the parameters in the formulation
increase [17]. Contrarily, stochastic search methods provide a sub-optimal solution at a
reduced computational cost [5]. In this paper, a novel ML approach was employed for
solving PLP to provide a suggestion framework to evaluate the optimal position of a box
in a pallet. In the proposed methodology, two -phase algorithm is developed based on
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a dataset from the DHL supply chain to load identical boxes onto the pallet. The first
phase maximizes the number of boxes per horizontal layer, where five heuristics, one block,
two-block, three-block, hollow-block, and G5 heuristics are utilized. The second phase
determines the number of the horizontal layers loaded per pallet based on the maximum
height, maximum weight and dynamic strength. More specifically, various ML methods,
such as Support Vector Classifier (SVC), Decision Tree Classifier (DTC), K Nearest Neigh-
bour Classifier (KNN), Random Forest Classifier (RFC), and Artificial Neural Network
Classifier (ANN), were used on the dataset, and the categories of the existing pallet types
were evaluated. This ML-based approach to solve PLP provides better results compared
with running various genetic algorithms or heuristics each time. The results show that the
optimal pallet selection process may take several hours when executing these traditional
algorithms, compared with ~1 min after employing the ML methods. The results of this
study report that a very high (>85%) Pallet Utilization Volume (PUV) can be obtained using
ML models on the given dataset. Moreover, an accuracy of >89% was found to predict the
accurate loading arrangement of boxes on a suitable pallet.

The remainder of the paper is organized as follows. A literature review is presented
in Section 2, providing the background research studies and methods. In Section 3, the
research methodology and classification methods are elaborated. Subsequently, the data
analysis is carried out in Section 4. The results are presented and explained in Section 5.
Finally, Section 6 provides the conclusion and future work.

2. Literature Review

The PLP is used to enhance performance measures, such as the number of boxes per
pallet (or pallet utilization) and stability, by arranging boxes on the basis of their dimensions
and weights on a rectangular pallet with known dimensions and weight limits. In the case
of a 3D manufacturer’s PLP for assigning the maximum number of boxes per pallet, an
optimized solution depends upon the pallet stability on the number of horizontal layers
per pallet and the layout pattern of the boxes per layer [10]. In the literature, there are
multiple methods for solving the PLP, such as classical mathematical methods, evolutionary
methods, other intelligent optimization methods, and hybrid methods. Dowsland [18]
developed a pallet optimization system to place boxes on pallets, which identified an
optimal solution to the PLP within ~5 min. However, the proposed solution was not
efficient for larger problems. In another study, the binary integers-based formulation
was used to develop a mathematical model to arrange multiple pallets and materials
compatibility with those pallets [19]. In this model, the box dimensions were not necessarily
integers. Similarly, another mathematical model based on a polynomial time algorithm was
developed for the 2-dimensional (2D) guillotine cutting stock problems [20]. In another
similar study, Ahn et al. [21] developed a mathematical model with a staircase structure
that had geometrical properties. The proposed model provided reasonable efficiency in
the PLP by identifying an optimal solution. Contrary to all these classical solutions to
the PLP, Schuster et al. [22] optimized the stack stability in addition to the stack volume.
An important feature of this work was minimizing the number of products of various
customers on the same pallet. However, the proposed model can optimally solve only small-
scale problems, and it becomes computationally expensive for large problems. Furthermore,
Chan et al. [23] developed a two-phase intelligent Decision Support-System (DSS) for the
Air-Cargo Loading Problem. It is an efficient solution for variable-sized (or shaped) pallets
to be uploaded on the Air-Cargo. This particular solution has been effectively utilized
in airport cargo systems, and it successfully provides over 90% volume utilization. The
common factor in all these methods is that they are based on classical mathematical models.
It is evident that these models should address the PLP by performing an exhaustive search
of all possibilities, which become impractical for large problem sizes. Hence, the researchers
looked for alternate solutions, such as genetic algorithms or heuristics, to find faster and
sub-optimal solutions.
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The heuristic algorithms were also utilized in the literature to solve the PLP until
the mid-1990s. It was ascertained whether they can provide optimal results with the new
upper-bound methods, which are based on some structural constraints [24]. For instance,
Bischoff et al. [25] used a new heuristic algorithm to solve distributors’ pallet packing
problems efficiently and achieved the natural balance. Another distributor’s pallet packing
problem was solved with the heuristic methods by Terno et al. [1]. In the study, a layer-wise
loading strategy with the optimal 2D loading patterns was employed in the 3D solution
method. Similarly, [26] developed an effective heuristic algorithm that addressed the
issue of the 2D PLP. Their novel method could readily identify complicated solutions with
five-block structures.

Although heuristic algorithms are utilized extensively, there are several other intelli-
gent optimization and search methods as well. For instance, the new branch-and-bound
algorithms are integer programming-based methods, which are employed to optimize the
number of boxes to be loaded on a pallet. It is an efficient method that has solved over three
million problems for an area ratio bound of less than 101 boxes by executing the optimal
solution in less than a minute [21]. Another study on the PLP solution was carried out by
Bhattacharya et al. [27] using an exact algorithm based on the depth-first strategy. Their
novel methodology was based on the idea of the reduction of the size of the search tree.
Thus, the final solution effectively utilizes the available system memory. In this way, more
effective pruning can be performed. In the literature, there are several hybrid methods as
well, which combine the classical and heuristics methods. For instance, a hybrid approach
coalescing the heuristic and genetic algorithms was developed by Lau et al. [5] to solve the
PLP for profit optimization. Subsequently, this hybrid approach was compared with two
stochastic search methods, Simulated Annealing (SA) and Tabu search (TS), as well as a
nonlinear integer programming-based branch-and-bound method. The results of the com-
parative analysis revealed that the proposed hybrid method was more cost-effective than
stochastic search methods. In another research study, a hybrid method was utilized in Mar-
tins and Dell’s [28] study, which employed new bounds, heuristics, and exact algorithms.
The proposed method was able to determine an optimal solution for approximately 99.7%
of the problems. The remaining 0.3% comprised of just one box varying from the optimal
solution. Li et al.’s [29] study aimed to revolutionize the warehouse design through elevat-
ing the routing optimization problem of two forklifts operating in a four-door warehouse,
considered as a quadratic assignment problem. Sahin-Arslan and Ertem [30] investigated
how and at what cost freight containers could be used as an inventory-holding mechanism
for humanitarian logistics.

Most of the above-mentioned solutions to the PLP have the limitations of either being
computationally expensive for large problem sizes or providing sub-optimal solutions. In
our proposed solution for the PLP, an ML-based two-phase algorithm was developed in
order to solve the 3D PLP comprising of identical boxes. In addition, the proposed solution
considers the storage time and humidity without any pallet overlap and overhang [10].
Furthermore, in our proposed study, five heuristics, i.e., the one-block heuristic, three-
block heuristic, five-block heuristic, hollow block heuristic, and G5-heuristic, were used to
evaluate the total number of identical boxes per horizontal layer and the corresponding
box loading layout or pattern on the pallet [28,31,32]. As an addition to the second phase of
our previous study [6], the number of horizontal layers per pallet is computed on the basis
of the dynamic compressive strength of the pallet for each of the heuristics. Consequently,
the total number of boxes per horizontal layer and the total number of horizontal layers
are used to determine the number of boxes per pallet for each of the aforementioned five
heuristics. In the final stage, the box-loading layout that furnishes the maximum number
of boxes per pallet is preferred. To the best of our knowledge, no prior study evaluated
the solution for the PLP using ML methods. The models were trained and tested on real-
world data acquired from the DHL supply chain; therefore, the results of this study can be
significantly utilized in any similar research study. We could not compare the results since



Appl. Sci. 2021, 11, 8304 5 of 22

no study using traditional optimization could be found in the literature for pallet loading.
Therefore, we believe that this is an original contribution to the literature.

3. Methodology

In this section, the methodology utilized for the proposed research is described.
Figure 1 shows the methodology of this study. It should be noted that the relevant methods
and performance measures given in the literature are significant for evaluating the methods
utilized to solve the PLP in this paper. In addition, such a comprehensive evaluation
provides a basis for the comparison of various methods. Our methodology is described in
the following subsections.

Figure 1. Flow chart of the proposed approach.

3.1. Number of the Boxes Loaded onto the Pallet

The process to ascertain the number of identical boxes to be placed on a typical
pallet was divided into two phases. The dimensions of a typical box are coded as a tuple
(l, w, h, and m), where l is the length of the box, w is the width of the box, h is the height of
the box, and m is the weight of the box. Similarly, the dimensions of the pallet are defined
as a tuple (L, W, Hmax, and Mmax), where L is the pallet length, W is the pallet width, Hmax
is the maximum allowable pallet load height, and Mmax is the maximum allowable weight
on the pallet, in such a way that (L ≥ l, W ≥ w). In the first phase, the total number of
boxes loaded on the horizontal layer is identified. These boxes should be placed completely
onto the pallet without any overlap or overhang. If the value of (pallet area)/(box area)
is less than 101, many studies [25,28,31–33] have shown that various heuristics, such as
one-block, three-block, five-block, hollow-block, and G5-heuristics, can determine the
maximum number of boxes to be arranged in each horizontal layer. In the second phase,
the total number of horizontal layers per pallet is calculated on the basis of Hmax. Both
these phases are elaborated as follows.

3.1.1. Phase I: Determining the Box Arrangement on a Horizontal Layer

In this phase, different heuristics, such as one-block, three-block, five-block, hollow-
block, and G5-heuristics, are implemented to arrange the boxes on a horizontal layer with
known and fixed dimensions. Any of these five heuristics can yield the maximum number
of boxes in the layer. Furthermore, three partition methods, termed feasible partition, efficient
partition, and perfect partition, are utilized to fit the boxes completely on the pallet without
any overlap or overhang. These methods are explained as follows:
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Assuming that (q, n) denotes an ordered pair of non-negative integers satisfying
the condition q ∗ l + n ∗ w ≤ S for a pallet dimension S (L or W), then the ordered
pair (q, n) is known as a feasible partition of S. If q and n also satisfy the condition
0 ≤ S− q ∗ l − n ∗ w < l, then (q, n) is called an efficient partition of S. Similarly, if q and
n satisfy the condition q ∗ l + n ∗ w = S, then (q, n) is called a perfect partition of S. The
set of all feasible partitions of the pallet dimension S is denoted as F(S, l, w). The set of all
efficient partitions of the pallet dimension S is denoted as PE(S, a, b), and the set of all perfect
partitions of the pallet dimension S is denoted as P(S, l, w) [34,35].

In the one-block heuristic, the boxes are loaded in either H-box or V-box orientation
on the basis of the ratio between the dimensions of the pallet and boxes without any
overhang. For example, identical boxes with known dimensions are loaded onto the pallet;
h is a dimension perpendicular to the surface of the pallet, as depicted in Figure 2. If[

L
l

]
∗
[

W
w

]
>
[

W
l

]
∗
[

L
w

]
, where the length of the boxes is parallel to the length of the pallet,

then the horizontal layout pattern for the boxes in this layer is known as the H-box pattern;
otherwise, if the length of the box is parallel to the width of the pallet, the box vertical
layout pattern is known as the V-box pattern. All boxes in the layer should be loaded into
the layer in the uniform orientation, which means that all boxes must have either an H-box
or V-box layout. There are also three possibilities to load the boxes in the layer, where
either l, w ∨ h is perpendicular to the surface of the pallet.

Figure 2. One-block heuristic. (a) Arrangement of boxes per horizontal layer using the one-block
heuristic. (b) Top view for the horizontal layer using the one-block heuristic.

In the three-block and five-block heuristics, the layout of the layer is divided into
three and five blocks, respectively (Figure 3). The boxes in each block should be arranged
uniformly in either an H-box or V-box orientation [31,36].
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Figure 3. The three-block and five-block heuristics: (a) three-block heuristic and (b) five-block
heuristic [36].

The hollow block heuristic can also be utilized to load identical boxes on the horizontal
layer. The heuristic divides the layer layout into diagonal and main blocks, as presented in
Figure 4. Diagonal blocks (DB) and main blocks (MB) are created with boxes loaded in
different directions, where these blocks should cover the entire length and width of the
pallet [28]. The boxes’ orientation in each block is identical.

Figure 4. Hollow block [28].

The G5-heuristic is one of the heuristics in the PLP literature frequently used in order
to maximize the total number of boxes loaded into a horizontal layer and minimize the
waste area. In this heuristic, the layout of the layer is divided into five different blocks (four
blocks in the corners and one in the center). The dimensions of the central block decrease if
the dimensions of the other four blocks in the corners increase, and vice versa. Each block
is loaded independently, and the loading process can be performed by any of the other
four heuristics, namely the one-block, three-block, hollow block, and five-block heuristics.
The total number of boxes per layer is calculated on the basis of the sum of the maximum
number of boxes generated for each block [28]. Once the maximum number of boxes per
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horizontal layer is calculated using the five aforementioned heuristics, the optimal number
of boxes in the layer is selected for three different possibilities based on h, b, and a as the
perpendicular dimension to the pallet in each case.

3.1.2. Phase II: Computing the Number of Horizontal Layers on the Basis of the Hmax

In the second phase, the total number of boxes per pallet and the number of the
horizontal layers per pallet are determined considering three parameters: (a) the total
height of the horizontal layers should not exceed the Hmax; (b) the total weight on the pallet
should not be more than Mmax; and (c) the average load on the box at the bottom horizontal
layer of the pallet should be less than its dynamic compression strength, considering
humidity, interlock stacking pattern, dimensions of the box, and storage time. The Hmax is
determining either on the basis of storage on pallet within the warehouse, i.e., racks, floor,
etc., or on the basis of transportation constraints, i.e., trailer internal height, number of
horizontal layers loaded, etc. In this case, the height of the total number of the horizontal
layers should be less than the Hmax since more than one horizontal layer can be used per
pallet (Equation (1)). This paper assumes that all the layers have the same pattern, where
overlap between layers is not allowed; therefore, all the horizontal layers are identical and
have the same height, as depicted in Figure 5.

NHLmax =

⌊
Hmax

BDPB

⌋
(1)

Figure 5. Pallet Loading Problem with identical horizontal layers based on Hmax.

NHL: The maximum number of horizontal layers
BDPB: Box’s dimension perpendicular to the base

Furthermore, the total weight on the pallet should not be more than Mmax. This
is important for several reasons. First, if there is no height limit, the number of boxes
per pallet will be determined based on the Mmax per pallet. Second, the total weight of
the boxes per pallet when loading on the shelves or the trailers should be less than the
maximum weight capacity to avoid damage to the pallets, the shelves, and the trailers.

Compression strength is another parameter that is used to define the number of
horizontal layers per pallet to maximize the total number of boxes loaded. Compression
strength represents the capacity of a material or structure to withstand loads without any
deterioration. For a pallet, compression strength is the maximum weight that the boxes in
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the bottom layer can support without any damage. In this section, pallet dynamic compres-
sion strength is calculated by modifying the McKee formula by adding considerations for
humidity, storage time, interlock stacking pattern, and the pallet shape coefficients. The
McKee formula is usually used to determine the static compression strength, which is a
theoretical value under ideal laboratory conditions, with the temperature and humidity
controlled within 73 ± 2 ◦F and 50% ± 2% RH, respectively [36]. On the other hand, under
real conditions, dynamic compression strength is the actual compression strength of a
box. Equations (2) and (3) show the static compression strength and dynamic compression
strength. ECT is the Carton Edge Crush Test, which measures the ability of a corrugated
board to sustain a top-to-bottom load [37]. CAL is caliper of the corrugated board, PER is
box perimeter from the top view, SS is the static compression strength, FO is the orientation
coefficient form strength, FT is the storage time coefficient, FI is the interlock coefficient, FH
is the humidity coefficient, and FG is the pallet shape coefficient (Table 1)

Static Compression Strength (SS) = 5.874 ∗ ECT∗ CAL0.508∗ PER0.492 (2)

Dynamic Compression Strength (SD) = SS ∗ FT ∗ FH ∗ FG ∗ Fo ∗ FI (3)

Table 1. Dynamic strength factors [38].

Storage Time (FT) Humidity (FH) Pallet Surface Gapped (FG) Interlock (FI) Perpendicular Dimension to Base (Fo)

0 1 0–0.45 1.1 Yes 0.92 Yes 0.60 1st Shortest Dimension of Box 1

1–3 0.7 0.45–0.55 1 No 1 No 1 2nd Shortest Dimension of Box 0.9

4–10 0.65 0.55–0.65 0.9 Longest Dimension of Box 0.8

11–30 0.6 0.65–0.75 0.8

31–90 0.55 0.75–0.85 0.7

91–120 0.5 0.85–1 0.5

121–300 0.45

3.2. Machine Learning Methods for Classification

Classification is a technique employed in AI and ML that is used to label a given dataset
into different classes in order to extract useful information [39]. Currently, classification
methods are used in many fields, such as speech recognition [40], image classification [41],
and document classification [42]. Fundamentally, there are two classification methods,
which are binary and multi-class classifications [43]. In the binary classification, a given
problem is divided into two situations or classes, such as male/female in gender pre-
diction [44] and sick/not sick in disease prediction [45]. On the other hand, multi-class
classification is used in problems in which there are more than two cases, such as estimating
different flower types [46]. There are classification methods such as ANNs, Support Vector
Machines (SVMs), KNN, Naive Bayes (NB), Decision Trees (DT), and Random Forest. In
this study, all these classification methods are used because of their success and frequent
use in recent research studies.

In the process of the development of ANNs, researchers were inspired by the human
nervous system [47]. These ANNs consist of input, output, and hidden layers, and they are
trained and tested on a real dataset to classify the data into different classes. Later on, the
trained ANN models try to predict the outcome of any new data for further analysis [48].
This whole process is governed by the neurons in the layers and an activation function. This
activation function (also called the objective function) is a predefined goal for a particular
ANN model.

The SVM enables the use of vectors (separators) to divide the training data into areas
(categories) as far away as possible [49]. It assigns the test data a certain category according
to the area of a particular vector that they fall into and uses a subset of training points
when making decisions in the classification process. For this reason, the SVM process uses
memory efficiently and is effective for high-dimensional data.
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The KNN method classifies an object in the input parameter field with the majority
vote of the object’s neighbors [50]. In this way, an object is assigned to the most common
class among its nearest neighbor, i.e., k (user-specified integer). This method classifies
objects according to their similarity in the point of property. It is a simple method to
implement and provides effective results in large test datasets [51].

The DT method is a flowchart-like tree structure in which an inner node represents the
property (or attribute), a branch represents a decision rule, and each leaf node represents
the result [52]. The top node in a DT is termed the root node. It learns to partition according
to the attribute value and sections the tree recursively with the recursive partitioning call.
This flowchart-like structure in a DT helps in decision-making [53]. Therefore, DTs are easy
to understand and interpret.

The Random Forest method is a supervised learning algorithm. It can be used for
both classification and regression. It is also the most flexible and easy-to-use algorithm [54].
Similar to a forest consisting of numerous trees, the random forests generate decision trees
on a randomly-selected data samples, each making a guess from the tree and choosing the
optimal solution by voting [55]. Furthermore, this method provides a reasonably good
indication of the feature’s importance.

3.3. Evaluation Metrics

The evaluation metrics are typically used to quantify, analyze, and test the success
of classification and estimation methods [56]. Global metrics such as overall accuracy,
overall balanced accuracy, Cohen’s Kappa, Matthew’s Correlation Coefficient extended to
multi-class, and confusion entropy ensure the quantification of multi-class classification
and enable the comparison of various classification methods and techniques [57].

In the classification process, the ability of a model to perform a correct classifica-
tion is quantified with the accuracy value [58], which is directly computed from the
confusion matrix [57].

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Accuracy is a very intuitive metric that enables an overall understanding of the
performance of a model on the test data [57]. However, when dealing with imbalanced
datasets, accuracy has a tendency to conceal strong classification errors for classes with a
limited number of units [57]. In this case, accuracy does not enable the identification of
classes for which the model has suboptimal performance [57].

In the case of imbalanced datasets, balanced accuracy ensures that the prediction
accuracy is not inflated because one or several classes have results that dominate the other
classes [59]. This measure represents the arithmetic mean of the performance of a model
for each class [59]. It is a balanced metric in the sense that it assigns the same weight and
thus the same importance to each class studied [59].

Balanced Accuracy =
1
C
×∑

pi
ni

, (5)

where pi is the correctly predicted number of data items in class i and ni is the true number
of data items in class i.

As can be inferred from the formula below, the Matthews Correlation Coefficient
uses all the entries of the confusion matrix both in the numerator and in the denominator.
Because of this fact, it can generally be considered a balanced indicator of performance [59].
This measure takes values in the range [–1, 1], with values close to 1 indicating a strong
prediction and correlation between the predicted and true labels. Values close to −1
indicate an inverse relationship between the predicted and true labels of the dataset and
reflect systematic errors in the modeling process. In the case of values close to 0, the
classifier makes random decisions when assigning the labels to the classes [59].

Matthews Correlation Coefficient for multi-class classification:
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Given multi-class Confusion Matrix C:

K =
c× s−∑ pk × tk√(

s2 −∑ p2
k
)
×
(
s2 −∑ t2

k
) (6)

c = ∑ Ckk the total number of elements correctly predicted; s = ∑ ∑ Cij the total number of
elements; pk = ∑ Cki the total number of times class k was predicted; tk = ∑ Cik the total
number of times that class k actually occurs.

Cohen’s Kappa for multi-class cases:

The Cohen’s Kappa Score possesses similarities to the Matthews Correlation Co-
efficient in the case of multi-class classification and leverages the expected accuracy, a
measure that reflects the dependence obtained by chance between the predicted and the
true labels [59]. The coefficient quantifies the agreement between the predicted and actual
classes as follows: when K = 0, the model’s prediction is independent of the actual classi-
fication, when K = 1, the model’s prediction depends entirely on the actual classification,
and when K = −1, there is no agreement between the model’s prediction and the actual
classification [59].

Given multi-class Confusion Matrix C:

K =
c× s−∑ pk × tk

s2 −∑ pk × tk
(7)

c = ∑ Ckk the total number of elements that were correctly predicted; s = ∑ ∑ Cij the total
number of elements; pk = ∑ Cki the total number of times class k was predicted; tk = ∑ Cik
the total number of times that class k actually occurs.

The cross entropy quantifies the difference between two probability distributions, and
it can be calculated using the formula below [60,61].

Cross Entropy = −∑ LikelihoodRe f erence(i)× log2LikelihoodResponse(i) (8)

Sensitivity by class, specificity by class, precision by class, F1 by class, balanced
accuracy by class, and confusion entropy by class enable us to understand the performance
of different classifiers with respect to the classes being analyzed [60].

Sensitivity, also called the true positive rate, captures the proportion of positive
outcomes that are correctly identified as such [60,62]. TP represents the prediction made
when the model is able to correctly predict a positive outcome assigned to the correct class,
whereas an FN occurs when a false prediction is assigned to the correct class [63].

Sensitivity =
TP

TP + FN
(9)

Specificity, also called true negative rate, captures the proportion of negative outcomes
that are correctly identified as such [60,62]. In the case of TN, the false prediction is
assigned to the incorrect class, while FP represents the correct estimate assigned to the
incorrect class [63].

Specificity =
TN

TN + FP
(10)

Precision, also called positive predicted value, represents the proportion of positives
that corresponds to the presence of a certain condition [60,62].

Precision =
TP

TP + FP
(11)

The F1-macro score is the harmonic mean of sensitivity and precision and is calculated
according to the formula below [57,60]. In the computation of the F1-macro score, the
largest classes are assigned the same importance as small classes [57], which makes the
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F1-macro score a suitable indicator of the performance of a machine learning algorithm on
an imbalanced dataset. A high F1-macro value means that the algorithm performs well
on all classes under consideration, whereas a low F1-macro score is an indicator of poor
prediction of the classes analyzed [57].

F1−macro =
2
|C|∑

Sensitivityi × Precisioni

Sensitivityi + Precisioni
(12)

The balanced accuracy represents, in essence, an average of recalls. It is computed
according to the formula below [57].

Balanced Accuracy =
Sensitivity + Specificity

2
=

(
TP

TP+FN + TN
TN+FP

)
2

(13)

The confusion entropy indicates how well samples belonging to different classes have
been separated from each other. It exploits the misclassification of information of confusion
matrices in order to quantify the confusion level of the class distribution of misclassified
samples [60].

CENj = −∑
(

P|C|j,k log2(|C|−1)

(
Pj

j,k

)
+ Pj

k,jlog2(|C|−1)

)(
Pj

k,j

)
, where (14)

Pi
i,j =

Cij

∑(Cik + Cki)

where Cij is the entry found at position (i,j) in the confusion matrix.

4. Application and Dataset Description

This section presents our methodology to implement the ML models to solve the
PLP. The ML models were trained and tested on a real dataset. Moreover, a comprehen-
sive evaluation strategy was employed in order to compare the results with various ML
algorithms.

4.1. Dataset

In this paper, the dataset comprised 15,187 data points, which contained various
types of boxes and pallet-sizes. This dataset was used for the training and testing of
different models, which utilized the aforementioned five heuristic algorithms to place
the boxes on pallets according to their variable lengths, heights, and widths to obtain
optimal results for their arrangements. This dataset is available as listed within an Excel
file. The pre-processing of the dataset was first performed by data filtering to create a
meaningful classification and eliminate unnecessary data points. The pre-processed dataset
is extremely important for the proper training and testing process of the ML models. For
instance, from this dataset, the data in accordance with the most commonly-used standard
pallet sizes 42 × 42 (P1), 45 × 45 (P2), and 48 × 40 (P3) were selected for training and
testing. Thus, our algorithm is applicable only for the P1, P2, and P3 pallet sizes, with
only approximately 1 in 15 instances being further considered. While selecting these data,
the PUV (pallet utilization volume) ratio for both the P1 and P2 pallet sizes was 85%, and
the PUV ratio for the P3 pallet was 95% or above. Thus, a total of 1110 data points were
finalized, with 314 for the P1 pallets, 333 for the P2 pallets, and 463 for the P3 pallets.
Table 2 presents the dataset details used in this research study.

Table 2. The datasets used in model training and testing.

Total Data Points Data Points after Pre-Processing
P1 Pallets P2 Pallets P3 Pallets

Training Testing Training Testing Training Testing

15,187 1110 283 31 299 34 417 46
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4.2. Implementation Details

All the ML models were trained and tested on a uniform dataset; 10-fold cross-
validation was used for the 1110 data points for which the algorithm can be applied.
Since we were dealing with an imbalanced data set, we first split the data into 10 folds,
with 9 folds used for training and the remaining fold used for testing. Since we were
dealing with a limited amount of data, we used an oversampling technique called Synthetic
Minority Over-Sampling Technique (SMOTE) on the testing dataset in order to address the
imbalanced class problem by oversampling the under-represented classes [64]. We used
the SMOTE technique implemented in the Python imblearn package [65]. We computed
the required metrics using the Python packages scikit-learn [66] and PyCM [60]. For each
metric, the average result over 10 rounds of cross-validation is reported. The metrics were
computed according to Equations (4)–(14).

All classification models were implemented in Python 3.8 and were executed for
training and testing on the given dataset on a computer with Intel i7 2.4 GHz CPU and
8 GB RAM.

The classification models used in this study required a number of parameters for the
tuning before the actual training phase was initiated. These parameters for each classifier
are described in detail as follows. The values of these standard parameters were optimized
in order to acquire better results during the training and testing phases.

For the ANN classifier, since there are three target classes (P1, P2 and P3 pallets) and
four inputs (box width, length, height value and demand), a network structure with four
inputs and three outputs was created, and two hidden layers each containing 10 neurons were
utilized. For the activation function, sigmoid was used. Moreover, the “adam” solver was
chosen, with max_iter = 10,000. The random state was set to 0. For the DTC, the parameters
max depth = none, min samples split = 2, random state = none, and min_samples_leaf = 1
were selected. For the KNN classifier, the parameters n_neighbors = 5, weights = “uniform”,
and algorithm = “auto” were chosen. For the Random Forest classifier, the parameters
n_estimators = 100, max_depth = none, min_samples_leaf = 1, and random_state = none were
used. For the SVM classifier, the parameters kernel = “rbf”, degree = 3, gamma = “scale”,
coef0 = 0.0, cache_size = 200, class_weight = none, verbose = false, max_iter = −1, and
random_state = none were chosen.

5. Results and Discussion

In our previous study [10], 15 real-life datasets were obtained from the DHL supply
chain, and the proposed algorithm was applied to this dataset. After a detailed analysis, an
algorithm was described and used for the results of other algorithms for comparison. Thus,
the results comprising the total number of boxes per pallet were compared. Consequently,
an improvement of 6.7% was reported compared with the previous methods by uniformly
considering the same 15 real-life datasets. It was concluded that the proposed algorithm
manifested an improvement over the previous state-of-the-art research.

In this research study, a current, more extensive dataset (given in Table 2) was used for
training and testing with five different classification methods: ANN, DT, KNN, Random
Forest, and SVM. The distribution of data according to three classes is depicted in Figure 6.
It can be observed in this figure that all three classes are clustered around the box widths
(Y-axis) and lengths (X-axis) of 5–20 units and 5–25 units, respectively.
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Figure 6. Distribution of the 1K data points according to class.

Table 3 shows that the Random Forest Classifier achieved the highest accuracy on
the test dataset, namely 89%, and the highest overall balanced accuracy, namely 88%. The
Random Forest Classifier was closely followed by the Decision Tree Classifier, with an
overall accuracy of 88% and an overall balanced accuracy of 87%. The Support Vector
Machine Classifier achieved the lowest overall accuracy (74%) and the lowest overall
balanced accuracy (74%).

Table 3. Evaluation of the ANN, Decision Tree, KNN, Random Forest, and Support Vector Machine on the test dataset in
terms of global metrics.

Method Accuracy Overall Balanced Accuracy Cohen’s Kappa Matthew’s Correlation Coefficient Cross Entropy

ANN 0.76 0.76 0.64 0.66 1.66
Decision Tree 0.88 0.87 0.82 0.83 1.61

KNN 0.82 0.81 0.73 0.74 1.65
Random Forest 0.89 0.88 0.84 0.84 1.61

Support Vector Machine 0.74 0.74 0.62 0.63 1.67

Moreover, the Random Forest Classifier also ranked first in terms of Cohen’s Kappa,
with K = 0.84, meaning that the model’s prediction depends entirely on the actual classifi-
cation. The Decision Tree Classifier ranked second in terms of the Cohen’s Kappa metric,
with K = 0.82. The Support Vector Machine Classifier also ranked last in terms of Cohen’s
Kappa, with K = 0.62.

In terms of Matthews Correlation Coefficient, the Random Forest Classifier was the
best performing model, showing that this classifier has high predictive power. The Decision
Tree classifier ranked second (0.83), followed by the KNN (0.74), the ANN (0.66), and the
SVM (0.63).

Regarding cross entropy, all the classifiers achieved similar results, with the Support
Vector Machine classifier showing a slightly higher cross-entropy of 1.67.

In terms of sensitivity by class, the Random Forest Classifier achieved the best out-
comes, reaching a sensitivity of 0.90 for class P1, 0.81 for class P2, and 0.94 for class P3. The
Decision Tree classifier achieved comparable results, with a sensitivity of 0.90 for class P1,
0.8 for class P2, and 0.92 for class P3. The results are presented in Table 4.
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Table 4. Evaluation of the ANN, Decision Tree, KNN, Random Forest, and Support Vector Machine on the test dataset in
terms of metrics by class.

Method Class (Pallet) Sensitivity
by Class

Specificity
by Class

Precision by
Class

F1-Macro by
Class

Balanced
Accuracy by

Class

Confusion
Entropy by

Class

ANN
P1 0.76 0.89 0.79 0.75 0.82 0.36
P2 0.72 0.82 0.65 0.65 0.77 0.42
P3 0.79 0.94 0.91 0.84 0.86 0.28

Decision Tree
P1 0.90 0.90 0.84 0.85 0.90 0.24
P2 0.80 0.94 0.85 0.81 0.87 0.25
P3 0.92 0.96 0.95 0.93 0.94 0.15

KNN
P1 0.79 0.88 0.78 0.77 0.84 0.36
P2 0.81 0.88 0.76 0.76 0.85 0.32
P3 0.84 0.96 0.94 0.87 0.90 0.20

Random
Forest

P1 0.90 0.91 0.84 0.86 0.90 0.23
P2 0.81 0.96 0.88 0.82 0.88 0.22
P3 0.94 0.97 0.96 0.95 0.95 0.12

Support
Vector

Machine

P1 0.73 0.86 0.72 0.70 0.79 0.44
P2 0.71 0.85 0.69 0.64 0.78 0.39
P3 0.77 0.90 0.85 0.80 0.84 0.32

Additionally, the Random Forest Classifier achieved the highest specificity for all three
classes considered, namely 0.91 for class P1, 0.96 for class P2, and 0.97 for class P3.

It is worth mentioning that all classifiers achieved the highest specificity by class for
class P3.

In terms of precision by class, the Random Forest Classifier ranked first, with class
P1 having a precision of 0.84, class P2 having a precision of 0.88, and class P3 having a
precision of 0.96. The best precision by class was achieved for class P3.

The Random Forest performed best in terms of the F1-macro score as well, achieving
an F1-macro score of 0.86 for class P1, 0.82 for class P2, and 0.95 for class P3.

This classifier also performed best in terms of balanced accuracy by class, with a
balanced accuracy for class P1 equal to 0.90, a balanced accuracy for class P2 equal to 0.88,
and a balanced accuracy for class P3 equal to 0.95, showing a high predictive power.

The Random Forest Classifier displayed the lowest confusion entropy by class, namely
0.23 for class P1, 0.22 for class P2, and 0.12 for class P3.

The Confusion Matrix graphics of all five classifiers are depicted in Figures 7–11.
In Figure 7, the Confusion Matrix for the ANN classifier is presented. It can be

observed that the ANN classifier correctly classified 83% of the P1 classes, 79% of the P2
classes, and 81% of the P3 classes.

Judging from Figure 8, which depicts the Confusion Matrix for the Decision Tree, the
classifier managed to correctly predict 100% of classes P1, P2, and P3.

Figure 9 shows the Confusion Matrix for the KNN classifier, which managed to
correctly capture 97% of the P1 classes, 92% of the P2 classes, and 94% of the P3 classes.

In Figure 10, the Confusion Matrix for the Random Forest classifier is shown. It can be
observed that this classifier managed to predict 100% of classes P1, P2, and P3.

Judging from Figure 11, which illustrates the Confusion Matrix for the SVM, the
classifier managed to correctly capture 73% of the P1 classes, 75% of the P2 classes, and
77% of the P3 classes.

According to Figure 12, average PUV values in P1, P2, and P3 were 90.31, 78.67, and
82.97, respectively.
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Figure 7. Normalized confusion matrix for ANN.

Figure 8. Normalized confusion matrix for Decision Tree.
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Figure 9. Normalized confusion matrix for KNN.

Figure 10. Normalized confusion matrix for Random Forest.
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Figure 11. Confusion matrix for SVM classifier.

Figure 12. Distribution of average PUV values for the 1 K instances for which the algorithm can
be applied.

The PUV values of 777 boxes were calculated for each pallet size, and the results are
presented in Figure 13. It can be noted that the maximum PUV values were obtained in the
case of P1 because of the smallest volume of the pallet in P1. Pallet size P3 provided the
second best PUV value results because of its smaller volume compared with P1. Finally,
the PUV values of the largest pallet volume (P3) were the highest because they had the
largest volume.
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Figure 13. A comparison of PUV values according to pallet sizes for the 1 K instances for which the
algorithm can be applied.

Overall, the variety of results given in Section 5 provide an overall idea for shipment
designers to choose better pallet or box sizes for the pallet loading. Furthermore, it was
observed that all the ML classifiers have high accuracy, and the designer can select an
appropriate set of pallets, box sizes, and configurations using these results.

6. Conclusions

This paper shows an application of ML methods in a warehouse for the PLP. Because
of the global competition faced by large companies such as DHL, shipment issues must
be addressed in an optimal manner to save costs, time, and energy. In logistics, storage
and transportation are two key elements, as they increase the company’s expenditure.
Reducing the storage and transportation costs may increase the profitability of the company.
Subsequently, the use of pallets plays an important role in the transportation and storage
of many products, and this process facilitates the efficient shipment of any product(s) by
allowing them to be stored in any given facility. To solve the PLP for better facilitation,
various studies have been carried out over time. In these studies, different methods have
been attempted for efficient pallet loading consisting of boxes of the same or different sizes.
The PLP involves many different factors, thereby making the solution NP-hard. Therefore,
various methods have been developed for the solution of the PLP in the literature. In this
paper, we developed a method to speed up the pallet-loading process. We utilized the
three basic pallet classifications using ML. Our results provide a framework for shipment
designers to decide which pallet to use when the box dimensions and demand are given.
These results are significant in terms of saving considerable costs, time, and other resources.

However, our study has some limitations: it can be applied to only three of the most
commonly-used standard pallet sizes. Consequently, our algorithm can be applied to only
1 in 15 real instances that satisfy these criteria.

For future research, we aim to develop an AI-based model that can efficiently predict
a solution for pallet loading with variable-sized boxes. In addition, several other factors,
such as moisture and PUV, will be considered. We also envision the application of neural
networks to help us determine pallet sizes in the case involving more than three classes.
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