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Abstract: Atmospheric aerosol particles have a significant impact on both the climatic conditions
and human health, especially in densely populated urban areas, where the particle concentrations in
several cases can be extremely threatening (increased anthropogenic emissions). Most large cities
located in high-income countries have stations responsible for measuring particulate matter and
various other parameters, collectively forming an operating monitoring network, which is essential
for the purposes of environmental control. In the city of Athens, which is characterized by high
population density and accumulates a large number of economic activities, the currently operating
monitoring network is responsible, among others, for PM10 and PM2.5 measurements. The need for
satisfactory data availability though can be supported by using machine learning methods, such as
artificial neural networks. The methodology presented in this study uses a neural network model
to provide spatiotemporal estimations of PM10 and PM2.5 concentrations by utilizing the existing
PM data in combination with other climatic parameters that affect them. The overall performance
of the predictive neural network models’ scheme is enhanced when meteorological parameters
(wind speed and temperature) are included in the training process, lowering the error values of
the predicted versus the observed time series’ concentrations. Furthermore, this work includes the
calculation of the contribution of each predictor, in order to provide a clearer understanding of the
relationship between the model’s output and input. The results of this procedure showcase that all
PM input stations’ concentrations have an important impact on the estimations. Considering the
meteorological variables, the results for PM2.5 seem to be affected more than those for PM10, although
when examining PM10 and PM2.5 individually, the wind speed and temperature contribution is
on a similar level with the corresponding contribution of the available PM concentrations of the
neighbouring stations.

Keywords: artificial neural networks; feed-forward networks; spatiotemporal predictions; particulate
matter; climatic parameters; machine learning

1. Introduction

Advances in the field of air quality estimations have been rapid, particularly during
the last few decades, demonstrating an increasing interest and attention in both the research
community and authorities responsible for the impact assessment of air quality in modern
communities. Many cities worldwide are struggling with poor air quality conditions
and subsequently with increased mortality and hospital admission rates, mainly due to
cardiovascular and respiratory illnesses [1,2]. This is mostly evident for cities with limited
access to clean energy, resulting in an increased need for electric power generation and
oil/gas extraction, both procedures responsible for emissions amplification, thus citing air
pollution levels as an indicator of sustainable development goals [3]. However, all modern
socioeconomic centers, where the majority of human activities transpire, need to carefully
monitor and evaluate outdoor and indoor pollutants [4] which, in combination with global
climate change (global warming), can lead to higher mortality rates [5]. The connection
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between high air quality parameters concentrations and health-related effects has been
further established in various studies [6–11]. Apart from the health aspect, high pollutant
concentration values are associated with non-health-related effects in crucial fields, such as
agriculture, building materials, objects of cultural heritage, forest ecosystems, etc., and are
contributing to a more severe deterioration of overall air quality and consequently of the
environment [12–17].

A portion of air pollution of significant importance, which, in contrast with other
pollutants, is responsible not only for long-term but also short-term effects on human
health, consists of particles of small diameters and various compositions [18,19]. Particulate
Matter (PM), due to its long-time suspension and the ability to travel far distances in the
atmosphere, is characterized as one of the leading causes of worldwide mortality and
is associated with direct and indirect effects on the climate system [20,21], as well as a
wide range of health problems, mostly depending on the size of the particles [22–27]. The
most studied and adequately monitored categories of PM are the PM10 and PM2.5 [28,29].
Zanobetti and Schwartz performed a study at a national level in the US, analyzing the
critical effects of PM10 and PM2.5, and concluded that both are associated with increased
rates of mortality [30]. Janssen et al. found a close relationship between these two PM
size fractions and all-cause and cause-specific mortality, by using data from Statistics
Netherlands during the 2008–2009 time period and for the entire Dutch population [31].

The need for spatially continuous data of air quality parameters can be satisfied by
using interpolation methods at locations where there are no available observations. Akkala
et al. (2010) provided a thorough review of commonly used interpolation techniques in
which they presented their basic principle as well as their most important advantages and
disadvantages and, additionally, they included scenarios in which these methods would be
at their best potential [32]. The process of spatial interpolation eventually was supported
by utilizing more advanced machine learning methodologies, such as Artificial Neural
Networks (ANNs), in cases where radioactive gases concentrations data were needed [33].
Neural Network approaches have been continuously modified regarding their structure,
leading to models with enhanced generalization ability and extrapolation capability and,
most importantly, improved accuracy [34,35]. Gummadi et al. (2014) introduced two
more regression techniques for modelling, specifically, a Random Forest Regression and
a Support Vector Regression (SVR), and evaluated their usefulness and limitations in
comparison with conventional methods and ANN-based approaches [36].

In the field of PM modeling, spatial and temporal estimations of PM10 and PM2.5
concentrations can be performed by utilizing ANN statistical models, which have been
proven to effectively simulate PM pollution fields in previous studies [37–40]. In general,
the importance of using advanced techniques (e.g., auto-regressive models, tensor-based
approaches, deep neural networks, etc.) for spatiotemporal predictive modeling, by com-
bining data from different locations, has been demonstrated in relevant works [41–45], as
these techniques consistently outperform more conventional methods. Regarding ANNs
applications, the input parameters used for developing the models can be different in many
cases, utilizing air quality concentrations from ground stations, satellite data and/or values
from numerical climate models [39,46–49]. Adding parameters as inputs may be beneficial
for estimation purposes as more information is inserted to the networks, however, the
latter can become more complex and time-consuming. An essential task in this context is
to carefully compare different scenarios of input parameters which will help choose the
optimum input set which can be used effectively to provide accurate estimations.

This work proposes a framework that can be applied in urban environments, character-
ized by topographically complex terrain and high variability regarding climatic conditions,
at points of interest where PM pollution measurements are needed. At these points of
interest, by carrying out an experimental campaign for a short period, the results can be
utilized to train ANN models. However, for the latter, meteorological predictors are also
of extreme importance due to the heavy influence of climatic conditions on PM pollution
distribution fields. The overall methodology which is presented examines and evaluates
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how both PM concentrations and meteorological values can support PM concentrations’
point estimations. Specifically, a Feed-Forward Neural Networks (FFNNs) approach was
used, in order to make spatial point estimations of PM10 and PM2.5 concentrations, aiming
to develop a simple yet effective scheme which has the ability to provide representative
PM datasets for stations with data gaps or to expand the available data. The spatial es-
timation of PM concentrations by using FFNNs and data from neighboring stations has
been performed before successfully, when compared with other schemes [38]. However,
this study evaluates additionally the incorporation of crucial meteorological parameters,
such as the surface temperature and wind speed, and how these additions affect the perfor-
mance of the networks. The methodology utilizes data from ground-based observations,
obtained from monitoring stations located in the city of Athens, Greece, which is a densely
populated metropolitan area, characterized by regional variability considering the type
of each subsidiary area that is part of the city. Furthermore, an important part of the
presented methodology is to provide an approach for understanding the contribution of
each model input to the output by utilizing an approach proposed by Garson [50]. This
approach can contribute to addressing the lack of explanatory power, which is a common
problem associated with ANNs. and provide insight on the structure of the function being
approximated, which associates input and output parameters.

2. Materials and Methods
2.1. Data

The area of study is metropolitan Athens, which is part of the Attica region in Greece.
Important characteristics of the functional urban area of Athens are the considerably high
population density, the complexity of its meteorological and geophysical features and the
agglomeration of the majority of economic activities in Greece, which are being associated
with various PM pollution sources (vehicular traffic, domestic fuel burning, natural dust
and salt, industrial activities, etc.). The Athens basin is defined by four major mountain
ranges. These are Mounts Parnitha, Pentelikon, Hymmetus and Aigaleo, which are natural
borders at the north, northeast, east central and west respectively, and they affect the air
pollutants dispersion and transportation mechanisms. Additionally, the city lies on the
north coast of the Saronic Gulf and the west coast of the Euboean Gulf and thus is affected
by the sea breeze and other flows. Subsequently, the complex topography and fluctuation
of climatic conditions are associated with complex PM10 and PM2.5 concentration profiles,
characterized by spatial variability even for stations at close proximity [51,52]. The area of
study and the locations of each monitoring station are presented in Figure 1.

The importance of the area, considering the PM pollution fields, over the last few
years is additionally connected to the post-2010 time period and the economic crisis that
affected Greece, during which particle concentrations in all major cities, and especially
Athens, increased significantly due to the residential extensive burn of low-cost biomass as
an alternative source of fuel for heating [53,54].

For this study, PM10 and PM2.5 hourly data were obtained from the air quality moni-
toring network operated by the Hellenic Ministry of the Environment, Energy and Climate
Change (MEE), which has operated in the Attica region since 1984. More specifically, data
from nine (AGP, ARI, ELE, THR, KOR, LYK, MAR, PIR and PER) and six stations (AGP,
ARI, ELE, THR, LYK and PIR) for PM10 (µg/m3) and PM2.5 (µg/m3), respectively, were
used in order to create the PM database, and they are presented in Table 1.
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Figure 1. The Attic peninsula and the locations of the air quality monitoring stations.

Table 1. Air quality monitoring stations, their code names, and important characteristics.

Station Code Lon Lat Altitude
(m-a.s.l.) Type

Ag. Paraskevi AGP 23◦49′09′′ 37◦59′42′′ 290 Suburban/Background
Aristotelous ARI 23◦43′39′′ 37◦59′16′′ 95 Urban/Traffic

Elefsina ELE 23◦32′18′′ 38◦03′04′′ 20 Suburban/Industrial
Thrakomakedones THR 23◦45′29′′ 38◦08′36′′ 550 Suburban/Background

Koropi KOR 23◦52′44′′ 37◦54′04′′ 140 Suburban/Background
Lykovrisi LYK 23◦47′19′′ 38◦04′04′′ 234 Suburban/Background
Marousi MAR 23◦47′14′′ 38◦01′51′′ 170 Urban/Background
Piraeus PIR 23◦38′42′′ 37◦56′40′′ 4 Urban/Traffic
Peristeri PER 23◦41′18′′ 38◦01′14′′ 80 Urban/Background

The selection of the stations was mostly based on data availability in each case.
Additionally, daily data for two meteorological parameters (wind speed in km/h and
temperature in ◦C) were obtained for the target station (AGP) from the automatic weather
stations NOAAN (National Observatory of Athens Automated Network) network of the
National Observatory of Athens (NOA). The methodology used in this study could be
applied for a different target station in the area. However, the AGP station was selected
among the six common stations of PM10 and PM2.5 due to the temperature (T) and wind
speed (WS) values’ availability, which can help in better supporting the methodology.
Ultimately, the analysis covers a three-year time period (2016–2018) for both the PM and
the meteorological parameters. Figure 2 depicts the average monthly evolution for both
PM10 and PM2.5 and for the 2016 to 2018 time period at the AGP station. All three years’
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monthly averaged concentrations for each pollutant are presented in the same diagram for
comparative purposes.

Figure 2. Monthly averaged concentrations for PM10 and PM2.5 ((a,b) respectively) and for the three-year time period
(2016–2018) at AGP target station.

2.2. Methodology

Initially, as mentioned above, the AGP station was selected as a target station for which
all the steps of the methodology were performed. This station had high percentages of
data availability (>90%) for both pollutants and for all three years (2016–2018), which was
important for the evaluation of the results. Accordingly, yearly averaged, maximum and
minimum concentrations for PM10 and PM2.5 were calculated in AGP. These descriptive
statistics are helpful during the discussion of the results and act as an initial description
of the 2016–2018 PM conditions for this specific location. The selected machine learning
scheme which was used in this study is an FFNN model designed for spatial point inter-
polation. According to Hornik et al., this type of architecture can effectively simulate the
relationship between input and output to various degrees of accuracy, based on several
parameters that are part of the networks structure (Figure 3) [55].

The FFNN is a multilayer perceptron and the information flow follows one direction,
advancing from the input to the output without looping [56]. The equation through which
the output of a neuron can be calculated is the following:

y = f

(
M

∑
i=1

xiwi + b

)
(1)

where f is the activation function, xi the inputs, wi the synaptic weights and b the bias. The
synaptic weights are the internal connections among the neurons of the network (Figure 3),
and through adjustments of their values, the strength of the connections is modified [57].
The PM10 and PM2.5 concentrations were estimated by using AGP as a target station and
the remaining stations’ concentrations as inputs. The number of input stations is different
for each pollutant (eight and five for PM10 and PM2.5, respectively). Three stations for
PM10 are not available for PM2.5 due to limited data, and they were excluded. Additionally,
the daily temperature and wind speed values at AGP were used as predictors in the model.
Four different models were developed in order to compare their performance. For the first
model, the predictors were only the data of the input stations. For the second, third and
fourth model, the number of predictors/inputs increased by adding the temperature values,
the wind speed values and both wind speed and temperature values, respectively. In all
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four models, the output was the AGP PM concentrations. Eventually, eight models were
created in total (four for PM10 and four for PM2.5). The aim of this additive process was to
investigate how much the meteorological parameters affect the accuracy of the estimations.
Initially, the datasets (PM10, PM2.5, Temperature and Wind Speed) were randomly divided
into the training (70%), validation (15%) and test (15%) subsets. While the pollutants and
meteorological data points for these datasets where randomly selected from the 2016–2018
time period, they were common for all inputs of each individual network development.
When the network used a data point for a random hour from a monitoring station, the
same hour was selected for the remaining stations. This procedure was followed so as to
retain the daily variability and avoid mixing seasons and even days due to the short-term
fluctuations of the PM concentrations.

Figure 3. An example of an artificial neuron and its basic characteristics.

The next step involved the selection of the optimum number of neurons in the hidden
layer. The FFNN consists of three layers, the input, hidden and output layers [58]. The
number of neurons in the input and output layers is completely determined by the inputs
and outputs. The hidden layer size is an important part of the network architecture. In order
to select the optimum architecture, the criterion that was followed was the minimization
of the Mean Absolute Error (MAE) on the validation subset [59]. Lower MAE values
correspond to a better performing network in relation to a lower degree of complexity.
Different FFNN configurations were tested for multiple runs (10 repetitions), due to the
initial weights of the neurons of the model being randomly established, and thus, the
average result of these runs guaranteed the randomness of the process. The number of
hidden neurons tested in all cases ranged from one to forty. To avoid pattern exploitation
in the training subset (overfitting), the early stopping approach was used [60], which,
according to the validation subset error (when it started to increase), stopped the training
process. The final networks that were developed were evaluated for their estimation
accuracy by applying two difference and correlation statistical measures, the MAE and the
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coefficient of determination (R2), [38,59,61,62] on the test subset of the output vector. These
criteria are calculated by using the following equations:

MAE =
1
n

n

∑
i=1
|Ei − Ai| (2)

R2 =

 ∑n
i=1
(

Ai − A
)(

Ei − E
)√

∑n
i=1
(

Ai − A
)2
√

∑n
i=1
(
Ei − E

)2

2

(3)

where n is the number of data points, E the estimated and A the observed concentrations.
The best-performing models are associated with lower MAE and higher R2 values and
are evaluated based on the results of both statistical parameters. For the MAE metric, the
standard deviation (SD) was also calculated to indicate the dispersion of the estimated con-
centrations from the MAE value. Additionally, the FFNN models’ results were compared
with the corresponding estimations of a multiple linear regression model (MLR) [38,63] in
order to further establish the superior predictive ability of the FFNNs. Finally, the accuracy
of the FFNN models is also examined by plotting scatter diagrams which additionally
contribute towards an easier comparison among the models. The scatter diagrams provide
information considering the relationship between the observed and estimated values at
high, medium and low concentration levels.

The last part of the methodology includes an analysis regarding the distinguishing of
the significance of every input variable to the output, for all the FFNN models that were
developed, utilizing an algorithm proposed by Garson [50]. This methodology is based
on recognizing the associations that the synaptic weights reveal considering the inputs
and output relationship and was also used in other studies in the field of air quality, to
quantify the importance of each station’s data (inputs) to the estimated values for the target
station [38,63,64]. The Relative Importance (RI) percentage is calculated with the use of
Equation (4),

RIIK(%) =
∑h

j=1

∣∣∣∣ wjiwkj

∑n
i=1|wji|

∣∣∣∣
∑n

i=1 ∑h
j=1

∣∣∣∣ |wkj||wji|
∑n

i=1|wji|

∣∣∣∣ (4)

where wij, wkj are the connection weights between the i-th input and j-th hidden neuron,
and between the j-th hidden and k-th output neuron, respectively. In general, ANNs
provide little explanatory insight into the individual contribution of the input variables in
the estimation procedure. The RI method addresses this issue and can be used as a variable
selection technique for similar problems.

3. Results and Discussion

As aforementioned, the results presented in this section are for the AGP station.
Descriptive statistics for the 2016–2018 period in the AGP monitoring station are presented
in Table 2. This table includes yearly mean, max and min concentrations for each year
individually and the corresponding values for the three years in total. Both PM10 and
PM2.5 are measured in µg/m3, and the monitoring methodology is based on beta radiation
absorption.

Table 3 includes the number of data points that were used for each subset during
the development of the models (input data). There are more available data points for
PM10 due to the increased number of monitoring stations that were used as inputs. In
both pollutant cases, when the meteorological parameters are added, they qualify as an
additional predictor that has the same number of data points with the input stations’
concentrations. Thus, the scenario with the most inputs, i.e., where both WS and T are
incorporated, has a higher number of data points available for the training, validation
and test subsets. In all cases, the architecture of the ANNs, following the experimental
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design of this work, defines the number of data points included in the input and output
vectors. The size of the training-validation-test subset for the output vector is based on
the 70-15-15 percentages which were introduced in the previous Section, and the resulting
data points are 10,339-2215-2215 for PM10 and 11,090-2376-2376 for PM2.5. The data points
of the output vector are the same for all four scenarios, as the output is always the PM
concentrations at AGP.

The architecture of the models is presented in Table 4. The number of inputs is the total
number of predictor stations, and one (T, WS) or two meteorological parameters inputs
(T and WS) are added according to the model used in the second, third and fourth row
of the table. It is evident that the number of hidden neurons in the models for both PMs
is lower when the meteorological data are not included in the inputs (16 and 13 hidden
neurons for PM10 and PM2.5, respectively). The same number ranges from 26 to 30 for the
remaining six schemes. This difference can be associated with the increased complexity of
these networks. As more inputs with different characteristics are added to the network,
the latter needs additional hidden neurons to simulate the relationship between input and
target data.

Table 2. Yearly Mean, Max and Min values of PM10 and PM2.5 concentrations in the AGP monitoring
station for the period 2016–2018.

Year
PM10 PM2.5

Mean Max Min Mean Max Min

2016 21.70 714 1 12.30 208 0

2017 16.83 136 1 10.73 67 0

2018 19.85 530 1 11.60 118 0

Total 19.43 714 1 11.54 208 0

Table 3. Number of data points in each subset for PM10 and PM2.5 and the four different input cases.

Training PM10
Validation Test Training PM2.5

Validation Test

PM 82,712 17,720 17,720 55,450 11,880 11,880
PM + T 93,051 19,935 19,935 66,540 14,256 14,256

PM + WS 93,051 19,935 19,935 66,540 14,256 14,256
PM + T + WS 103,390 22,150 22,150 77,630 16,632 16,632

Table 4. Number of neurons in each layer of the models for PM10 and PM2.5 and the four different input cases.

Input PM10
Hidden Output Input PM2.5

Hidden Output

PM 8 16 1 5 13 1
PM + T 9 30 1 6 30 1

PM + WS 9 27 1 6 28 1
PM + T + WS 10 26 1 7 28 1

Tables 5 and 6 show the MAE, SD of MAE and R2 values for each of the eight models
and the corresponding cases for the MLR method. These values are the result of applying
the abovementioned metrics on the test subset of the output vector. When comparing the
two methodologies, it is evident that the FFNN models outperform the MLR scheme for
both PM10 and PM2.5 and all input scenarios. They display lower MAE and SD of MAE and
higher R2 values, indicating that the FFNNs methodology simulates more effectively the
nonlinear relationship between the input and output parameters. Considering individually
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the results of the FFNNs method, Table 5 provides some interesting findings. In general,
the PM10 models are associated with low error and high correlation values, providing
satisfactory results regardless of the input data that were used. The PM2.5 models’ re-
sults showcase higher MAE error values (considering that the MAE error is higher when
compared with the average PM2.5 values) and lower R2 values (which can possibly be
attributed to the lower number of input data, and subsequently, less information during
the training process). However, on average, in both cases, the schemes that include T and
WS values give lower MAE and higher R2 values. This is evident especially for the two
models that include both T and WS, where the lowest MAE (3.67 µg/m3 and 2.39 µg/m3)
and highest R2 (0.94 and 0.75) values are produced. Although the MAE value average
for the models with PM10 inputs (3.85 µg/m3) is higher than the corresponding value for
PM2.5 (2.44 µg/m3), the MAE statistical metric uses the same scale as the data being mea-
sured and is not suitable for comparison between PM10 and PM2.5 in contrast to R2, which
illustrates better results for the PM10 cases. A conclusion of significant importance can
be drawn by comparing the MAE values with the yearly mean, maximum and minimum
concentrations, which are presented in Table 2. While the FFNNs that include as predictors
the surface temperature and wind speed correspond to better performance statistics (lower
MAE and higher R2), the differences between the models are small regarding the Table 2
values. This fact illustrates the effectiveness, in this case, of the models that are using only
concentrations from neighbouring stations. However, adding more parameters or changing
the networks configuration (i.e., selecting the subsets data by chronological order and not
randomly, using different approaches to avoid overfitting etc.) can further improve the
results.

Table 5. MAE, SD of MAE and R2 values that correspond to the FFNN methodology, for PM10 and PM2.5 and the four
different input cases.

PM10 PM2.5

MAE SD of MAE R2 MAE SD of MAE R2

(µg/m3) (µg/m3) (µg/m3) (µg/m3)
PM 3.99 4.85 0.83 2.45 2.39 0.70

PM + T 3.89 4.15 0.91 2.44 2.38 0.70
PM + WS 3.85 4.40 0.90 2.47 2.12 0.65

PM + T + WS 3.67 3.86 0.94 2.39 2.16 0.75

Table 6. MAE, SD of MAE and R2 values that correspond to the MLR methodology, for PM10 and PM2.5 and the four
different input cases.

PM10 PM2.5

MAE SD of MAE R2 MAE SD of MAE R2

(µg/m3) (µg/m3) (µg/m3) (µg/m3)
PM 4.96 5.4 0.83 2.99 3.18 0.55

PM + T 4.97 5.39 0.83 2.97 3.15 0.56
PM + WS 4.93 5.35 0.83 2.99 3.18 0.55

PM + T + WS 4.93 5.34 0.84 2.97 3.15 0.56

An additional evaluation of the FFNN models is performed by plotting scatter dia-
grams of the predicted versus the observed values, as presented in Figure 4.
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Figure 4. PM10 and PM2.5 scatter diagrams of the predicted versus the observed concentrations for the different input cases:
(a,e) PM only, (b,f) PM and T, (c,g) PM and WS and (d,h) PM, T and WS.

The scatter diagrams for PM10 and PM2.5 (Figure 4) are consistent with the MAE and
R2 performance statistics (Table 5). The degree of dispersion for the PM10 (Figure 4a–d)
is lower compared to PM2.5 (Figure 4e–h). This can be explained by the lower number
of inputs provided in order to train the models. Specifically, during the training process,
the number of input stations is eight for PM10 and five for PM2.5, meaning that the air
quality network density for the latter was lower. On the contrary, there are no notable
differences when the diagrams are compared based on the different inputs. According
to the MAE values, the performance of all the models, when studied separately for each
figure, reveals that there is not a scheme that identifies as substantially superior. However,
a closer examination reveals that the models which include both meteorological parameters
(T and WS) produce scatter diagrams with lower dispersion across the line of optimum
agreement. This is especially evident regarding the higher concentration values (upper
right) for the PM10 models, where the markers are closer to the diagonal.

Finally, the results of the Garson methodology are presented in Table 7. The percentage
of contribution for the meteorological parameters is nearly half when compared with
the monitoring stations concentrations in the case of the PM10 models. For PM2.5, the
corresponding percentages are at a similar level (~15%). Additionally, the monitoring
stations which are of the same type (Suburban/Background) as AGP (KOR, LYK and THR),
and those which are at proximity (MAR, LYK and ARI), are expected to contribute more
to the AGP concentrations estimations. However, Table 7 reveals that all stations have a
significant importance for the models.

Table 7. Relative importance (%) of the input data for the two cases of PM10 and PM2.5 FFNN models,
where both PM concentrations and meteorological parameters (T, WS) are used.

ARI ELE THR KOR LYK MAR PIR PER T WS

PM10 8.38 12.06 13.85 10.02 8.93 13.61 11.07 10.45 5.07 6.56
PM2.5 14.14 11.92 14.70 13.54 15.42 16.69 13.59
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4. Conclusions

This study used an FFNN application for estimating PM10 and PM2.5 concentrations.
ANN approaches, in general, have the advantage to be able to model effectively nonlinear
relationships compared to other methodologies. An important aspect is the evaluation of
the developed models during different scenarios of input parameters. In nearly all cases,
the MAE and R2 values were lower and higher, respectively, when the meteorological
values were added during the training process. The models that showcased a better
performance were those who had as additional inputs both T and WS, although there
were not crucial differences noticed among the schemes of the four different scenarios.
Regarding the comparison between PM10 and PM2.5, the estimations for the latter had a
higher degree of dispersion in the scatter diagrams of the observed versus the estimated
values. This can be explained due to the more limited information provided during
training (more input stations for PM10). The Garson methodology results reveal that all
monitoring stations in the Attica region, which were involved in the FFNN development
process, are important for the PM estimations. Future work can extend this methodology
to include more target stations with different characteristics and/or add more climate
parameters. These additions, considering their impact and usefulness for the models,
can be further analyzed and supported by applying suitable feature selection and feature
ranking techniques [65–67]. Finally, ANN ensemble approaches [68] can be examined,
aiming to reduce the variance of predictions and the generalization error by combining the
results of multiple models.
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