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Abstract: In business process management, the monitoring service is an important element that can
prevent various problems in advance from before they occur in companies and industries. Execution
log is created in an information system that is aware of the enterprise process, which helps predict
the process. The ultimate goal of the proposed method is to predict the process following the running
process instance and predict events based on previously completed event log data. Companies can
flexibly respond to unwanted deviations in their workflow. When solving the next event prediction
problem, we use a fully attention-based transformer, which has performed well in recent natural
language processing approaches. After recognizing the name attribute of the event in the natural
language and predicting the next event, several necessary elements were applied. It is trained using
the proposed deep learning model according to specific pre-processing steps. Experiments using
various business process log datasets demonstrate the superior performance of the proposed method.
The name of the process prediction model we propose is “POP-ON”.

Keywords: business process; process mining; manufacturing process; process prediction; natural
language processing; transformer; generative pre-trained transformer 2

1. Introduction

The main characteristics of corporate and industrial processes are dynamics, complex-
ity, and uncertainty. In particular, the manufacturing industry increases in complexity due
to the dynamic situation change of many infrastructures and various products and services
produced. At the same time, the globalization of industry makes the development cycle
of new and innovative technologies shorter and leads to shorter product life cycles [1].
Therefore, companies need to quickly adapt to changes in the environment and technology
to gain a competitive advantage [2]. Accurately grasping the planning deviations of a
business process in real dynamic situations is essential to enabling companies to respond
flexibly to all situations [3]. Process management through general documentation can lead
to discrepancies between the actual and documented [4]. In the business flow, many and
various event logs are generated. More business management systems can appear based
on these logs. Process mining helps keep complex processes up to date and monitored.
It extracts data from the event log and performs an important function to improve flow.
In addition, it can increase the competitiveness of tasks such as the the optimization of
management time, cost reduction and error control. As a result, relevant research being
conducted in many fields [5].

However, the efficiency is limited because of the lack of high-level predictive analysis
of the manufacturing and overall industry in the monitoring system. Most business process-
related solutions have mainly solved enterprise operation problems such as infrastructure
statistics [6]. Unfortunately, simply making it efficient only in terms of operations cannot
keep manufacturing companies competitive in the future. Accordingly, to provide better
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products and services, many companies are putting a lot of effort into making decisions
using vast amounts of data generated in manufacturing [7,8]. In the future, in addition
to documenting, diagnosing, and inspecting historical data, it is also necessary to shift
the direction of pre-decision making that enables predictive analysis of the next action of
flow. There has been much prior research related to process prediction, but there is still an
insufficient number of cases in which various decision-making models are applied. In this
paper, we propose a predictive model of the process and compare it to existing studies.

Business process prediction extracts features from log data and matches variables of
interest. Predicting successive target values, such as the remaining process execution time,
is a regression problem. It is a classification problem to predict the next event of a running
case, the result of executing a process instance, and individual target values such as service
level contract violations. Based on the recorded log data, the past events of the current
process instance are considered. It focuses on devising a classification problem that predicts
the next event and an approach to solving it. This enables analysts to intervene and prevent
problems that may occur in the workflow with previously analyzed information. This is an
important issue in a monitoring system. We solve this problem with a fully attention-based
transformer approach.

For process mining, we propose method of transforming OpenAI GPT-2 (Generative
Pre-Training 2), a transformer-based one-way language model and compared it to deep
learning methods from other studies. In addition, the prediction accuracy is further im-
proved through the specific data pre-processing method and hyperparameter optimization
of the proposed model. POP-ON (Prediction of Process Using One-way Language Model
based on NLP (Natural Language Processing) Approach) proposed in this paper is de-
signed according to the application and necessity in actual process prediction, and shows
superior quantitative indicators compared to previous research results.

The rest of this paper is organized as follows. Section 2 introduces process mining
used in manufacturing, as well as existing process prediction models. Section 3 details
the components, approaches and key ideas of the proposed POP-ON model. In Section 4,
experimental and evaluation analyses of the proposed method are performed. Finally,
we conclude the paper with a summary and suggest future research directions.

2. Related Work
2.1. Event Log

The event log that occurs in a typical application with a manufacturing process
workflow consists of several cases [9], which indicate the running status of the business
process instance as shown in Figure 1. This can be called event tracking.

The figure shows a simple UML (Unified Modeling Language) class diagram describ-
ing the interdependencies between event logs, cases, and events in process analysis [10].
The symbol ‘*’ means the whole case. The event log consists of several cases, but a single
case is always assigned to one event log. The same applies to case-to-case relationships [10].
Events contain properties that indicate their characteristics. Common attributes include
the name of the running event, the timestamp of the event, and the organization resource
or role. Predicting the next event usually involves taking into account the sequence of
past events in a particular process. In this paper, we consider analyzing logs generated
by various software packages and manufacturing processes, such as Enterprise Resource
Planning (ERP), Manufacturing Execution System (MES), and Supply Chain Management
(SCM), and use them to predict the next event.
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Figure 1. Diagram illustrating inter-dependencies between event logs.

2.2. Process Mining for Manufacturing

Business process modeling has been widely used as a way to represent activities within
an enterprise such as entities and activities and relationships [11]. In many studies, there has
been a lot of effort to develop process modeling techniques and tools and applications
using them [12]. Process mining connects data mining and business process modeling.
Software vendors have begun to incorporate more and more functions into their solutions
using process mining [13]. In particular, it was recognized as another way to analyze and
improve an information system in production, logistics, and manufacturing. Using the
data of the event log generated by the information system helps to improve the business
process [14]. Process mining is actively researched for integration into a wide maintenance
framework to effectively handle the manufacturing flow [15]. The work of applying process
mining to manufacturing and logistics has already been carried out with related datasets,
where it was proven that it can be applied to actual manufacturing processes. However,
in process prediction, improvement work such as data pre-processing, unbalanced problem,
hyperparameter optimization, and the introduction of more diverse prediction models are
needed [15].

2.3. Prediction of Process

The latest works have evolved from explicit process models to deep learning ap-
proaches. There is a case of applying RNN (Recurrent Neural Network) and LSTM (Long
Short-Term Memory) after changing input characteristics using word embedding [16].
We investigated studies attempting to improve accuracy by adding explanatory variables
for each available case and event. On the one hand, the BPI Challenge 2012 and 2013
datasets were used to verify the results of process prediction. In addition, the LSTM
method was applied, but a study was conducted to convert the input activity into a fea-
ture vector using one-hot encoding without considering only the order of occurrence and
time stamp of the activity [17]. All previous studies used the same approach to predict
the duration of process activity. However, in previous studies, attempts to improve the
quality of predictive models have been insufficient. In addition, there is a need to improve
hyperparameter optimization and improve prediction performance by supplementing
data pre-processing.

Recently, there have been studies that change the data pre-processing approach to
improve event prediction performance through process mining. Here, the process of
converting sequential process data into neural network input features according to a
predetermined prefix size was performed. Most of the existing approaches simply use
index encoding to construct feature vectors from sequence data, but in many cases they
do not consider interdependencies between sequential event data [18,19]. To solve this
problem, studies using n-gram encoding schemes have appeared. The n-gram approach
can lead to a high-dimensional feature space in proportion to the size of the event space.
In another research case, event prediction was treated as a classic multi-class classification
problem. The classified features were extracted using a deep feed-forward network based
on a stacked auto-encoder [20]. This research specified the pre-processing of the input
data by combining n-gram and feature hashing. The overall outline of the study is shown
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in Figure 2. However, this approach is only possible with simple datasets because the
amount of distinct expressions increases polynomial with the number of distinct event
classes. Many software products used in the manufacturing process are not simple datasets.
There is a need to develop a way to process massive amounts of complex real-time data.

Figure 2. Process prediction using n-gram and feature hashing approaches.

2.4. Transformer

Deep learning and pre-training models have shown excellent results in several recent
language analysis and prediction task including ELMo (Embeddings from Language Mod-
els) [21], OpenAI GPT (Generative Pre-Training) [22], GPT-2 [23], and BERT (Bidirectional
Encoder Representations from Transformers) [24]. The recent GPT-2 model achieved ex-
cellent results among several language modeling benchmarks in a zero-shot setting. It is
claimed that GPT-2 is very powerful and poses a high risk of malicious use. For this reason,
OpenAI has decided to block the largest model to give more time to discuss the impact of
GPT-2. Additionally, transformer as a bidirectional encoder language representation model
(BERT) in 2018, achieved state-of-the-art performance across NLP (Natural Language Pro-
cessing) tasks such as linguistic sentiment analysis and question answering. The basis of
BERT and GPT-2 is a transformer model with a fully attention-based approach, unlike the
existing sequence model based on an iterative architecture [25]. The advantage of using
attention is that it can help interpret the decision process by showing how the model pays
attention to different parts of the input [26]. Deep neurolinguistic models such as ELMo
and BERT have successfully generated contextual word expressions and sensitive word
vectors. In NLP, word embedding is generally the mapping of words into consecutive
vectors. Replacing word embedding with contextual expressions greatly improves various
NLP tasks from answering questions to solving interrelationships [21]. The word expres-
sion appropriate to the context implies that the language is highly transmissible and learns
the attributes that are not restricted to the work, even though they have been educated
only with language modeling work.

Recently, as the popularity of process mining has increased, some research has at-
tempted to develop an automation tool that can extract process-related information from
business documents using machine learning and NLP technologies [27]. In this research,
work related to machine learning and NLP is reviewed and applied to process mining.
Process mining has been discussed extensively in the literature and many tools and tech-
niques have been developed. Therefore, in this paper, we studied a business process
prediction model using the NLP approach. In particular, among the language models of
the NLP approach, we propose a model modified to predict the process of GPT-2, which is
a one-way language model and has strong performance.
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3. POP-ON
3.1. One-Way Language Model

Given the limitations of word embedding, recent research has attempted to create a
word expression that fits the context. ELMO, BERT, and GPT-2 are deep neural language
models fine-tuned to create a wide range of models. As an NLP work, the internal ex-
pression of a word becomes a feature of the entire input sentence, so it is referred to as
a contextualized word expression. The success of this approach suggests the language’s
superior communication ability and flexibility. ELMo creates a contextual representation of
each token by linking the internal state of a layer 2 biLSTM (Bidirectional LSTM) trained
in a bidirectional language modeling task. In contrast, BERT and GPT-2 are two-way and
one-way Transformer-based language models, respectively. Each Transformer layer of
BERT and GPT-2 creates a context-processed representation of each token, paying attention
to different parts of the input sentence. These models achieved state-of-the-art performance
for a variety of NLP tasks, from question answering to sentiment analysis. The biggest dif-
ference between ELMo, BERT, and GPT-2 is that all of the masking deployment directions
are different [28].

In this paper, we propose a deep learning-based pre-training model applicable to
manufacturing process software applications and monitoring systems. There are very few
studies using the existing NLP approach for business process prediction. In addition, it has
not been utilized in the manufacturing domain. Therefore, we utilized GPT-2, which has
shown strong performance in natural language processing and text mining.

The reason GPT-2 was judged to be more suitable than ELMo and Bert is that GPT-2
is a one-way language model. That is, GPT-2 predicts the next event in consideration of
the previous event that has already progressed. In general, the previous event should be
considered when fitting the next process in the process prediction process. As described
above, Bert and ELMo check before and after an event, so they are suitable for process
analysis and predicting the state of a specific process rather than predicting the next process.
There are two ways to apply the pre-trained language expressions of the models to the
actual task. One is a feature-base method, and the other is a fine-tuning method. ELMo is a
feature-base method, and it can be expressed as bidirectional by applying it both left to
right and right to left. However, the BERT is different in that after learning from left to right
and from right to left, it then concatenates them. BERT is a model with good performance,
but pre-training using masking takes into account the events before and after the event to
be predicted [24]. Then, our experiments and evaluations were carried out by referring to
GPT-2, a one-way language model.

3.2. Data Pre-Processing

In our research, concrete data pre-processing was performed to improve the pro-
cess prediction precision. As a result, the inclusion of our data pre-processing approach
in the POP-ON model improved the prediction precision. Figure 3 visually shows the
data pre-processing process for the event log datasets. In Figure 3, the sub sequence,
label, and attribute are extracted from each case in the left event log. At the top right,
special tokens are inserted and tokenized for each subsequence, and at the bottom right,
one-hot encoding and min-max scaling are performed for each attribute type.
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Figure 3. Overall data pre-processing.

Tokenization is the breakdown of the flow of strings into meaningful tokens that are
distinguished from each other [29]. The tokenization of sentences is essential for processing
natural language. In this study, a series of events belonging to each case of the dataset was
reported as one sentence and tokenized for each event. Tokenized events of case Ci are
called an event sequence Ei. For case Ci and event sequence Ei =

(
ei1, ei2, . . . , eili

)
with

length li ≥ 2, the subsequence of Ci is shown in Equation (1):

Eisub = (ei1, ei2), (ei1, ei2, ei3), . . . ,
(
ei1, ei2, . . . , eili

)
(1)

The purpose of this study is to predict the next event in the process. Therefore, if li = 1
or the length of the subsequence is 1, since in this case, it is a subsequence that cannot be
used for both training and verification, it was excluded from the set of all subsequences.
Therefore, for every case Ci of length li ≥ 2, there are li − 1 subsequences each. The target
token corresponding to each subsequence is the last token of the subsequence as shown in
Equation (2):

Tisub =
(
ei2, ei3, . . . , eili

)
(2)
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The last token (target token) of the subsequence is removed, and the beginning of
sequence token at the beginning and the sequence with the end of sequence token inserted
at the end becomes the input sequence of the model. A padding token is inserted into
each input sequence according to the length of the longest sequence among the entire
input sequence set. Finally, input sequences are encoded as integers according to the
vocabulary. In the vocabulary, unique integers are allocated for each token. The model
outputs the result of predicting the next token at each location in the input sequence as an
output sequence.

Attributes are related to the occurrence time of an event such as the amount of a
request, organization, importance, product, and timestamp. In this study, attribute data
was divided into categorical attributes and numerical attributes. A categorical attribute
is a variable that has label values such as ‘product’ and ‘organization involved’, and a
numerical attribute is data that can be expressed numerically, such as ‘case:AMOUNT_REQ’
(the amount requested by customers).

Data normalization is a process of standardizing attribute data to a smaller range
by scaling. If data is normalized, the same weight can be given to all attributes. The nor-
malization process is particularly effective for neural networks or distance-based models.
By normalizing the input data of a classification problem using neural networks, it helps
to accelerate the learning phase [30]. In this research, one-hot encoding was applied to
the categorical attribute and min-max scaling was applied to the numerical attribute to
normalize all data to the [0, 1] range.

3.2.1. One-Hot Encoding

One-hot encoding is one of the main methods of handling categorical attributes. This is
a method to convert the categorical attribute into a binary vector by enumerating the labels
of a categorical attribute and assigning 1 and 0 to the corresponding label [31].

Figure 4 shows one-hot encoding applied to an arbitrary categorical attribute ‘country’.
The labels of ‘country’, ‘Sweden’, ‘China’, and ‘India’ are listed, and 1 is assigned to the
corresponding position in each row. In this study, one-hot encoding was applied to all
categorical attributes.

Figure 4. Example of using one-hot encoding.

3.2.2. Min-Max Scaling

Min-max scaling is a linear transformation technique that can adjust the range of data
while preserving the shape of the data distribution. In this paper, for numerical attributes,
min-max scaling was applied in the following way.

x′i =
(

xi − xmin
xmax − xmin

)
, where xi ∈ X (3)

Here, x is an arbitrary numerical attribute. Through the above expression, the distri-
bution of numerical attributes is normalized between 0 and 1. We used the MinMaxScaler
class of version 0.22.2.post1 of scikit-learn to apply the min-max scaling in the development
and experiment stage.

3.3. Proposed Prediction Model

We propose a new model modified from GPT-2, which is a one-way language model-
based transformer approach in process prediction. It recognizes the name attribute of a
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process event as a kind of natural language. GPT-2, which showed excellent results in NLP,
had difficulties in predicting the process, and the experiment was successfully conducted
only after various attempts. The name of the process prediction model is POP-ON (POP-
ON: Prediction of Process Using One-way Language Model based on NLP Approach).

Figure 5 shows an overview of the POP-ON model. nlayer is the number of transformer
decoder layers to be stacked, bs is the batch size, nattr is the number of input attributes,
and nseq is the length of the input sequence. Like GPT, the structure of a multi-layer
transformer decoder was basically used. The basic structure of GPT is a multi-layer stack
of Transformer Decoder including Input Embedding Layer, positional encoding, and layer
normalization, plus Linear Layer and softmax layer [22]. POP-ON has a structure in which
Attribute Linear Layer (ALL) to be described later is added to each Transformer Decoder
Layer of the GPT structure. ALL allows the attribute to be used in the next event prediction
along with the sequence.

Figure 5. POP-ON (Prediction of Process Using One-way Language Model based on NLP Approach)
model architecture.
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The Transformers model uses positional encoding to add information about the
position of a word in a sequence. Positional encoding has a dimension of dmodel and is
added to the input embedding to go to the transformer decoder layer [25].

Attention functions receive inputs as queries, keys, and values. By calculating the
dot-product of the query and the keys, the similarity between query-keys is obtained,
whereas Scaled Dot-Product Attention is obtained by multiplying the values by values
from the softmax function after scaling, where the higher the value is, the more similar it
is to the query. This means that ‘attention’ can be given to important information of the
sequence. The attention function is equivalent to Equation (4) [25]:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (4)

Q and K, correspond to the dk dimensional matrix, and V is the dv dimensional matrix.
KT is the transposition matrix of K. In the Transformers model, Multi-Head Attention
is used. Multi-Head Attention performs linear projection nhead times on Q, K, and V
instead of using one attention. The projected Q, K, and V output the dv dimensional output
through the attention function in parallel. Then, each head is concatenated and re-projected,
and finally the dmodel dimension output is obtained. The Multi-Head Attention Layer used
in the Transformer Decoder Layer is Masked Multi-Head Attention. When the attention of
the ith position of the sequence is obtained, the position of the position after ith is masked
and attention is not given to the position. MultiHead Attention is obtained as shown in
Equations (5) and (6) [25]. The trainable weight matrices are WQ

i , WK
i , WV

i ∈ Rdmodel×dk ,
and WO

i ∈ Rnheaddk×dmodel .

MultiHead(Q, K, V)Concat =
(
head1, . . . , headnhead

)
WO (5)

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(6)

The ALL is a fully connected FFN (Feed-Forward Network) that uses the Attribute
input of a dataset as input. For the Attribute input vector x, the output of the ALL is shown
in Equation (7):

ALL(x) = max(0, ((xW1 + b1)W2 + b2)W3 + b3) (7)

Trainable weights are W1 ∈ Rnattr×dattr , W2 ∈ Rdattr×dattr , and W3 ∈ Rdattr×dmodelnseq .
Here, dattr is the middle size of the ALL layer, and ALL Layer uses nattr dimension data as
input. Then, it passes through three linear layers having a size of dattr and an activation
function ReLU, and generates an output of dimension nseqdmodel . This output is converted
back to the (nseq× dmodel) dimension. Therefore, linear transformation is applied differently
for each position of the sequence.

Attributes entered with the sequence are added to the residual block of Multi-head
Attention after passing through the three linear layers. A residual block is a structure
that adds input to the output of a layer, has the meaning of adding additional learning
information to existing learning information, and can solve the gradient vanishing problem
as the depth of the layer increases [32]. By adding the output of ALL to the residual structure
of multi-head attention, information of attributes for each position of the sequence can also
be reflected. The added Attention input, Attention output, and ALL output go through
Layer Normalization and Dropout layers [33,34].

Output after normalization and dropout leads to Position-wise FFN. The FFN layer is
a network consisting of two layers, an activation function ReLU located between the two,
and a dropout layer. The linear transformation is applied to each position of the sequence,
and the output of the FFN is shown in Equation (8) [25].

FFN(x) = max (0, xW1 + b1)W2 + b2 (8)
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The output of FFN becomes the input of the next decoder layer along with the attribute
input. When passing the Decoder Layer as many as nlayer times, the probability of the next
token at each location is output through the value of applying the linear transformation and
softmax function to the last output [25]. In the POP-ON model, it predicts the next token at
the end of the input sequence. Output predicts the next event expected at each position
in the input sequence and uses Cross-Entropy loss and the Adam-Optimizer (default
β1 = 0.9, β2 = 0.999, ε = 10−8). In the training process, the overall structure of the
sequence was learned by calculating the loss for the entire sequence, and in the test process,
the performance was measured with the prediction token of the next event location.

As input of the POP-ON model, the entire sequence of the event log is encoded and
the corresponding attributes are used. For example, suppose that the subsequence (A, B, C)
in Figure 3 is used for test, the sequence (A, B) is the input sequence, and the input attribute
is (0.1500, 1, 0, 0, . . . ) to predict target token C.

Figure 6 shows the training and testing process of the POP-ON model. In the example
in the figure, the Beginning of Sequence Token is mapped to ‘1’, the End of Sequence Token
is mapped to ‘2’, and the Padding Token is mapped to ‘0’. The original sequence is a
subsequence consisting of the order of ‘{3, 4, 5}’, and according to Equations (1) and (2),
the target token is ‘5’. The input sequence is a sequence of nseq length, where the Beginning
of Sequence Token and End of Sequence Token fill the front and back of the sequence
in ‘{3, 4, 5}’, repectively, and the remaining positions are filled with the Padding Token.
A sliced sequence is a sequence of length nseq by subtracting the target token from the input
sequence and filling the remaining end with the padding token.

Figure 6. Appearance of the train process and test process.

When the sliced sequence and the corresponding attribute are input to the POP-ON
model, the next token predicted at each location is the output, and the output sequence
of nseq length is generated. To compare whether the model prediction matches the actual
target, the output sequence is compared with the shifted sequence. The shifted sequence is
a sequence of length nseq − 1 by removing the first token from the subsequence, and even-
tually the correct answer from the first to the nseq − 1 position. Cross-Entropy Loss is
calculated by comparing this with the prediction up to nseq − 1 of the output sequence.
Through back propagation, the neural network learns the structure of the entire sequence.

The test step only verifies predicting the last token of the subsequence, that is, the tar-
get token. If the location of the target token in the input sequence is itarget, the itarget − 1
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prediction result of the output sequence is compared. In our experimental stage, the train
set and test set were separated by a ratio of 8:2. To prevent overfitting, the train set was
randomly permuted for each epoch during the train.

We will explain an example from the real world to make it easier to understand
POP-ON. Figure 7 is a diagram to use as an example of the process of making a loan in a
financial company. When a customer applies for a loan, the company reviews and deny the
application or provides an offer. According to the customer’s decision, the offer is accepted
or refused, and a loan is made for the accepted offer.

Figure 7. Illustrative diagram of the loan process.

Figure 8 is an example of predicting the next event as shown in the Figure 7 process
run by applying POP-ON. The amount of requests, reason for loan, and credit score
presented by the customer are used as attributes, and the progress up to the present is
used as a sequence. As shown in Figure 3, the attribute is processed by one-hot encoding
and min-max scaling, and in the case of sequence, it is encoded as an integer according to
the mapped value. The processed attribute and sequence are input to POP-ON as shown
in Figure 6, and the next event is predicted. That is, in the case of 168768 in Figure 8,
the event that will appear after the ‘Provide Offer’ (whether the customer will accept the
provided offer) is predicted, and in the case of 168769, the event that will appear after the
‘Review Application’ (whether to deny the customer’s application or to provide an offer)
is predicted.

Figure 8. POP-ON explanation through a real-world example.
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In the actual business process, there will be attributes that greatly influence the
decision of the next event. In the case of Figure 7 and 8, which we have taken as an
example, ‘credit score’ will be the attribute in the Review Application stage. POP-ON
allows this information to be reflected in the next event prediction, thereby enabling more
accurate predictions and decision support in real cases.

4. Performance Analysis
4.1. Experiment Environment

In this paper, PyTorch version 1.7.0 was used for the proposed model construction.
The model was defined with the torch.nn module and the torch.optim module, and the GPU
acceleration function was applied during training and testing using the torch.cuda module.

4.2. Datasets

The experiment used actual datasets, including BPI challenge 2012 [35], BPI Challenge
2013 [36], and Helpdesk [37] data. Table 1 shows the detailed characteristic information
of the datasets. The number of distinct event types is the number of output classes in the
multiclass classification problem. The BPI Challenge 2012 dataset consists of 262,000 pieces
and 13,087 event conferences were obtained from Dutch finance. The procedure for apply-
ing for a loan is divided into an application (A), an activity belonging to the application
(W), and an activity related to an offer (O). For the BPI 2012 A event and the BPI 2012 O
subprocess contains only the completed lifecycle. The BPI 2012 W process includes the
reservation, initiation, and completed life cycles.

Table 1. Characteristics of the datasets.

Dataset Number of Cases Number of Events Number of Activities Number of useful Attributes

BPI’2012 A 13,087 60,849 10 1
BPI’2012 O 5015 31,244 7 1

BPI’2012 W Completed 9658 72,413 6 1
BPI’2013 Incidents 7554 65,533 13 8

BPI’2013 Closed Problems 1487 6660 7 2
Helpdesk 4580 21,348 14 1

The BPI Challenge 2013 dataset is an event log from the incident management and
problem management system of the Belgian company Volvo IT. The incident management
subset contains 7554 cases with 65,533 events distributed across 13 distinct types. In the
open problem subset there are 819 cases with 2351 events distributed across 5 distinct
types. The closed problem subset consists of 1487 cases with 6660 events of 7 distinct
types. By merging open and closed problem subsets, we created the same dataset as the
other study, generating 9011 events. The event log data from the ticketing management
system developed for the Italian software company Helpdesk is the Helpdesk dataset,
where there are 3804 cases in the event log with 13,710 events. The dataset information
shown in Table 1 includes the total number of cases, the total number of events, the number
of activities per dataset, and the number of attributes used. Table 1 shows the attributes
of the events available in our experiment. We used six datasets as metrics: BPI 2012 A,
BPI 2012 O, and BPI 2012 W Completed at BPI Challenge 2012 and BPI 2013 Incidents, BPI
2013, Closed Problems and Helpdesk at BPI Challenge 2013.

4.3. Evaluation Metrics

The accuracy, precision, recall, F1 Score, and MCC (Matthews Correlation Coefficient)
were used as evaluation metrics to evaluate the model proposed in this paper. Table 2
shows the evaluation indexes of the multi-class classification model.
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Table 2. Evaluation indicators of multi-class classification models.

Metrics Formula

Accuracy Accuracy =
(Number o f positive classi f ications)

(Number o f input Sequences)

Precision 1
n ∑l

i=1 Si
tpi

tpi+ f pi

Recall 1
n ∑l

i=1 Si
tpi

tpi+ f ni

F-measure 1
n ∑l

i=1 Si
precisioni×recalli
precisioni+recalli

MCC (Matthews Correlation Coefficient) 1
n ∑l

i=1 Si
tpi×tni− f pi× f ni√

(tpi+ f pi)(tpi+ f ni)(tni+ f pi)(tni+ f ni)

Additional explanations for Table 2 include the followings.

• tpi: True positive. Number of cases classified as class i, and the actual class is also i.
• f pi: False positive. Number of cases classified as class i, but the actual class is not i.
• tni: True negative. Number of cases not classified as class i, and the actual class is also

not i.
• f ni: False negative. Number of cases not classified as class i, but the actual class i.
• l: Number of all classes.
• Si: Number of class i.
• n: Total number of datasets, thus ∑l

i=1 Si = n.

4.4. Comparative Analysis

There were research results in various fields using the BPI Challenge as a dataset,
and there were use cases related to process prediction. The Approach in Table 3 provides a
working list of different approaches used to validate our experiments. All of these tasks
were performed on the BPI Challenge data set and applied a deep learning approach.
In this section, we compare the prediction result values for each dataset by referring
to Table 3 and show the superiority of the proposed POP-ON approach. Benchmark
(accuracy) between POP-ON and existing deep learning-based process prediction studies
was compared. The blue numbers in the table represent the best results for each dataset.

Table 3. Benchmark (accuracy) between existing deep learning-based process prediction research and POP-ON. The bold
numbers in the table represent the best results for each dataset.

Approach BPI 2012 A BPI 2012 W
Complete

BPI 2012 O
Closed Problems

BPI 2013
Incidents BPI 2013 Helpdesk

Pasquadibisceglie et al. [38] 71.47 66.14 77.51 24.35 33.10 65.84
Tax et al. [17] 77.75 66.80 81.22 65.57 67.50 75.06

Camargo et al. [39] 78.82 65.19 85.13 60.62 68.01 76.51
Hinkka et al. [40] 79.27 67.24 85.51 61.14 77.95 77.90
Khan et al. [41] 75.62 75.91 84.48 55.57 64.34 69.13

Evermann et al. [42] 74.44 65.38 79.20 55.66 68.15 70.07
Mauro et al. [43] 78.09 65.01 81.52 56.97 71.09 74.77

POP-ON 79.49 81.36 92.15 78.36 79.89 75.53

The attributes used in each dataset are shown in Table 4. The numerical attribute
‘time:elapsed’ is an attribute extracted from the timestamp of the log, and is the time
difference between the event and the timestamp of the previous event. Hyperparameter
used Equation (9), where the batch size was 64, the number of epochs was 200, and the
learning rate was 10−6.

nlayer = 8, nhead = 8, dmodel = 128, dattr = 1024, d f f = 1024 (9)
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Table 4. Numerical attributes and categorical attributes used in the POP-ON model for the differ-
ent datasets.

Dataset Numerical Attributes Categorical Attributes

BPI 2012 A time:elapsed, org:resourcecase:AMOUNT_REQ

BPI 2012 W Complete time:elapsed, org:resourcecase:AMOUNT_REQ

BPI 2012 O time:elapsed, org:resourcecase:AMOUNT_REQ

BPI 2013 Closed Problems time:elapsed

org:group
org:role

concept:name
product
impact

resource country
organization country
organization involved

BPI 2013 Incidents time:elapsed

org:group
org:role

concept:name
product
impact

resource country
organization country
organization involved

Helpdesk time:elapsed -

As an evaluation index, the evaluation was conducted based on the accuracy entered
for each reference. As a result, POP-ON performed well on all datasets except Helpdesk.
In particular, in the BPI 2012 A, BPI 2012 W Complete, BPI 2012 O, and BPI 2013 Closed
Problem datasets, the POP-ON model was the best in terms of accuracy. The accuracy of the
BPI 2012 A was slightly higher than most previous studies. Compared to the BPI 2012 W
Complete and BPI 2012 O, it showed improvements of about 5.45% points and 6.64%
points, respectively, compared to previous studies (Khan et al. [41] and Hinkka et al. [40]),
which were the second best results in terms of accuracy. For the BPI 2013 Closed Problem
dataset, compared to the second most accurate study (Tax et al. [17]), our approach showed
an improvement of about 12.79% points. For the BPI 2013 Incidents, our method was 1.94%
points better than the second most accurate approach (Hinkka et al. [40]). For the Helpdesk
dataset, a previous model (Hinkka et al. [40]) showed the highest performance in terms
of accuracy.

4.5. Hyperparameter Optimization

In this experiment, experiments were conducted on six datasets (BPI 2012 A, BPI 2012 O,
BPI 2012 W Complete, BPI 2013 Incidents, BPI 2013 Closed Problems, and Helpdesk). The
experiment was conducted using the BPI 2012 O dataset. Training was performed on a
NVIDIA V100 GPU with 25GB RAM, with a batch size of 64, 200 epochs and, a learning
rate of 10−6. The time taken for each epoch was measured from about 3 s to 25 s depending
on the setting.

Table 5 shows a description of the hyperparameters we used, and the values for each
setting for the experiments are as follows.

• K1 = nhead = 1, dmodel = 16, dattr = 128, d f f = 128;
• K2 = nhead = 2, dmodel = 32, dattr = 256, d f f = 256;
• K3 = nhead = 4, dmodel = 64, dattr = 512, d f f = 512;
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• K4 = nhead = 8, dmodel = 128, dattr = 1024, d f f = 1024.

Table 5. Description of hyperparameter.

Hyperparameter Description

dmodel Dimension of Embedding
d f f Dimension of Feed-Forward Network
dattr Dimension of Attribute Linear Layer

n−layer Number of Transformer Decoder Layers
n−head Number of Attention Head

Table 6 shows the experimental results according to the hyperparameter setting.
Accuracy was used as an evaluation index, and after defining the hyperparameter setting
for the dimension of the layer in the hyper parameter of the Transformer Block (in this
experiment, the hyperparameters of the Transformer Decoder Layer), we changed the num-
ber of blocks according to the setting (the number of decoder layers in this experiment)
and proceeded.

Table 6. Experiment results according to the hyperparameter settings.

Hyperparameter
Set nlayer nhead dmodel dattr d f f Accuracy

K1

1 1 16 128 128 0.8296
2 1 16 128 128 0.8593
4 1 16 128 128 0.8984
8 1 16 128 128 0.9064

K2

1 2 32 256 256 0.8934
2 2 32 256 256 0.9039
4 2 32 256 256 0.9121
8 2 32 256 256 0.9169

K3

1 4 64 512 512 0.9051
2 4 64 512 512 0.9110
4 4 64 512 512 0.9171
8 4 64 512 512 0.9194

K4

1 8 128 1024 1024 0.9125
2 8 128 1024 1024 0.9196
4 8 128 1024 1024 0.9197
8 8 128 1024 1024 0.9217

Table 6 shows the accuracy when the hyperparameter set and nlayer are different.
As a result of the experiment, K4 = nhead = 8, dmodel = 128, dattr = 1024, d f f = 1024,
and nlayer = 8, where the performance was the best. Regarding the size of the model,
the larger the model, the better the performance. In all hyperparameter sets, the higher the
number of decoder layers nlayer, the better the performance. However, when the size of the
model is large, the performance improvement is smaller and when the size of the model is
small, the difference of performance according to nlayer is greater.

4.6. The Need for an Attribute Linear Layer

The key-point of POP-ON is to learn the overall structure of the sequence and add ALL
to the structure of the GPT to predict the next event. Through this, the attribute information
can be reflected in the next event prediction. Using the BPI 2013 Closed Problems data set,
we compared the model performance according to the presence or absence of ALL of the
POP-ON model. The BPI 2013 Closed Problem data set is a real life data set provided by
Volvo IT, and is an event log for problem handling of IT services provided/operated by
the company. The problem handling process works with other processes such as problem
monitor service, discover, and define opportunity. Therefore, accurately predicting the
problem handling process using event logs can reduce disruption to business and improve
the availability and quality of IT services.

The BPI 2013 Closed Problems consists of 6660 events and 12 columns. Excluding the
case name column, event name column, and timestamp column, 9 categorical attributes can
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be used. When ‘time:elapsed’ attribute is extracted from the timestamp, 10 attributes can be
used. Since there are many attributes that can be used, and among them, there are attributes
that are estimated to have a significant effect such as impact and product, we selected the
BPI 2013 Closed Problems for the effective analysis of ALL. The learning trend and test
performance were compared based on five metrics when the attributes were entered in
ALL and when attributes were not entered.

Figure 9 compares the test performance of the model according to the presence or
absence of a linear attribute layer and training epoch. Among all epochs, the model with
ALL resulted in the best test accuracy of 0.7836, and the model without ALL achieved
the best test accuracy 0.4647. The hyperparameter used for learning was the same as
Equation (10), where the batch size was 64, number of epochs was 200, and the learning
rate was 10−6.

nlayer = 8, nhead = 8, dmodel = 128, dattr = 1024, d f f = 1024 (10)

Figure 9. Model test performance comparison according to the attribute linear layer.
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Figure 9 compares the test metrics of two models according to the training epoch.
As a result of the comparison, the former model showed better performance in all five
metrics used for evaluation than the latter model. The accuracy of the former was 0.7836,
which was 68.62% higher than the latter which had an accuracy of 0.4647, the precision
was 0.8040 vs. 0.5553 (44.79%), the recall was 0.7836 vs. 0.4647 (68.62%), the F-1 score was
0.7861 vs. 0.4555 (72.58%), and the MCC was 0.7206 vs. 0.3372, which is 113.70% higher.

5. Conclusions

In this paper, we investigated the efficiency of a one-way language model approach
among fully attention-based transformer models for predicting future process events of the
current process instance being executed. In addition, we proposed POP-ON, a process pre-
diction model. As far as we know, this was the first time this approach has been applied in
the area of business process prediction. The research goal was to apply the newly proposed
approach to log data generated by the manufacturing process and software, and to evaluate
the predictive performance of the next process event. To improve the prediction accu-
racy, we performed one-hot encoding and min-max scaling in the data pre-processing
step, and made it possible to use categorical data. In the data pre-processing stage,
after categorical data was applied to the experiment, the hyperparameters were adjusted
to determine the impact on the prediction results, and hyperparameter optimization was
applied to find the optimal configuration. Based on GPT-2, the proposed POP-ON model
adds a linear network that uses the attribute of an event as an input to the residual structure
of the multi-head attention layer within the Transformer Decoder Layer so that elements
other than the sequence can be reflected in the prediction.

In Section 4, the predictive performance of the proposed approach and the existing
deep learning approach were compared and evaluated. The experimental results suggest
that the proposed method achieved good results in the evaluation index and outperformed
the state-of-the-art approach in most experiments. In addition to its excellent predictive
performance, the proposed Transformer approach demonstates that powerful predictive
models of the latest trends used in NLP could also be used in process mining based on
business process log data.

Future research aims to solve the ‘black box’ characteristic of the deep learning method
used in the process prediction analysis process and provide post-mortem explanations so
that domain experts can interpret the prediction. This is important for ensuring reliability
of model results and applying them to actual processes in enterprises. Our future research
goal is to make the process prediction model easier to understand, and to use the reliable
predictive model for enterprise. In addition to the one-way language-based model in
the transformer, we intend to analyze the process with a powerful model that considers
the state of events in both directions such as BERT. In process prediction, a one-way
language model was used as needed. However, in addition to forecasting, business process
management requires a more versatile monitoring component, and another approach can
be applied for this.
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