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Abstract: Rock-fall is a natural threat resulting in many annual economic costs and human casualties.
Constructive measures including detection or prediction of rock-fall and warning road users at the
appropriate time are required to prevent or reduce the risk. This article presents a hybrid early
warning system (HEWS) to reduce the rock-fall risks. In this system, the computer vision model is
used to detect and track falling rocks, and the logistic regression model is used to predict the rock-fall
occurrence. In addition, the hybrid risk reduction model is used to classify the hazard levels and
delivers early warning action. In order to determine the system’s performance, this study adopted
parameters, namely overall prediction performance measures, based on a confusion matrix and
reliability. The results show that the overall system accuracy was 97.9%, and the reliability was 0.98.
In addition, a system can reduce the risk probability from (6.39 × 10−3) to (1.13 × 10−8). The result
indicates that this system is accurate, reliable, and robust; this confirms the purpose of the HEWS to
reduce rock-fall risk.

Keywords: detection; prediction; risk reduction; rock-fall

1. Introduction

Rock-fall on the roads causes a severe threat to transportation systems. The risk of
landslides and the fall of rock blocks in Saudi Arabia’s mountains have caused many
problems, and these geological hazards can occur at any moment. The level of risk is due
to several circumstances such as natural factors due to weakness in the mountain crust,
rocky rubble, and tectonic movements and their relationship to the lines of weakness and
structural characteristics of cracks, as shown in Figure 1a,b.

Other factors are due to construction and development work, such as poor road
construction, poor drainage methods of torrential rains, and erosion as a result of floods [1].
Figure 1c,d illustrates some examples of these types of artificial problems [2,3]. All these
risk factors integrate with the natural disasters that are difficult for humans to prevent
because the risks are not within the human potential to predict, and using a conventional
ground survey is not sufficient to inform a geological hazards map.

Modern techniques have been used to detect risks and mitigate the destructive impact
of all the aforementioned risk factors. There are two methods used to reduce the risks of
the phenomenon of rock-fall, either by simulation and modeling (semi-real time) or by
detection and monitoring of the fall event (in real time).

There are several approaches reported in the literature to model rock-fall behavior. For
example, references [4,5] developed a stochastic impact model to calculate the velocities
of a falling rock after a rebound on the slope. Another study [6] discussed probability
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distributions of rock-fall velocities and volumes to calculate kinetic energy distribution. A
further possibility to model rock-falls is to use historical information from past rock-fall
events and field surveys [7]. However, the above studies suffered from uncertainties in the
field surveys and the randomness of natural variables. Therefore, additional information
was used to overcome the limitations, such as the rebound value of both the block and the
slope material, the impact velocity, and the block mass [8]. In addition to the assessment of
rock slope stability with the effects of weathering, the rock was modeled by some shear
properties (such as resistance, displacement, incident velocity, and stress along the rocks’
interconnecting areas [9–12].

Figure 1. Examples of rockfall problems in Aqabat Shaar. (a) Effect of road construction. (b) Effect of
tunnel construction. (c) Effect of floods. (d) Effect of erosion.

Several approaches are reported in the literature to model several assessment methods
that evaluated rock-fall hazards. For example, reference [13] proposed a hazard rating
model based on rock-fall frequency and bounce height. In addition to rock structure, the
proposed model, the rock-fall hazard, and the uncertainties in quantification were assessed
by dynamic computational methods. In another pair of studies, quantitative rock-fall risk
models were developed to assess the rock-fall risk using a model to identify and manage
the risk [14,15]. In addition, there are many approaches to determine the conditions of a
rock-fall trajectory and to simulate its behavior. One of these approaches is the kinematic
study of the motion of blocks, in which the coefficients of restitution are calculated, and
the other approach is the propagation history of rocks, which has been used to determine
the characteristic impact conditions and to verify the mode of motion of rock blocks [16].
Another possibility to simulate the trajectories is discontinuous deformation analysis,
which describes the rock-fall trajectories and the motion behaviors as bouncing, rolling,
free falling, and sliding [17]. Furthermore, reference [18] conducted a review of the various
probabilistic modeling models and found that most models were not systematic because
the probabilistic variables were randomly sampled from the probability distributions.

There are different techniques reported in the literature to monitor seismic signals
caused by falling rocks. First, geophysical sensors were proposed to monitor the geophysi-
cal signals induced by the falling rocks and estimate the impact of the fall of the rock on
the surface [19]. In another study [20], a micro-seismic technique was presented to detect
rock-fall events. However, these techniques detect rock-fall events but are unable to locate
the fall. New techniques were proposed to overcome micro-seismic limitations [21–23] by
locating rock-fall impacts using micro-electromechanical and micro-seismic networks with
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highly dynamic ranges. Several techniques are reported in the literature [24–26], where a
terrestrial laser scanner was used to detect changes occurring on the surface as well as to
detect individual rock events. To detect multiple rock-fall events, semi-automated identi-
fication methods were used, capable of extracting information from events of rock-falls,
including block shapes, volumes, and their locations [27]. In addition, [28] proposed a
semiautomatic method in which three-dimensional terrain was reconstructed to obtain the
geometry of the unstable blocks and to define the location of rock-fall source areas.

Although few camera-based rock-fall monitoring techniques were found in the litera-
ture, the camera has outperformed many technologies, even the terrestrial laser scanner,
regarding its ability to track multiple rocks in real time. In Fantini et al. [29], an artificial
intelligence camera prototype was used for monitoring and tracking the fallen rocks in
real time. All the above methods are used to detect falling rocks; however, they are not
sufficiently effective to warn cars of rock-fall hazards before their occurrence. These meth-
ods respond after the rock-fall occurrence has caused harm on the roads. In addition, they
have weak capabilities in dealing with the high falling speed and the slow response of the
vehicle’s driver that increases the risk. A prediction of rock-fall events is required to ad-
dress the shortcomings of previous models. Recently, machine learning technologies have
been used in developing effective models to predict rock-fall hazards. Some studies were
conducted on rock-fall prediction models based on machine learning technology [30–32].
The existing methods are unreliable in mitigating the rock-fall risk in real time because the
model is generated from the historical data concerning a specific site.

Moreover, few studies focused on increasing the reliability of the detection or the
prediction models. Therefore, this study aimed to increase the reliability by combining
the detection and the prediction models in a hybrid reliable early warning system that
guarantees to overcome the limitations of existing technologies and make the roads safer.
Therefore, the key contributions of this study are summarized as follows:

1. We developed a prediction model-based machine learning technology to predict the
possibility of rock-fall.

2. We developed a detection model-based computer vision algorithms to detect and
track rock-fall events.

3. We combined the detection and the prediction models in a hybrid reliable risk reduc-
tion model to increase the model reliability.

4. We developed a hybrid early warning system to reduce the rock-fall risks.

The rest of this study is organized as follows. The study area and problems are
presented in Section 2. The system platform and the methodology are introduced in
Section 3. The proposed system validation is presented in Section 4. Section 5 presents the
discussion and the conclusion of the study.

2. Study Area and Problems

The Aqbat-Shaar in the region of Asir in Saudi Arabia is one of the gigantic projects
established more than 25 years ago and includes 11 tunnels along 32 bridges over 65 m
high and about 351 drainage ferries. The Aqabat-Shaar linked Sarat Asir to its charge
and reduced the journey time for travelers. The biggest concern is disrupting the people
passing through the crowded trucks with bends and tunnels, especially on weekends and
vacations. The slogan obstacle is the only outlet for trucks that connects Tihama Asir with
its Saratha, and Aqabat is crowded with small cars in addition to trucks, and then many
tragic accidents happen and the area becomes littered with corpses [33]. The affected road
rock-fall is 0.6 km out of the 49.8 km road that is partly single lane from Muhaial to Abha
city. On this road, the average speed is 86.1 km/h, and the daily average vehicle rate is
6245. There is a peak hour mainly during the morning and a rush hour during the night,
the first at 07:00 for a limit of 320 cars and the second at 15:00, when the total number of
vehicles reaches 320 vehicles. The partial collapse phenomenon at the Aqabat Shaar of Asir
Region was studied by the Saudi Geological Survey to find out the causes of this collapse
and ensure there are no consequences for other collapses in the same area [34].
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The report issued by the working group assigned to study this phenomenon indicated
that one of the most important reasons for this collapse was a crack at the top of the
collapsed rock slope. This crack widened with time due to various factors, including
ground movements or the action of water pools inside fissures due to rainwater, as the
porosity in these rocks is high. In addition, the absence of rainwater drains in the concrete
barrier caused pressure inside the rock cracks, which caused a decrease in the strength
of cohesion between the blocks and thus led to loosening and collapse. In addition, the
various weathering factors, whether mechanical or chemical, that work on weathering the
rocks play an essential role in reducing the strength of the rock’s resistivity, making it weak,
fragmented, and vulnerable to collapse [35], as illustrated in Figure 1.

3. Data Used

Past rock-fall evidence is a crucial element in the estimation of possible events. In this
study, two of the sites most plagued by rock-fall injuries were identified and approved
as a study location. The rock-fall positions such as inventory reports and field surveys
were described by two approaches. Three sources were used to collect historical data on
rock-fall and their related weather information databases: Geological Hazards Research
Center, KSA Civil Defense, and General Authority of Meteorology and Environmental
Protection. From January 2015 to December 2018, a total of 75 rock-fall accidents were
registered, and date of occurrence, location, and weather data were stored for each. The
period was broken into 192 equivalent sampling intervals to incorporate a non-rock-fall
event into the data collection. Then, the value assigned to the survey period in which rocks
existed was one; otherwise, it was assigned as zero. The rock-fall inventory data were
separated into two subsets for research purposes—a training data set of 65% (134 samples
of 54 rock-falls) and a test data set of 35% (58 samples with 21 rock-falls). For the generation
of rock-fall models, the training and the testing data sets were used for model validation.
One dependent variable (rock-fall event) and three independent variables (rainfall rate,
temperature variation, and slope angle) were derived during the inventory data review. In
the study of rock-fall incidence, three contributing factors were considered based on the
available evidence and literature review [36,37]. These variables include weather variables
(rainfall intensity, temperature difference) and spatial variables (slope angle). The rainfall
rate is a major rock-fall initiating factor [38]. The study area consists of rubble layers,
boulders, and small rocks. The geological composition of mountains induces heavy rainfall
to shift debris layers, contributing to rock movement and dropping. The fluctuations
in temperature have an apparent effect on the rocks’ stability. Cyclical variations in
temperature allow rock surfaces to expand and compress, leading to deformation or rock
cracks [39]. The angle of the slope has an apparent effect on susceptibility to rock-fall. The
higher the angle of the slope is, the less stable the rocks are [40].

4. Methodology

This section presents an overview of the proposed hybrid early warning system
(HEWS) to reduce the rock-fall risk using computer vision and machine learning. The sys-
tem is composed of three sub-models: detection, prediction, and hybrid risk reduction mod-
els. The following subsections give details of the system implementation and validation.

4.1. Overall Methodology

The approach applied was completed in five steps (Figure 2). First, rock-fall incident
data, related traffic data, and weather information were collected and prepared for analysis
and variables selection phase. Then, the rock-fall risk was assessed based on the given data.
Next, the rock-fall prediction model was developed based on the impact of independent
variables (rock-fall influencing factors) on the dependent variable (occurrence of rock-
fall). Overall performance measures validated the model. The model was developed and
evaluated using SPSS V.22 software. After, the rock-fall detection model was developed



Appl. Sci. 2021, 11, 9506 5 of 21

and validated. Afterwards, the hybrid risk reduction module was developed. Finally, the
hybrid hazard warning system platform was implemented and validated.

Figure 2. Methodology flowchart.

4.2. Rock-Fall Risk Assessment

The rock-fall risk is characterized as the possibility of a rock-fall phenomenon occur-
ring in a particular space and time causing a specific degree of harm to road infrastructure,
vehicles, and pedestrians [41]. Vehicles are known to be the targeted priorities on the
highway in this analysis. The risk was calculated by integrating the likelihood that the
fallen rocks will hit the vehicle, the temporal–spatial probability, and the susceptibility. In
this paper, the likelihood of rocks falling is calculated based on the possibility that vehicles
are presenting a specific position and period affected by rocks falling [42]. The rock-fall
risk is determined utilizing a probability equation that combines the probability of the
occurrence, the temporal and the spatial probabilities, and the vulnerability. The value of
the risk probability is presented in Equation (1).

P(Risk) = fh × P(r)× P(S : T)×V(D : T) (1)

where P(Risk) is the risk probability of rock-fall, f h represents the rock-fall frequency, and it
is the likelihood of a rock-fall incident occurring during one hour. P(r) is the possibility
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that the fallen rocks will hit the vehicle on the road. V(D:T) is the vulnerability of the
vehicle regarding rock-fall incidents. It takes two values: 1 in the case of a rock hitting the
vehicle or 0 otherwise. P(S:T) is the temporal–spatial probability, which is the possibility
that vehicles are present in a specific position and time.

It is a probability that a vehicle occupying the length of the path is affected at the time
of effect (temporal–spatial probability). This is measured according to Equation (2) [43]:

p(S:T) =
NV
24
× Lv

1000
× 1

Vv
(2)

where Nv = is the average number of vehicles per day, Lv = is the average vehicle length in
meters, and Vv = is the average vehicle speed (km/hour).

4.3. Rock-Fall Prediction Model Development

The machine learning technique was used to develop a prediction model. For this
study, logistic regression was selected because it is helpful in estimating the occurrence or
the absence of a consequence dependent on the values of predictor variables. The benefit of
logistic regression is that the variables, or any combination of all forms, may be continuous
or discrete, and the data do not need a regular distribution [44]. A rock-fall event was used
in this analysis as a dependent variable (binary) describing the rock-fall event occurring
or not occurring with values between 0 and 1. The logistic regression method yields
coefficients for each independent variable based on data samples taken from a training
dataset of 134 samples (65% of rock-fall inventory). In a mathematical function, these
coefficients act as weights used in the decision-making algorithm to produce likelihood
and risk level of rock-fall incidence. The logistic regression function used to determine the
likelihood of rock-fall occurrence is expressed in the following Equation (3):

p(r) =
e(β0+β1x1+β2x2+···+βnxn)

1 + e(β0+β1x1+β2x2+···+βnxn)
(3)

where p(r) refers to rock-fall occurrence probability, β0 represents the intercept of model,
βi(i = 1, 2, . . . , n) refers to the model coefficients, and xi(i = 1, 2, . . . , n) represents the inde-
pendent variables. The constant β0 and the coefficients βi refer to compute and estimation
of maximum likelihood [45]. The computation was performed based on the values of the
independent variables and the condition of the dependent variable [46]. The model was
validated by using overall performance measures dependent on an uncertainty matrix.

4.4. Rock-Fall Detection Model Development

This section describes the methodology strategy used to develop and validate the
rock-fall detection model. The strategy applied was completed in three steps. First, the
field of view was calibrated. Next, the detection model was developed by computer vision
algorithms. Finally, the model was installed and validated. Figure 3 shows the general
view of the detection model development steps.

Field of View Calibration

The field of view calibration process was carried out through a linear transformation
from an image coordinate system to a real world coordinate. The linear transformation
projects any point on the image to a single location on the real world coordinate mountain
through the perspective view transformation [47]. In addition to the coordinate transfor-
mation process, the perspective distortion is also corrected at this stage [48]. This process
goes through four stages, as shown in Figure 4.
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Figure 3. Detection model development steps.

Figure 4. Field of view calibration process steps.

First, four calibration points, (x1, y1), (x2, y2), (x3, y3), and (x4, y4), were manually
placed at the mountain surface. Second, the distorted image was captured, and the calibra-
tion points were detected in an image. Third, the transformation matrix was calculated
by using the plane homographic method [41]. This method computes the transformation
matrix by projecting points from the image plane into four points, (v1, w1), (v2, w2), (v3,
w3), and (v4, w4) in world plane, which forms a rectangle plane as illustrated in Figure 5.
Finally, the transformation matrix was used to map all points from image coordinates to
real-world coordinates. The plane homograph was used to remove the projective distortion
from a perspective image, as seen in Figure 5a [47]. The homogeneous transformation
matrix was introduced to apply perspective rotation and scaling in the perspective image.
Figure 5b shows the image after correction.
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4.5. Rock-Fall Detection Process

The rock-fall detection process occurs in three stages, filtering the image frame, back-
ground subtraction, and performing frame manipulation, as in Figure 6. Firstly, the blurring
Gaussian filter was used to cancel out the noise from captured images. This noise was
caused by swing weeds and tiny drops of rain. Secondly, the adaptive Gaussian mixture
model was used to detect moving rocks in a sequence of a video frame that suffered from
variations in the background illumination due to time of day and weather conditions.

Figure 6. Rock-fall detection process.

The model values a particular pixel as a mixture of Gaussians and performs two
tasks: learning the background model and classifying pixels as background or foreground.
Equation (4) represents the background model.

P̂
(→

x
∣∣∣χT , BG

)
= ∑M

m=1 π̂mN
(
→
x ;
→̂
µ m, σ̂2

m I
)

(4)

where P̂
(→

x
∣∣∣χT , BG

)
is the background estimated,

→
x is value of a pixel at time t in grayscale

color space, χT is a training set, M is the number of the Gaussian components, πm is a

weight that describes how much of the data belong to the m component of the GMM,
→̂
µ m is

estimates of the means, σ̂2
m is estimates of the variances, and I is the identity matrix.
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The moving rocks were considered as foreground clusters of pixels. A Bayesian
decision was introduced to classify pixels as background (BG) or foreground (FG), which
is comparing a background estimated value of a particular pixel with the threshold; if it
is greater than the threshold, it is considered a background, otherwise, it is considered a
foreground [49]. To track a continuous change in the image of the scene, the model updates
the training data set at every reasonable period T and re-estimates the background model
value. After the foreground pixel cluster is classified and segmented from a background,
holes appear in the foreground due to imperfection introduced during segmentation. The
dilation process was used to fill in those holes, and it is one of the morphological image
processing tools which adds pixels to the boundaries of objects in an image.

4.6. Hybrid Risk Reduction Model

The proposed model combines the output of detection and prediction models to issue
an early warning. The model decreases the vulnerability of vehicles to risk by alerting
vehicles before approaching the threat zone at the time of the rock-fall incident. The rock-
fall risk reduction was assessed based on the possibility that vehicles will not reach the
hazard zone after receiving the early warning signal at the time of the incident [50]. In this
study, the risk reduction value was determined by a probability equation that combines the
probability of vehicle response, the system reliability, and the average number of vehicles.
The following Equation (5) indicates that:

P(Reduction) = Nv × R(h) × P(response) (5)

where P(Reduction) is the risk reduction probability, P(response) is the probability that a given
vehicle does not reach the affected road segment after receiving the warning signal, Nv
is the average number of vehicles, and R(h) is the hybrid model reliability. The overall
reliability of the two detection and prediction models connected in parallel is calculated
according to Equation (6) [51]:

R(h) = 1 − (1 − R(d)) × (1 − R(p)) (6)

R(d) is the reliability of the detection model, and R(p) is the reliability of the prediction
model. The P(response) can be calculated according to Equation (7):

P(response) = 1−
(

Total Stopping Distance
Sa f e Distance to Stop

)
(7)

The total stopping distance was measured by combining reaction time, brake contact
distance, and physical force distance. The safe distance to stop is the reaction interval that
passes until the brakes are applied. It was evaluated by multiplying the vehicle velocity by
the driver reaction time.

The driver reaction time is the reaction interval that passes until the brakes are applied.
It takes a random value between 0.4 and 2 s [52]. When the physical force distance travels
a distance after the brakes are engaged, it can be determined by multiplying vehicle speed
by brake reaction time.

4.7. Risk Reduction Algorithm

The rock-fall risk reduction algorithm was developed to perform the rock-fall risk
reduction process. It computes the rock-fall hazard, classifying it into three levels and gen-
erating an early warning action to reduce the risk of a critical situation. The following steps
show how the presented Algorithm 1 determines a rock-fall hazard level and manages it.
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Algorithm 1. To compute a rock-fall risk, classifying the risk level, and performing the rock-fall
risk reduction action

Step 1: Inputs
Read (video frames from camera)
Read (weather data from sensors)
Step 2: Detect the moving rocks P̂

(→
x
∣∣∣χT , BG

)
:

according to Equation (6)
Step 3: Predict the rock fall event p(x):

according to Equation (2)
Step 4: Compute the rock fall risk P(Risk)

according to Equation (3)
Step 5: Classify the hazard level:

Classifying the hazard level in to three levels
if (P(Risk) ≥ 1× 10−3)
then Unacceptable level
if (P(Risk) > 1× 10−6 and < 1× 10−3)
then Tolerable level
if (P(Risk) ≤ 1× 10−6)
then Acceptable level
Step 6: Perform the rock-fall risk reduction action

Generate light and sound alarms
in case of Unacceptable level (Red light+ sound)
in case of Tolerable level (Yellow light)
in case of Acceptable level (Green light)

Save (x1, x2, x3, p(x)) every 30 min
Step 7: Return to Step 1

4.8. Hybrid Early Warning System

The proposed hybrid early warning system (HEWS) was implemented with a platform
that combines hardware and software components.

4.8.1. Hardware Components

Figure 7 illustrates the proposed system block diagram, and it defines the relationships
of the hardware components and their features. It receives input through weather sensors
and cameras, and its output is displayed through an optical panel and the electric horn.

Figure 7. Hybrid early warning system block diagram.
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A minicomputer (Raspberry Pi v3) was used to perform device computations, which
appear in the central part of this graph. The minicomputer was fitted with USB ports,
digital ports, and analogue ports. This single-board machine enables sensors and other
devices to be connected. The left part of this diagram shows a temperature sensor and a
rain gage. The temperature sensor is used to measure surrounding air temperature and
generate a digital signal every two seconds (0.5 Hz sampling rate). The rain gauge is a
tipping-bucket rain scale used with a resolution of 0.1 mm per tip to measure instantaneous
rainfall. The one bucket tip produces one electrical signal (pulse).

There are four devices in the right part: the light warning screen, the relay module,
the electric horn, and the WIFI module. The light warning panel is a 24 × 24 cm frame with
an RGB LED matrix with high light strength. Suppose each color depends on the particular
degree of hazard: this panel shows the warning light alert in three different colors (green,
black, and red). The relay module consists of a photoelectric coupler with anti-interference
insulating capacity. It supports the Raspberry Pi by general purpose input/output (GPIO)
pins to drive the electric horn and the optical screen.

The bottom section of this graph displays the power system used during the day to
maintain electrical power. It consists of a solar panel, a battery pack, and an intelligent solar
charge controller. The solar panel transforms photo power into electrical energy. During
hours of darkness, the battery pack is a backup power source for the device. The intelligent
solar charge controller was used to supply the device and refresh the tank.

4.8.2. Software

Raspbian Stretch (GNU/Linux 9.1) was used as the operating system for a minicom-
puter module. This module utilizes the four cores of the ARM Processor to work in parallel.
The main program was implemented in Python (version 3.5) scripts. Furthermore, it was
compiled on-board with dedicated compilers. Python Multiprocessing Module was used
to improve system response and computation performance. The falling rocks detection
process was implemented by using an open computer vision module (open CV). The
statistical analysis was performed using SPSS software (version 22).

4.8.3. Platform Installation

The hybrid early warning system platform was installed in a vertical metal stand with
a height of 240 cm; a stand-alone solar-powered system carried main system case, rain
gauge, light alarm panel, cameras, and photovoltaic panel as shown in Figure 8.

Figure 8. Hybrid early warning system platform.
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4.9. System Validation

This section summarizes the validation metrics used in system validation. The pro-
posed system was validated using four performance measures: sensitivity, specificity,
accuracy, and reliability. The first measure is sensitivity, which reflects the ability of the
system to detect the rock correctly, calculated as [53]:

Sensitivity =
TP

TP + FN
× 100% (8)

The second measure is specificity. This reflects the ability of the system to confirm the
absence of a rock-fall event, which is defined as:

speci f icity =
TN

TN + FP
× 100% (9)

The third measure is accuracy. This reflects the accuracy of the system in detecting a
rock-fall event, which is defined as:

Accuracy =
(TP + TN)

(TP + FN + TN + FP)
× 100% (10)

The last measure is reliability, which reflects the degree of measure consistency when
repeating result N times under the same conditions, which is defined as:

Reliability =
1
N

N

∑
i=1

(Accuracy at Test(i) ) (11)

where true positive (TP) means all events were true detected, false negative (FN) means
some events occurred but were not detected, true negative (TN) means events were absent
and the system reports an absent event, and false-positive (FP) means the events were
absent but the system reports it as present.

5. Results and Discussion

This section presents the results along with a discussion of these results. The results
of the experiment demonstrate four things. First is the risk assessment. The second is
the rock-fall prediction model experimental results. Third is the rock-fall detection model
experimental results, and the last is the rock-fall risk reduction.

5.1. Risk Assessment

After data were picked up from the historical data of the rock-fall accidents and the
traffic flow dataset, we used a Python environment to simulate the risk of falling rocks.
The configurations and the setups that were used for simulation are shown in Table 1:

Table 1. Simulation setups.

Parameter Value

Average vehicle lengths 5.4 m
Average number of vehicles driving on the road every day (NV) 6245 vehicles

Average vehicle speed range (Vv) 70 to 90 Km/h
Vulnerability of the vehicle regarding rock-fall incidents V(D:T) 1

Rock-fall frequency (fh) 0.07 Per day

The rock-fall risk values, P(Risk) , were tested for three different vehicle speeds of
70 km/h, 80 km/h, and 90 km/h, the results ranging from (6360 × 10−5) to (6386 × 10−3),
as seen in Figure 9. The obtained results were compared with the safety-critical regulation
and management as low as reasonably practicable (ALARP) thresholds triangle to classify
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the risk into levels. ALARP criteria were used to define three levels of a rock-fall risk, and
Figure 10 shows the ALARP thresholds triangle [54].

Figure 9. Rock-fall risk probability.
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By comparing the rock-fall risk values with the three levels of the ALARP thresholds
triangle, we found that 86% took values more significant than (1 × 10−3) and thus were
within an unacceptable level. The remaining 14% of risk values fell less than (1 × 10−3)
and thus were spread between tolerable and acceptable levels.

5.2. Prediction Model Results

SPSS V.22 program was used to implement a prediction model to assess the rock-fall
occurrence–rock-fall influencing factors relationship. The parameters of the model and
their significant probabilities are shown in Table 2.

Table 2. Prediction model parameters.

Independent Variable Coefficient (β) Std. Error Wald Significant Probability

Slope-angle 0.306 0.132 5.419 0.020
Rainfall-rate 0.425 0.165 6.669 0.010

Temperature variation 0.915 0.421 4.712 0.030

Std. Error = standard error of coefficient, Wald = Wald statistics.
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From the data in Table 2, the standard error values (Std-Error) were less than 0.5,
which were deemed tiny, indicating how similar the forecasts were to the eventual results.
The likelihood of importance is another parameter that emerged in Table 2. This parameter
confirmed the independent causes that had a significant effect on a rock-fall. If the signif-
icant likelihood was less than 0.05, this meant that the independent variable in rock-fall
was statistically significant [21]. The findings revealed that slope angle, precipitation rate,
and temperature variation with large likelihood values in the range of 0.010 to 0.030 had a
statistical effect on the frequency of rock-fall. The three hypotheses were included in the
model (rainfall rate, slope angle, and temperature variation). Depending on three useful
predictor variables and their parameters, the prediction model was built. To implement the
prediction model, independent variable coefficient values in Table 2, β1 = 0.306, β2 = 0.425,
and β3 = 0.915, and the intercept of model, β0 = 37.859, were substituted in Equation (3).
The result is shown in Equation (12):

p(r) =
e0.306x1+0.425x2+0.915x3−37.859

1 + e0.306x1+0.425x2+0.915x3−37.859 (12)

where p(r) = probability of rock-fall occurrence, x1 = slope angle (degree) (range 20–60),
x2 = rainfall rate (mmh-1) (range 0–46), and x3 = temperature variation (co) (range 0–21).
Using the aforementioned prediction model coefficients, the likelihood of rock-fall events
was estimated with values ranging from (0.014) to (0.951).

5.3. Detection Model Results

This section illustrates the experimental results of the proposed detection model. First,
the eastern mountains of the Aqbat-Sha’ar were chosen as a test site to verify the model’s
ability to detect the falling rocks and to track rock movement. Then, the platform was
installed at a distance of twenty meters away from the mountain. Next, the test was carried
out during two time periods, morning and evening. A set of fifteen differently sized rocks
were used as test materials to evaluate the proposed model performance. Figure 11 presents
images of test rocks divided into five groups (A, B, C, D, E), each group containing three
rocks of similar sizes and a unique code.

Figure 11. Sample rocks for testing.

Column four of Tables 3 and 4 contain the disappearance frequency N, the number
of pixels in which the rock contour center disappeared from video frames until the fall
reached the ground.
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Table 3. System response in the morning (06:00 to 12:00).

Rock Code Rock Size
cm3 Detect Object Disappearance

Frequency N Traceability

A1 24.53 0 0 0.0000
A2 37.06 1 21 0.9475
A3 49.00 1 15 0.9625
B1 160.93 1 14 0.9650
B2 196.25 1 12 0.9700
B3 184.00 1 12 0.9700
C1 382.68 1 10 0.9750
C2 508.32 1 7 0.9825
C3 657.04 1 6 0.9850
D1 1052.97 1 5 0.9875
D2 1012.00 1 5 0.9875
D3 1235.05 1 4 0.9900
E1 1880.49 1 3 0.9925
E2 2297.01 1 3 0.9925
E3 3041.87 1 2 0.9950

Rock code = describes a unique rock, 1 = rock is detected, 0 = no rock detected.

Table 4. System response in the evening (13:00 to 18:30).

Rock Code Rock Size
cm3 Detect Object Disappearance

Frequency N Traceability

A1 24.53 0 – 0.0000
A2 37.06 0 – 0.0000
A3 49.00 0 – 0.0000
B1 160.93 1 22 0.9450
B2 196.25 1 20 0.9500
B3 184.00 1 20 0.9500
C1 382.68 1 16 0.9600
C2 508.32 1 14 0.9650
C3 657.04 1 13 0.9675
D1 1052.97 1 11 0.9725
D2 1012.00 1 11 0.9725
D3 1235.05 1 11 0.9725
E1 1880.49 1 9 0.9775
E2 2297.01 1 7 0.9825
E3 3041.87 1 6 0.9850

1 = rock detected, 0 = rock undetected, – = unknown values.

Column four of Tables 3 and 5 contains the traceability values, assessing the model’s
ability to track objects. It depends on disappearance frequency, as described in Equation (13).

Traceability = 1− Disappearance Frequncy
Field of view height in pixels

(13)

Table 5. Simulation setups.

Parameter Value

Driver reaction time 0.4 to 2 s
Brake Engagement time 2 s

Average acceleration 10 m/s2

Average vehicle lengths 5.4 m
Average number of vehicles driving on the road every day (NV) 6245 vehicles
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During the testing process, fifteen differently sized rocks were used. The rocks were
dropped separately from a height of 22 m, and the results of the system’s response are
recorded in Table 5.

The system’s ability to detect objects was evaluated by two values, zero or one—zero
in the case where no event occurs and one in the case of an event occurring in the field
of view. Column three of Table 5 contains the results of the objects’ detection. The result
shows that the system was able to detect 93.3% of the objects in the morning and 80% in
the evening.

When traceability had a value between zero and one, and field of view height rep-
resented the image frame height measured in pixels, the results showed that the average
traceability in the morning at high light conditions was 0.91, while its average values
during the low light conditions were 0.77. When comparing the results in Table 3 with their
counterparts in Table 4, we observed that tracking rocks during the morning was better
than during the evening. It was confirmed that the system’s ability to detect and track
rocks during the high light is better than it is during low light conditions.

5.4. Hybrid Risk Reduction Model Results

After data were collected from the historical data of the rock-fall accidents and the
traffic flow data set, we used a Python environment to simulate the rock-fall risk reduction.
The hybrid model obtained it and compared the result with the obtained reduction using
the detection and the prediction models separately. The configurations and the setups used
for simulation are shown in Table 5.

The simulation results in Figure 12 show the effect of using the three models, monitor-
ing, prediction, and hybrid models, separately to reduce the risk. We found that the risk
probability varied from 4.26 × 10−8 to 1.44 × 10−7 with an average value of 8.62 × 10−8.
When using the prediction model only, the result was represented by the blue curve. Then,
when using the monitoring model only, the result was represented by the green curve. We
found that the risk probability varied from 2.35 × 10−8 to 2.01 × 10−7 with an average
value of 1.27 × 10−7. Finally, when using a hybrid model only, the result was represented
by the red curve. We found that the risk probability varied from 3.38 × 10−9 to 1.88 × 10−8

with an average value of 1.13 × 10−8.

Figure 12. Rock-fall risk probability after being reduced by the system models.

Table 6 summarizes the highest and the lowest risk probabilities after reduction for
the three models in addition to the average risk for each model.

Table 6. Summary of risk probability after reduction.

Monitoring Prediction Hybrid

Lowest 4.26 × 10−8 2.35 × 10−8 3.38 × 10−9

Highest 1.44 × 10−7 2.01 × 10−7 1.88 × 10−8

Average 8.62 × 10−8 1.27 × 10−7 1.13 × 10−8



Appl. Sci. 2021, 11, 9506 17 of 21

By comparing the risk curves of the three models, we found that, in the case of the
monitoring model, the risk probability was low between 06:00 and 18:00 and high before
and after this period due to the camera’s response to sunlight and the device’s lighting
at night. In a prediction model, the risk probability was high between 0:700 and 21:00
and low before and after this period due to the traffic density on the road during this
period. In a hybrid model, the risk probability curve was semi-linear due to the increase in
model reliability, which was gained from a parallel combination of the detection and the
prediction models’ reliabilities, as mentioned in Equation (6).

In another way, the model acquired the linearity from the result of mutual compensa-
tion by the detection and the adjustment models for each other’s shortcomings. For the
monitoring model, it reported an absent event as present or reported the occurrence event
as absent. The prediction model corrected this situation by confirming occurrence or no
occurrence of the event at this moment. In the same way, the monitoring model corrected
the confusing cases of a prediction model by confirming occurrence or no occurrence of the
event at this moment.

By comparing the measured risk probability after reduction, as in Table 6, with the
triangle of ALARP thresholds in Figure 12, we found that the risk values were situated in
an area that was usually acceptable.

5.5. Model Validation

This section summarizes the findings of system models validation. The proposed
system was validated using four performance measures: sensitivity, specificity, accuracy,
and reliability.

First, the prediction model’s overall prediction performance measures based on a
confusion matrix (see Table 7) were evaluated for training and validation data sets. The
confusion matrix was created for both training and testing. The confusion matrix was used
to calculate sensitivity, specificity, and accuracy.

Table 7. Confusion matrix.

Data Type
Observed

Rock-Fall Even

Predicted
Rock-Fall Even Percentage C

Not occur 0 Occurs 1

Training Data
Not occur 0 TN = 69 FP = 11 86.3%

Occurs 1 FN = 16 TP = 38 70.4%
Overall Percentage 79.9%

Validation data
Not occur 0 TN = 32 FP = 5 86.5%

Occurs 1 FN = 6 TP = 15 71.4%
Overall Percentage 81.0%

In the above table, true positive (TP) means all events were true detected, false negative
(FN) means some events occurred but were not detected, true negative (TN) means events
were absent and the system reported an absent event, and false positive (FP) means an
event was absent but the system reported it as present.

The result shows that the average sensitivities of training and validation data were
70.4% and 71.4%, respectively. That means, even for the lowest sensitivity levels, only 29.6%
of the rock-fall events were not detected correctly. The average specificities were about
86.3% and 86.5%, respectively, which means the system had a high ability to disregard fake
events. The accuracies were 79.9% and 81.0% for the training and the validation data.

The reliability was 0.79. Next, the monitoring model performance measures were
obtained by testing the system 180 times with a rock with the of size 78 cm3. The tests
were divided into nine periods, and 20 tests were assigned for each period. In each period,
sensitivity, specificity, and accuracy were calculated. Table 8 illustrates the results for all
test cases.
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Table 8. System performance measures (sensitivity, specificity, accuracy).

Test Period TP FN FP N Sensitivity % Specificity % Accuracy %

1 19 1 3 17 95 85 90
2 18 2 1 19 90 95 92.5
3 17 3 3 17 85 85 85
4 19 1 1 19 95 95 95
5 18 2 0 20 90 100 95
6 16 4 1 19 90 95 87.5
7 17 3 0 20 80 100 92.5
8 18 2 3 17 90 85 87.5
9 18 2 2 18 90 90 90

Table 8 illustrates that the average sensitivity of the proposed method was about
88.8%, which means that, even for the lowest levels of sensitivity, only 1.2% of the rock-fall
events were not detected correctly. This indicates that the system had a high sensitivity in
detecting and tracking rocks. The average specificity of the proposed method was about
92.2%, which means the system had a high ability to distinguish between real and fake
events. The average accuracy was 90.6. In this work, reliability was calculated according
to accuracy values from Table 8, and, by using Equation (11), we obtained the system
reliability equal to 0.9. That means the system had high reliability in detecting and tracking
rocks and indicates that the system was valid.

Finally, the hybrid model performance measures were obtained based on its sub-
models’ effects (prediction model and monitoring model). The result shows that the
average sensitivity was 96.7%. That means, even for the lowest sensitivity levels, only
3.3% of the rock-fall events were not detected correctly. The proposed method’s average
specificity was 99.1%, which means the system had a high ability to disregard fake events.
The accuracy of 97.9% and a reliability of 0.98 indicate the goodness and the stability of the
hybrid model. In another way, the model indicates high consistency.

By using the proposed hybrid model, the average risk probability was reduced from
6373 × 10−4 to 1.13 × 10−8. When comparing the hybrid model results to the monitoring
and the prediction models, it must be pointed out that the proposed model outperformed
the existing models. In addition, by comparing overall performance measures models,
we found that the hybrid system outperformed detection and prediction models in all
performance metrics, as in Table 9.

Table 9. Overall models performance measures.

Monitoring Prediction Hybrid

Sensitivity 71.4% 88.8% 96.7%
Specificity 86.3% 92.2% 99.1%
Accuracy 81.0% 90.6 97.9%
Reliability 0.79 0.9 0.98

The proposed hybrid model solved the locality problem of the prediction model
through the fusion of real time weather data and detection of rock-fall events. As a result,
the hybrid model can work in various locations of rock-fall. Therefore, this model can be
used in reducing the rock-fall risk globally for any site. It can also be used as a road site
unit in intelligent transportation systems in urban areas.

6. Conclusions and Future Work

This study aimed to develop an early warning system in the Kingdom of Saudi
Arabia to minimize rock-fall risk along mountain roads. The HEWS system can predict
the occurrence of a rock-fall and assess its risk probability, classifying the risk into three
levels (unacceptable, tolerable, and acceptable) and delivering a proportional warning
action through generating a light alarm signal (red, yellow, and green). This system was
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developed to overcome the limitations of our previous study (32) by increasing the system
prediction reliability by combining detection and prediction models in a hybrid reliable
early warning system.

In order to determine the system’s performance, this study adopted parameters,
namely overall prediction performance measures, based on a confusion matrix. The results
show that the overall system accuracy was 97.9%, and the hybrid model reliability was
0.98, while the previous study’s reliability was 0.90. In addition, a system can reduce the
risk probability from 6.39 × 10−3 to 1.13 × 10−8. The result indicates that this system is
accurate, reliable, and robust, confirming the utility of the proposed system for reducing
rock-fall risk.

Some limitations still exist in this study. One limitation in the detection model is that
it is sensitive to light intensity, causing it to fail to detect and track falling rocks smaller
than 49 cm3 under low light conditions. Therefore, further work is required to enhance
the detection model by increasing the night lighting intensity on the site and performing
an effective frame manipulation before the background subtraction. Furthermore, the
proposed method is imperfect in determining the exact moment of the rock-falls, thus
future efforts should consider the short-term prediction of rock-fall events. Further work is
required to enhance the predictive model by increasing the number of inventory datasets
in addition to replacing the current prediction model with a new higher accuracy machine
learning model.
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