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Abstract: The task of logo detection is desirable and important for various fields. However, it is
challenging and difficult to identify logos in complex scenarios as a logo can appear in different styles
and platforms. Logo images include diverse contexts, sizes, projective transformation, resolution,
illumination and fonts, which make it more difficult to detect a logo. To address these issues,
we presented a deep learning-based algorithm for logo detection called LogoNet. It includes an
hourglass like top-down bottom-up feature extraction network, a spatial attention module and an
anchorfree detection head similar to CenterNet. In order to improve performance, in this paper, an
extended version of LogoNet is proposed, called—Dual-Attention LogoNet, that exploits different
attention mechanisms more efficiently. The incorporated channel-wise and spatial attention modules
refine and generate robust and balanced feature maps to predict visual and semantic information
more accurately. In addition, we propose a lightweight architecture for both LogoNet and Dual-
Attention LogoNet for practical applications. The proposed lightweight architecture significantly
reduces the number of network parameters and improves the inference time to address the real-time
performance while maintaining accuracy. Furthermore, to address the domain shift problem in
practical applications, we also propose an adversarial-learning-based domain adaptation approach,
which is easily adaptable to any anchorfree detectors. Our attention-based method shows a 1.8%
improvement in accuracy compared to the state-of-the-art detection network on the FlickrLogos-
32 dataset. Our proposed domain adaptation approach significantly improves performance by
1.3% mAP compared to direct transfer on the target domain without increasing any labeling cost and
network parameters.

Keywords: deep learning; anchorfree; HourglassNet; attention mechanism; lightweight CNNs;
CenterNet

1. Introduction

Logo detection has now become a demanding task as it is applicable in many ap-
plications such as brand promotion, social media monitoring, intelligent transportation,
auto-driving, illegal/fraud logo detection and market research. Logo detection is also
very useful for analyzing and tracking advertisements on different platforms. However,
detection of logos in real-world images is a difficult task because there are countless brands
in the world and logos of each brand may have diverse context, projective transformation,
resolution and illumination. Logos may have unknown fonts, different sizes and colors
on diverse platforms. In real scenarios the logo appears as a small object entity compared
to the resolution of the images in which it presents. Moreover, inter-class similarity and
intra-class difference in the logo images make the logo detection task even more difficult [1].
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Since the evaluation of convolution neural networks, deep learning-based detectors
have become the leading framework for object detection [2–4]. Several object detection
methods have been proposed in the last decade, from two-stage region proposal-based
Faster R-CNN [5] to anchor-based methods such as YOLO [6] and SSD [7]. Since then,
object detection methods based on deep learning have been used in logo detection.

István et al. [1] trained a Faster R-CNN model [5] to classify logo and non-logo objects
in a class-agnostic manner, they trained a separate network [8] to retrieve logo images.
Su et al. [9,10] proposed to use data augmentation to create synthesized logo images
for model learning. Su et al. [11] presented the model self-learning principle using logo
images collected on the web. They trained a model iteratively and identified the most
compatible logo images from a noisy dataset. These selected images are then used to learn
the model. In [12], the authors presented model self-co-learning method with the last
method. They trained two different detectors [5,6] to identify compatible training logo
images from the noisy dataset. These identified training images have been fed as an input
in a cross-model manner. Jain et al. [13] proposed a weakly supervised logo detection
algorithm by implementing dual-attention based mechanism with the DRN network to
recognition logo without using bounding box annotated training data. Although training
images are synthetically or automatically generated, the results do not show satisfactory
performance on real images.

Fine-tuning of these detectors usually requires tuning of various hyperparameters
like size, number and aspect ratio of densely placed anchor boxes. These methods require
careful design for RoIs, sizes and number of anchor-boxes. Their experimental studies
show that the accuracy of two-stage detectors such as the Faster R-CNN is better than that
of one-stage anchor-based detectors such as SSD, but expensive in terms of resources and
detection speed. On the other hand, one-stage detectors have shown fast inference time but
the accuracy is not completive in some cases. In most real applications, logo detection tasks
operate at a low spec. Devices such as mobile phones or IP cameras that require algorithms
to be both lightweight and have high accuracy. For a better trade-off between accuracy and
computational speed, here, we present an attention-based feature extraction network with
an anchor-free detector [14], called Dual-Attention LogoNet. This paper is an extension
version of our ICCE-2021 conference paper [15]. Here, we add a channel-wise attention
module together with spatial attention module to generate more balanced feature maps.
Our goal is to focus on improving accuracy with attention mechanisms and to build a
lightweight model which is more feasible to deploy on embedded edge computing devices.
Here, we also present a novel adversarial domain adaptation-based method for practical
logo detection.

Recently, various anchor-free detection methods have been designed by researchers for
detection task. These anchor-free detection methods are capable of achieving better perfor-
mance than the abovementioned detection methods. These methods overcome the problem
of class-imbalance of RoIs proposals and the critical anchor-box design choice by locating
objects in terms of keypoints. Law et al. [16] proposed CornerNet for detecting objects as
a pair of corners of a bounding box. The method was later improved by Duan et al. [17],
in which authors proposed to detect objects as center, top-left and bottom-right points.
ExtremeNet is presented by Zhou et al. [18]. ExtremeNet detects objects by identifying a
single center point and four extreme points in different directions. Zhou et al. [14] also
proposed a method to detect object by its center point, they therefore named its algorithm
CenterNet.

In recent years, attention architecture has become popular in deep learning tasks,
which is also used by many new proposed object detection algorithms. Such methods have
proved to be useful for refining and emphasizing informative features. Wang et al. [19]
proposed a method to enhance the spatial features using the mask module. This module
is employed with a trunk branch consisting of bottom-up and top-down feedforward
structure. Hu et al. [8] introduced SENet module for calculating channel-wise weights of a
convolutional layer to capture channel-wise responses. Wang et al. [20] proposed ECANet
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block to model channel-wise features more effectively and efficiently. Chen et al. [21]
proposed an attention mechanism network to classify and localize liver lesions on CT
images. Woo et al. [22] proposed to use channel and spatial attention blocks within the
convolutional block. Zhu et al. [23] proposed a network for learning spatial information
using the attention mechanism. They added the calculated attention weights to the output
of the classification layer.

Normally, training of deep learning-based models follows a supervised learning
scheme and relies on large annotated training datasets. A deep learning model suffers
performance degradation due to domain shift (source-to-target domain) during inference
time [24,25]. In practice, such performance degradation limits the scalability and appli-
cability of deep learning-based models. On the other hand, fine-tuning a model on new
domain might face the problem of lack of training data because object-level annotation is
basically a time-consuming and labor-intensive task. Training a well-generalized model
which is able to be applied to different domains is a hot research topic today. As a result,
recently, several domain adaptation-based methods have been proposed to learn model
from one domain and generalize well to another domain [24–27].

Inspired by the existing adversarial learning-based domain adaptation method [25,26]
which has been developed primarily for segmentation applications, in this work, we
present a domain adaptation method for logo detection using adversarial learning to
mitigate errors caused by domain shift. We have used annotated logo images (source-
domain) and unlabeled logo images (target-domain) for training to bring closer these
source and target domains. The added discriminator-based network can be learned into an
end-to-end manner like a normal detector. Since anchor-free detectors train the network to
learn objects in terms of some keypoints, we propose to use mid-level output feature maps
instead of class-wise heatmaps to align the distribution of target and source domains. Our
adversarial learning approach is motivated by the fact that the use of mid-level outputs
benefits from robust information about the domain while retaining object-level information.
This method can be easily adapted to other anchor-free detectors.

2. Proposed Network

Our architecture includes a feature extractor backbone, spatial and channel atten-
tion modules and a detection head. Inspired by HourglassNet [18] we use a top-down
bottom-up network. However, different from conventional network, we aggregate both
convolutional layer output feature maps within each residual block. A skip layer con-
nection is added with this output and provided as input for the next convolution block.
In our proposed method the final feature maps is generated by combining the outputs
obtained by two stacked hourglass networks. To precisely emphasize the attributes of
target objects in the generated feature maps, we employ a channel-wise attention module
along with the spatial attention module after the feature extractor network. What makes
our architecture better in detecting logos than conventional detectors is the newly added
two attention modules prior to the detection head. The two branches using channel and
spatial attention modules, respectively, produce category-wise keypoint heatmaps of the
input images. Such feature maps are generated by their respective attention modules to
emphasize the network capacity of learning longer-range dependencies and help to know
what and where can be found in the image. For accurate detection of target logos in feature
maps, we perform matrix element-wise addition to these two category-wise feature maps.
The aggregated final feature maps is given as input to detection head. The detection head
is similar to CenterNet. The overall architecture of LogoNet is shown in Figure 1.

The detail of architecture is described as follows. Section 2.1 provides detail about
feature extractor network. The spatial attention module and channel-wise attention module
are explained in Sections 2.2 and 2.3, respectively. Detection head is described in Section 2.4.
Lightweight-CNNs models are reported in Section 2.5. The Domain-Adaptation-based
logo detection method is described in Section 2.6.
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Figure 1. Overall network architecture of Dual-Attention LogoNet.

2.1. Feature Extractor

Hourglass network was introduced for the human pose estimation task by
Newell et al. [28]. The network consists of bottom-up and top-down structured modules,
where input channels are expanded and dimensions of the feature maps are down-sampled
by a series of convolutional, stride and max-pooling operations. Subsequently, upsampling
operations are performed to produce symmetric feature map blocks in hourglass style. Skip
connections are added during upsampling to prevent the loss of information. Hourglass
network was used in CornerNet [16] for object detection. After that, the same framework
was used in CenterNet [14]. Our hourglass-like feature extractor network employs the
same arrangement of convolution blocks as [16].

In the feature extractor network, first, input feature maps (3 × 128 × 128) are passed
through a convolutional block which reduces the input dimension by half by using a
7 × 7 convolutional operations and a stride of size 2 with 128 channels. After that the
feature maps are fed into a residual block with 3 × 3 convolutional operations and a
stride of size 2. It produces a feature maps with 256 channels and spatial dimension of
128 × 128. Subsequently, feature maps are fed into stacked hourglass modules to produce
feature maps with global spatial and semantic information. Hourglass module consists
of bottom-up and top-down design with residual learning blocks. There are five stages
in downsampling and upsampling operations. The processing modules at each stage,
including the skip connection modules (there are skip connections between symmetric
blocks of a hourglass module, referring to Figure 2), consists of two residual blocks. Each
residual block includes two convolutional layers and one skip connection layer. The spatial
dimension of the feature map is reduced by a stride of size 2 which is employed for the
first convolutional operation in the residual block. The rest of the convolution operations
(including the second residual block) use a stride of size 1 and keep the spatial dimension
unchanged. The kernel size of 3 × 3 is used in every convolutional operation. The skip
connection layer in the residual blocks uses linear transformation (1 × 1 convolution) and
matches the spatial and channel dimension of the input feature maps with the output of
the convolution layer. The spatial resolution of feature maps is reduced by 5 times and the
number of channels increases as [256, 384, 384, 384, 512] along the way. Upsampling of
feature maps is performed using the nearest-neighbor algorithm, followed by two residual
blocks at each stage. The final output feature map has 256 channels and a 128 × 128 spatial
dimension. The detailed structure of the hourglass module is described in Table 1.
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Figure 2. Illustration of proposed aggregation of various layers in a convolution block.

Table 1. The detailed operation and parameters of each layer in an hourglass module.

Layer Name Output Dimension

Operation,

Layer Name Output Dimension

Operation,
Kernel Size, Kernel Size,

Output Channels, Output Channels,
Stride Stride

Conv1_1 64 × 64 Conv, 3 × 3, 256, 2 Conv10_2 128 × 128 Conv, 3 × 3, 256, 1
Conv1_2 64 × 64 Conv, 3 × 3, 256, 1 Conv10_1 128 × 128 Conv, 3 × 3, 256, 1

upsampling
Conv2_1 32 × 32 Conv, 3 × 3, 384, 2 Conv9_2 64 × 64 Conv, 3 × 3, 384, 1
Conv2_2 32 × 32 Conv, 3 × 3, 384, 1 Conv9_1 64 × 64 Conv, 3 × 3, 384, 1

upsampling
Conv3_1 16 × 16 Conv, 3 × 3, 384, 2 Conv8_2 32 × 32 Conv, 3 × 3, 384, 1
Conv3_2 16 × 16 Conv, 3 × 3, 384, 1 Conv8_1 32 × 32 Conv, 3 × 3, 384, 1

upsampling
Conv4_1 8 × 8 Conv, 3 × 3, 384, 2 Conv7_2 16 × 16 Conv, 3 × 3, 384, 1
Conv4_2 8 × 8 Conv, 3 × 3, 384, 1 Conv7_1 16 × 16 Conv, 3 × 3, 384, 1

upsampling
Conv5_1 4 × 4 Conv, 3 × 3, 512, 2 Conv6_2 8 × 8 Conv, 3 × 3, 512, 1
Conv5_2 4 × 4 Conv, 3 × 3, 512, 1 Conv6_1 8 × 8 Conv, 3 × 3, 512, 1

upsampling

Based on the original hourglass architecture, our proposed network densely aggregates
convolutional layers into each residual block at different scales. Each residual block has two
convolutional layers and a skip connection layer. Residual learning uses a skip connection
to add with the output of the second convolutional layer. We propose to aggregate outputs
of both convolutional layers with skip connection within each convolutional block inspired
by [29]. In each residual block, both convolutional operations and the skip connection layer
generate feature maps of the same spatial and channel dimensions so that these output
feature maps can be directly added without increasing network overhead.

X = Xs + X1 + X2 (1)

where the input feature map passes through convolutional operations, X1 and X2 are
the output of the two convolutional operations. Xs denotes output feature maps of the
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skip connection layer. Figure 2 illustrates the residual block structures of the hourglass
network [28] and our proposed approach.

In order to project important information, we added the output feature maps of
both stacked hourglass modules. This final output is provided to the attached attention
modules. This avoids the loss of information and detail during the downsampling and
upsampling operation of feature maps. Our experiments show that our approach generates
a robust feature map without raising any computation cost. Figure 3 illustrates the overall
framework of CenterNet, LogoNet and Dual-Attention LogoNet.

Figure 3. (Left) CenterNet framework. (Middle) LogoNet with spatial attention module and added
final output feature maps. (Right) Dual-Attention LogoNet.

2.2. Spatial Attention Module

We produce spatial attention weights using the inter-spatial relationships of channels
to obtain rich and global spatial information that helps to create a robust global feature
map. Figure 4 depicts the overview of our proposed spatial attention module. A fea-
ture map A ∈ RC×H×W is provided as an input to the spatial attention module where
C denotes channel size and H×W are height and width of the feature map, which are
256× 128× 128 in this paper. This input A is then fed into a 1× 1 linear transformation
layer and a normalized feature map Ssigmoid is created for all channels using the sigmoid
activation function.

S
′
ij =

1
1 + exp(−Sij)

(2)

where Sij is the scalar value at ith and jth position and S
′
ij denotes corresponding activated

scalar value at ith and jth pixel position. The output of this operation is a sigmoid activated
map, i.e., Ssigmoid ∈ RC×H×W.

Additionally, the input A ∈ RC×H×W is fed into a convolutional block, which generates
a feature map (FCONV3). This convolutional block consists of three convolutional layers
with 1× 1, 3× 3, 1× 1 kernel size, respectively. To keep channel-wise details, the number of
channels (C) for each convolutional layer remains unchanged which is 256. ReLU activation
is followed by the first two convolutional operations while batch normalization has been
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performed for all the convolutional layers. Softmax normalization strategy is applied
across the channels over the output feature space of the convolutional block (FCONV3).
During softmax normalization, all positional scalar values in the same pixel-position across
all feature channels are considered. New scalar value is synthesized for each pixel across
the channels using the value of other pixels at the same index. In Equation (3), if Pi,j,k is a
scalar value at ith and jth pixel position in kth channel, a normalized scalar value P

′
i,j,k can

be obtained as:

P
′
i,j,k =

exp(Pi,j,k)

∑C
k=1 exp(Pi,j,k)

(3)

where C denotes the number of channels in feature map FCONV3. A softmax normal-
ized feature maps Pso f tmax ∈ RC×H×W has been produced using these normalized scalar
values (P

′
i,j,k).

We perform element-wise product of both generated normalized feature map,
i.e., Ssigmoid and Pso f tmax. The input feature map (A) is added as a skip connection to
this product to obtain final attention-weighted feature map.

Aattention = A + (Ssigmoid � Pso f tmax) (4)

where � is the element-wise product.
As we mentioned in our previous conference paper [15], our convolutional layers

block follows the module structure proposed in [23], but our method is totally different
from their approach. For multi-label image classification, they employed a regularization
module to generate attention weights. These attention weights were provided to the
classification layer of the feature extractor network which was ResNet [30]. Whereas, we
generate a weighted feature map and perform an element-wise addition with the input to
obtain a robust representation of input image. Our proposed technique uses both sigmoid
and softmax functions as activation to learn important spatial weights.

Figure 4. Illustration of the proposed spatial-attention module.

2.3. Channel-Wise Attention Module

To capture channel-wise attention weights, Wang et al. [20] introduced ECANet block.
To achieve channel-wise dependencies, global-average pooling (GAP) is performed on
the input feature maps. Subsequently a 1-D convolutional operation is employed to learn
cross-channel interaction. A sigmoid activation function operates at this layer to learn
channel-wise attention weights. They proposed to use an adaptive kernel size to capture
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local cross-channel interactions by considering a channel and its k neighbors (coverage of
interaction). In their method the kernel size k is proportional to the number of channels.
Channel-wise response is emphasized by multiplying the attention weights with the input
feature maps. This weight-enhanced feature maps is added to the input feature map as the
final output.

In our proposed method, ECANet [20] module with a kernel size of 3 is used. Un-
like the proposed approach, we directly use the attention-based feature maps to pro-
duce category-wise heatmaps without adding the input feature maps as skip connection.
Figure 5 shows the channel attention module.

Figure 5. An overview of channel-wise attention module.

2.4. Detection Head—CenterNet

CenterNet is an anchor-free detector proposed in [14]. CenterNet identifies objects as
a point at their bounding box center. During training, CenterNet converts ground truth
RoIs into heatmaps. For the training image a keypoint map K(x,y,c) is generated in which
if the coordinates (x, y) belong to the center of an object then it will be activated and the
rest positions will be set to zero. The keypoint map is then converted into a corresponding
set of heatmaps. These heatmaps are used to train the detector with a focal loss function
to classify into corresponding class (Lk) [31]. CenterNet also consists of an offset head for
object location and a size head to regress the size of object to generate its RoIs. The final
detection loss function is given as:

Ldet = Lk + λsizeLs + λo f f Lo f f (5)

where Ls and Lo f f are L1 loss functions and λsize and λo f f are loss weights.
L1 loss or L1 regularization is used to calculate the error, where error is the difference

between the ground truth bounding box and the predicted bounding box coordinates.
During detection, class-wise heatmaps are generated corresponding to separate categories.
Then some peak points are found out in the generated class-wise heatmaps. In the normal
setting, 100 peak points are considered for detection within each category. A keypoint
estimator γ̂ is used to predict all center points. A set of n detected center point P̂c for
all c classes is estimated as P̂ = {(x̂i, ŷi)}n

i=1 where (xi, yi) is the integer coordinate for a
keypoint location. Detection confidence score is measured using the keypoint values Ŷxi,yi,c.
A local offset is also predicted for center point location and to regress object size. For the
learned model, evaluation metric in terms of mean average precision (mAP) is determined
for all classes when the Intersection over Union (IoU) with the ground truth bounding
box exceeds 0.5. The precision value for any given category is the percentage of correct
predictions. i.e.,

Precision = TruePositive/(TruePositive + FalsePositive) (6)



Appl. Sci. 2021, 11, 9622 9 of 20

Whereas recall measures the proportion of true positive that can be determined as:

Recall = TruePositive/(TruePositive + FalseNegative) (7)

In general, the average precision (AR) for any given category is the area under the
precision-recall curve (AUC—area under the curve). The mean average precision (mAP) is
the average value of the AR for all categories of a dataset.

In this study, we present an architecture containing spatial and channel attention
modules as an extension of the our previous method. A conventional way of implementing
the channel attention module is that attention blocks are added to each convolutional
block during feature extraction [8,20]. While some methods proposed to use both spatial
and channel attention mechanisms within each convolutional block [22]. In our proposed
method we employ both attention modules only once in parallel order just before the gen-
eration of the class-wise heatmaps, which are used to make dense predictions. The spatial
attention and channel attention modules generate two sets of class-wise heatmaps. This
arrangement captures strong informative spatial features along with high-level semantics
features. Element-wise addition of class-wise feature maps, generated by both attention
modules, is performed for better fusion of class-wise information.

2.5. Lightweight Model

To build a compact network and improve the detection speed for practical applications,
we present a Lightweight architecture. We embed factorization of standard convolutions
inspired by MobileNetv2 [32]. In our lightweight module, a convolutional operation com-
prises a combination of pointwise and depthwise separable convolutional layer. Pointwise
is a standard 1 × 1 convolution operation that performs linear transformation of the input
and changes the channel dimensionality. Depthwise convolution applies a single filter
per each channel to filter the features. Our network uses Batchnorm and ReLU activation
operation after the depthwise convolutional layer. The same pattern of layers is followed
for skip connection layers. Spatial dimension is handled by the max-pooling operation.
This design is used with the LogoNet and Dual-Attention LogoNet architecture. We convert
each standard residual convolution block of our architecture into a depthwise convolution
block that follows the approach of MobileNetv2 block. We employ the approach only for
hourglass module layers, feature transformations of other layers including the attention
modules is performed using a standard convolution operation. This approach reduces
network complexity and computation compared to standard convolution. Depthwise
computation can be expressed as:

Ôl,m,c = ∑
i,j

K̂i,j,c · Fl+i−1,m+j−1,c (8)

where F and Ô are input and output feature maps with C number of channels. K̂ is a
depthwise convolution kernel of size DK × DK × DC where DK is the size of kernel, which
is 3 in our case. For a feature map of DF height and width, the total computation cost of
depthwise and pointwise convolution operation can be computed as:

Cin · Cout · DF · DF + DK · DK · Cout · DF · DF (9)

exploits where Cin and Cout are the input and output channels.
To compare the proposed architecture, we also demonstrate lightweight models,

exploring the CP-Decomposition (CPD) [33]. The CPD method is the typical method for
reducing complexity, which factorizes a tensor into a sum of outer products of vectors.
For a given tensor of 3-dimensional space, the CP decomposition can be explained as:

T ≈
R

∑
r=1

lr ◦mr ◦ nr (10)
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where R > 0, and lr, mr, nr are vectors of relevant dimension, and ‘◦’ denotes the outer
product of two tensors, i.e.,

ti,j,k ≈
R

∑
r=1

lri ◦mrj ◦ nrk (11)

In case of rank one assumption of CPD (i.e., R = 1), the 4D kernel Ĉ ∈ RX×Y×Z×S will
be separated into cross-products of four 1D filters as follows:

Ĉ = α× β× γ× η (12)

where α, β, γ are 1D convolution vectors convolving across the dimensions and the fourth
corresponds to channels.

Here, we converted a standard convolution to two 1D convolutions within each
residual block of proposed feature extractor. We use 1D convolution from two axes (X× 1,
1×Y) to convolve the feature maps. First, we convolve the features using single filter each
channel (depthwise) by a kernel size of (3× 1). Then a kernel of size (1× 3) is applied
to map the number of feature channels. Same approach is applied with skip connection
layer to transform the feature maps. Block structures of feature extractor with depthwise
convolution and CPD methods are shown in Figure 6.

Figure 6. (a) Convolutional block with our lightweight module (b) Convolutional block with
CPD method.

2.6. Adversarial-Based Domain Adaptation for Anchor-Free Detector

In practical applications, we need to apply the trained model (i.e., LogoNet) to a new
dataset (target dataset). The model always suffers performance degradation due to domain
shift because the distribution of the source dataset (training dataset) is different from that
of the target dataset (test dataset). To enhance the generalization of the model, we aim to
address model learning towards the distribution of target domain by aligning the output
feature maps of source and target domains as close to each other as possible. In order to
align the model between two different domains, we exploit the adversarial learning scheme
by adding a domain discriminator network in the training phase to detection framework.
The architecture of the LogoNet framework with the proposed domain adaptation training
scheme is shown in Figure 7, which consists of a feature extraction network and a detection
module. The detection module has three heads, heatmaps-head (for generating class-wise
heatmaps), offset-head (for identifying object locations), object-size head (for regressing
the size of objects). The anchor-free detector generates class-wise heatmaps corresponding
to each class using the output feature maps (mid-level output) of the feature extraction
network. The offset and size output maps are also generated separately to give complete
detection loss. Previously proposed adversarial learning-based schemes [24–27], which
have been introduced primarily for semantic segmentation tasks, make use of the final
class-wise output of the feature extraction network. Since anchor-free detectors train the
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network to recognize objects in terms of some keypoints, we observed that the use of
class-wise heatmaps leads to the loss of some important domain-specific information. It
is very important to select the most suitable output feature maps to align the domain
gap. In contrast to the previous methods, here we present a domain adaption-based
LogoNet network, in which we propose to use the mid-level outputs of feature extraction
network. The main advantage of using mid-level output is that it contains essential
domain-specific semantic and visual information and is helpful to employ adversarial
learning well. Using the design advantages of anchor-free detectors, we assume LogoNet
generates mid-level output feature maps for images from the source domain and the target
domain. The mid-level output maps of the source images rendered to different detection
heads (heatmap-head, offset-head, size-head) to train the network for the respective tasks.
Whereas, the mid-level output feature maps of the target images is used to calculate the
adversarial loss to match the data distribution of source and target domains. Therefore, we
do not need object-level annotations for the target images.

Figure 7. Network architecture of LogoNet with domain adaptation setting.

We assume that there are N images with corresponding object-level annotations in
the source domain S with corresponding object-level annotations {xs

i ∈ XS, ys
i ∈ YS}

where XS is a set of input images in the source space, YS denotes the set of corresponding
labels. Whereas, M is the number of images in the target domain T without object-level
annotations {xt

i ∈ XT}, where XT denotes the set of images in the target domain. To employ
the adversarial learning technique, we add a domain discriminator network with the
LogoNet framework that introduces the adversarial loss (Ladv) and classification loss (Lcls).
The domain discriminator network consists of 5 convolution layers with a kernel size
of 4 × 4 and a stride of size 2, each layer is coupled with a leaky-ReLU activation layer
with a fixed negative slope of 0.2, except for the last convolution layer. The number of
channels is [64, 128, 156, 512, 1] for each layer, respectively. Finally, a classification layer
gives classification outputs. The detailed structure and operations of the discriminator
network is described in Table 2.
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Table 2. The design of the discriminator network.

Layer Output Operation, Kernel Size,
Name Dimension output Channels, Stride

Layer1 128 × 128 Conv, 4 × 4, 64, 2
Layer2 64 × 64 Conv, 4 × 4, 128, 2
Layer3 32 × 32 Conv, 4 × 4, 256, 2
Layer4 16 × 16 Conv, 4 × 4, 512, 2
Layer5 4 × 4 Conv, 4 × 4, 1, 2

We provide these mid-level outputs of the source image (Mid_XS) and target image
(Mid_XT) as inputs to the discriminator network to classify the inputs form source domain
(S) or target domain (T). The classification loss (Lcls) is calculated to update the network
weights of the discriminator network to increase the ability to distinguish the inputs into
the respective domains. We assign source images (source-domain) with domain label ‘0’
and target images (target-domain) with domain label ‘1’.

The binary classification loss Lcls (training objective of domain discriminator network)
can be defined as:

Lcls =
1
|XS|

|Xs |

∑
i=1

Lcls(Mid_Xi
S, 0) +

1
|XT |

|XT |

∑
i=1

Lcls(Mid_Xi
T , 1) (13)

where Mid_Xi
s and Mid_Xi

T are the mid-level features of the ith source training sample
and the ith target training sample, respectively. |Xs| and |XT | are sample numbers of
source domain and target domain, respectively. Meanwhile, to bring the target domain (T)
and source domain (S) distributions closer, we provide the mid-level output feature maps
(Mid_XT) of the target image into the discriminator network and compute the adversarial
loss (Ladv) by giving an inverted domain label, i.e., ‘0’ instead of ‘1’). The adversarial binary
classification loss Ladv can be defined as:

Ladv =
1
|XT |

|XT |

∑
i=1

Lcls(Mid_Xi
T , 0) (14)

Adversarial loss is propagated to update the gradients of LogoNet framework, the ob-
jective loss function of the network is given in the following equation.

Ldet = Lk + λsizeLs + λo f f Lo f f + λadvLadv (15)

λadv is loss weight. We use a value of 0.001 in our experiments. This approach encourages
the network to produce similar output feature maps distributions from target (T) to the
source domain (S) by mocking the discriminator network. The task-specific detection
network and the domain discriminator network are jointly trained in an end-to-end manner.
During inference we do not need the discriminator network and the normal detection
pipeline is used to perform the detection task so we drop the discriminator network.

3. Experiments
3.1. Implementation

To evaluate the performance, we compare our proposed method with various methods
such as CenterNet [14] (baseline), Faster R-CNN [5] and SSD [7]. The performance of the
methods is measured in terms of mAP and detection time. For the CenterNet framework,
training was conducted using a batch size of 2 for 140 epochs. We use HourglassNet-104 as
feature extractor backbone pretrained on COCO dataset from ExtremeNet [18]. The initial
learning rate is 1.25 ×10−4 which decreases by a multiplication of 0.1 at 90 and 120 epochs.
The Adam optimizer is used for network optimization. A spatial resolution 512 × 512
is used for the input image. Faster R-CNN detector is trained with ResNet-50 backbone.
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This model is trained for 50 epochs with batch size 4 and learning rate 0.001. SSD network
is trained using VGG16 backbone with a batch size of 4 and initial learning rate of 0.001.
The training is performed for 16,000 iterations. The experimental results are shown in
percentage (%) of mAP value over all logo classes using Intersection of Union (IoU) value
0.5. Average inference time is given for one image. The inference time is calculated on our
machine with Intel Core i7-8700 CPU, GeForce GTX 980 Ti GPU, Pytorch 0.4.1, CUDA 9.0
and CUDNN 7.1.

3.2. Evaluation on FlickrLogos-32 Dataset

Logo images of FlickrLogos-32 [34] dataset were used for training. FlickrLogos-32
dataset has 32 logo classes. Each class contains 70 images for experiments. For each class,
we consider 30 images for training, 10 images for validation and 30 images for test. There
were a total of 1602 logo objects in 960 test images for different categories.

Table 3 shows the details of ablation study on FlickrLogo-32 dataset. According to
the results, the mAP accuracy is slightly improved when we aggregate feature maps at
different scales (Proposed Method 1 ) or when we employ spatial attention module with
baseline network (Proposed Method 2). When we implement spatial attention module
with layer-aggregated feature maps together, detection accuracy improves effectively
(LogoNet—Proposed Method 3). The calculation of the channel-wise response further
improves the detection accuracy (Dual-Attention LogoNet— Proposed Method 4). We
observe effectiveness of our methods in two steps: (i) the aggregation of feature maps at
different scale, improves the global feature representation, (ii) combining attention modules
with network generates a balanced and robust feature map with significant visual and
semantic detail.

Table 3. Ablation Experiments on FlickrLogos-32 Dataset.

Methods Layer- Spatial Channel mAPAggregation Attention Attention

CenterNet (baseline) 80.7
Proposed Method 1 X 81.0
Proposed Method 2 X 80.8
Proposed Method 3 X X 82.2
Proposed Method 4 X X X 82.5

Table 4 reports mAP and detection time using different detectors on Flickr32 dataset.
These methods are: Faster R-CNN with ResNet50, SSD with VGG16, CenterNet with
HourglassNet, CenterNet with SENet HourglassNet [8], CenterNet with ECANet Hour-
glassNet [20], CenterNet: Channel attention module [22] added with our proposed spatial
attention module and backbone network, LogoNet, Dual-Attention LogoNet.

SSD achieves 76.6% accuracy in mAP with the faster detection time of 0.0531 s. Faster
R-CNN has 81.0% accuracy with a 0.1115 s inference time. CenterNet with HourGlass
achieves 80.7% accuracy and uses 0.1083 s detection time. There is a slight drop in the
performance of CenterNet-HourGlass with SENet and ECANet block. These approaches
have 80.2% and 79.0% accuracy with 0.1354 s and 0.1260 s detection time, respectively.
Channel attention module [22] employed with our proposed spatial attention module
and backbone network improves the accuracy by around 0.7% In comparison to baseline
method. Whereas, detection time taken is relatively higher (0.2010 s per image) for this
approach. LogoNet shows a significant improvement in performance over the conventional
methods with a considerable detection time. LogoNet has 82.2% mAP accuracy with
0.1145 s inference time. Meanwhile, our proposed Dual-Attention LogoNet yields an
improved performance with the 82.5% mAP and 0.1166 s detection time. The logo detection
performance is depicted in Figure 8.
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Figure 8. Visualization of multiple logos detection and effectiveness of our approaches.

Table 4. Performance Evaluation of State-of-the-Art Methods on the FlickrLogos-32 Dataset.

Methods mAP Detection Time

SSD [4] 76.7 0.0531 s
Faster-RCNN [2] 81.0 0.1115 s

CenterNet (baseline) [13] 80.7 0.1083 s
CenterNet (SENet [5]) 80.2 0.1354 s

CenterNet (ECANet [15]) 79.0 0.1260 s
CenterNet (CBAM [16]) 81.4 0.2010 s

LogoNet 82.2 0.1145 s
Dual-Attention LogoNet 82.5 0.1166 s

Figure 9 shows the visualization of the last layer’s feature maps of methods—CenterNet,
CenterNet: ECANet, LogoNet, Dual-Attention LogoNet. These binary output images
illustrate response of various attention-weight methods. Our spatial attention and dual-
attention-based methods emphasize on logo objects and reduce the noise.

Figure 9. Visualizing different attention specific response for logo detection.
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3.3. Evaluation on Logos-32plus

In [35] Logos-32plus is presented as an extended version of the FlickrLogos-32 dataset.
It has 7830 training images for 32 logo classes (similar to FlickrLogos-32). To perform the
experiments, we randomly split training images of each category into 90% as training
and 10% as validation. Whereas, the official test set of FlickrLogos-32 is used. The author
carefully created this dataset to include a comprehensive data distribution of real world
logo images. Since the Logos-32plus dataset is 6 times larger than the FlickrLogos-32
dataset, performance on FlickrLogos-32 test set is notably increased. Results show that
various characteristics such as dataset size, style and data distribution have a large impact
on performance.

Table 5 gives the mAP and detection times for CenterNet and LogoNet. CenterNet
achieves 88% mAP accuracy because the dataset has a significant data distribution for
model learning. LogoNet delivers improved performance and has 88.3% mAP accuracy.

Table 5. Performance Evaluation of State-of-the-Art Detection Methods on Logos-32Plus Dataset.

Methods mAP Detection Time

CenterNet 88.0 0.1093 s
LogoNet 88.3 0.1156 s

3.4. Evaluation with Lightweight CNNs Method

We evaluated the proposed lightweight CNNs methods using the FlickrLogos-32
dataset. Detection accuracy in mAP, number of parameters in millions and image detection
time in seconds are given in Table 6. For the Lightweight architectures, training has been
conducted with a batch size of 4 for 140 epochs. The rest of the parameter setting is
used as before. Due to the limited data, we initialize the network weights on PASCAL-
VOC non-logo object detection images [36]. We observed that when we apply depthwise
and pointwise convolution operation there is a drastic reduction in network parameters
compared to the standard convolution operation. The reduction in parameters leads
to faster computation speed but slightly declines detection accuracy. For comparison,
we implemented CPD and Lightweight CNNs modules with CenterNet, LogoNet and
Dual-Attention LogoNet.

CenterNet architecture based on CPD method (CenterNet-CPD) achieves 77.9% detec-
tion accuracy while the number of parameters is 72.42 million and detection time is 0.1145 s.
LogoNet-CPD network achieves a greater accuracy 78.8% with detection time of 0.1073 s.
However, Dual-Attention LogoNet network achieves 78.9% accuracy with a 0.1145 s detec-
tion time. LogoNet-CPD and Dual-Attention LogoNet-CPD use around 73.19 million com-
putation parameters. With our lightweight modules, CenterNet (CenterNet-Lightweight)
achieves 79.0% accuracy with 0.0833 s detection time. This architecture uses 27.94 million
parameters. Dual-Attention LogoNet-Lightweight achieves 79.5% accuracy with a detec-
tion time of 0.0979 s. The proposed LogoNet-Lightweight network achieves a significantly
higher accuracy rate of 79.7%, which is slightly less than the baseline (CenterNet) and Lo-
goNet methods (80.7% and 82.2%). Whereas, LogoNet-Lightweight takes a detection time
of 0.0885 s per image, which is about 20% faster than the baseline method. The LogoNet-
Lightweight and Dual-Attention LogoNet architectures use only 28.73 million parameters.
The parameters used are only about 15% of the parameters used in the normal baseline
method (CenterNet). We found that LogoNet-Lighweight, which incorporates only spatial
attention module, achieves a better perfromance in terms of detection time and accuracy.
This approach leads to faster training and convergence of the network. Since depthwise
convolution operations are used in the lightweight modules, channel-wise attention is not
very effective. A model with low parameters and considerable accuracy rate is preferable
for edge computing devices. We believe our lightweight algorithm is more suitable to run
on low-spec machines or for edge computing than conventional algorithms.
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Table 6. Performance Evaluation of the Lightweight Methods on FlickrLogos-32 Dataset.

Detectors Lightweight mAP Parameters Detection TimeMethods

No 80.7 191.26 M 0.1093 s
CenterNet [14] CPD [33] 77.9 72.42 M 0.1145 s

Propsoed Method 79.0 27.94 M 0.0833 s

No 82.2 192.05 M 0.1145 s
LogoNet [15] CPD [33] 78.8 73.19 M 0.1073 s

Propsoed Method 79.7 28.73 M 0.0885 s

Dual-Attention No 82.5 192.05 M 0.1166 s
LogoNet CPD [33] 78.9 73.20 M 0.1145 s

Proposed Method 79.5 28.73 M 0.0979 s

3.5. Evaluation with Adversarial-Based Domain Adaptation

To implement adversarial domain adaptation approach, we utilize the FlickrLogos-32
dataset [34] as source domain and Logos-32plus dataset [35] as target domain. The training
images of target domain (i.e., Logos-32plus) are collected to represent a comprehensive real-
world data presentation. These target domain images (Logos-32plus dataset) are captured
on different platforms and in different sizes, shape, illumination and viewpoints, whereas
most of the trainnig images in the source domain (i.e., FlickrLogos-32) dataset are captured
on plane and cylindrical surfaces and in selected viewpoints. The data distributions of
these two datasets are very different from each other. The task of detection becomes very
challenging when the model is trained on the source domain that has less comprehensive
data representation and tested to the target domain that does not have the same distribution
and style as source.

To perform the experiment under the domain-shift problem, we needed a test set with
different domain representations. We randomly selected 30 images for each class from the
target domain (Logos-32plus dataset) and created a new test set of 960 images, while the
training set is source domain (FlickrLogos-32 dataset). The remaining images of target
domain (Logos-32plus dataset) are used during the training. Note that in this experiment
only the source domain (FlickrLogos-32 dataset) is annotated, while the target domain
(Logos-32plus dataset) is not annotated. This is a case of domain shift (FlickrLogos-32 to
Logos-32plus, scene adaptation) because both datasets have training images with different
data distribution and styles. The details of the datasets are provided in Table 7. The target
domain has a total of 7830 images, of which 6870 are considered as training (unlabeled)
and 960 images are used as test set.

Table 7. Detail of training data setting.

Datasets Labeled Training Unlabeled Test
Images Target Images Images

FlickrLogos-32 960 - -
(Source dataset)

Logos-32plus - 6870 960
(Target dataset)

The training parameters setting is used as before. The initial learning rate for the
discriminant network is 0.0001 which is decreased by×0.1 at 90 and 120 epochs. The Adam
optimizer is used. During training, the same batch-sized images from the source and target
domains are used to train the model. In each epoch, only randomly selected 960 target
images out of 6870 images have used for the trainnig.

Table 8 shows the detection results of LogoNet: normal training, LogoNet: domain
adaptation using class-wise heatmaps, and LogoNet: domain adaptation using Mid-level
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feature maps (proposed approach). In our experiments, LogoNet trained in the normal set-
ting achieves 63.2 mAP accuracy. In [37], the authors proposed to use class-wise heatmaps
to adapt domain shift from synthetic to real images. In our case, we use class-wise heatmaps
to implement adversarial domain adaptation. The heatmaps based domain adaptation
achieves 59.6 mAP accuracy. According to the results, when heatmaps are used to align the
domains, the accuracy is dramatically lower than the direct transfer of LogoNet method.
This is for two reasons, first, class-wise heatmaps do not maintain important image level
information. Second, anchorfree detectors train the network to detect objects in terms of
keypoints, so this layer loses significant domain specific information. LogoNet with mid-
level domain adaptation shows an improvement in performance by achieving 64.5 mAP
accuracy. Our proposed method increases the performance by 1.3% mAP compared to the
direct transfer of the detection network.

Table 8. Effectiveness of the domain adaptation on Logos-32plus dataset.

Methods mAP

LogoNet [15] 63.2
(w/o domain adaptation)

LogoNet + Domain Adaptation 59.6
(Class-wise heatmaps)

LogoNet + Domain Adaptation 64.5
(Proposed method - Mid-level feature maps)

Table 9 reports the comparison results for domain adaptation-based methods. To com-
pare with other state-of-the-art methods, we train domain-adaptive Faster R-CNN [38]
using our datasets. This approach uses a gradient reversal layer [39] to train the gener-
ator (backbone network) and the discriminator network. The backbone network is the
fpn Resnet50 [30]. Scheck et al. [37] proposed to use entropy minimization loss [25] and
maximum square loss [27] for the detection task. We used their network with the given
parameter setting on our datasets. Domain adaptation using Faster R-CNN achieves
59.7 mAP accuracy for our dataset. Entropy minimization and maximum square loss-based
networks achieve 59.4 mAP and 59.6 mAP accuracy, respectively. Our proposed method
improves the detection performance and achieves a 64.5 mAP accuracy.

Table 9. Comparison with existing domain adaptation methods.

Methods mAP

Scheck et al. [37] 59.4
(Entropy Minimization Loss)

Scheck et al. [37] 59.6
(Maximum Square Loss)

Hsu et. al. [38] 59.7

Proposed method 64.5

4. Discussion

In this paper, we performed logo detection using attention based mechanisms with an
anchor-free detector for the logo datasets containing real-world images. The performance
of our approach is evaluated with anchorfree detector CenterNet and anchorbox based
detectors like SSD and Faster R-CNN. The experiments show that the CenterNet method
is robust and faster with an 80.7% mAP. We propose a feature extractor network with
spatial and channel attention modules to effectively capture information from complex
logo images to fuse visual and semantic features. Our proposed approaches, LogoNet
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and Dual-Attention LogoNet, provide significant detection capability with a considerable
detection time and achieve better performance with 82.2% and 82.5% mAP, respectively.
The proposed architecture can be learned to detect new sets of logo classes. Logo images
include diverse context, illumination, resolutions that make logo detection a challeng-
ing task. A robust feature extractor that can emphasize and discriminate various logo
regions would be more suitable. More attention-based methods can be used to generate
refined feature maps. A logo detector can be trained by considering all logo classes as a
single logo (in a class-agnostic way). In this case the logo detector will be able to detect
and classify the logo regions as a general logo class [1]. We also proposed lightweight
CNNs architecture to improve the real-time performance of network. We apply different
lightweight modules with the proposed backbone and compared the networks. According
to the experiments, LogoNet-Lightweight network achieves 79.7% accuracy, with a smaller
number of parameters and reduced detection time. The proposed methods improve the
focus on logos and detect logos more precisely than conventional algorithms. To bridge the
gap between different domains we exploit the adversarial-domain adaptation learning. We
propose a pragmatic way of dealing with the domain-shift problem using an anchorfree
object detector. We make use of mid-level output feature maps to align the domains and to
train a robust detector model. This approach can be easily be adapted to other anchorfree
detectors. Training in adversarial manner is a difficult task for detection we will consider
more approaches for better performance and stability.

5. Conclusions

We have proposed a Dual-Attention-based LogoNet Network, using spatial and chan-
nel attention modules. Our architecture refines output feature maps and improves the
performance with an accuracy gain of 1.8% in a considerable computation time. Further-
more, we propose a lightweight CNNs method with anchor-free detector. We also propose
an adversarial learning-based domain adaptation approach to align the detection network
between source and target domains. In future, we will discover more attention- and do-
main adaptation-based mechanisms including transformer [40] and lightweight compact
network for logo detection in real-time.

In this paper, we propose Dual-Attention LogoNet. The backbone architecture of the
proposed method includes a densely layer-aggregated hourglass-like network. Spatial and
channel attention modules are added to further refine the feature maps. The CenterNet
detention head is used [14].

Our key contributions are as follows:
(1) We propose an attention-based architecture called LogoNet, which includes a

backbone feature extraction framework that aggregates feature maps at different scales.
This framework efficiently extracts feature information from different scales and also
prevents loss of information during spatial resolution scaling.

(2) The proposed spatial attention module enhances attention to identify target objects.
This attention module refines the output feature maps. It serves as a tool to focus on the
logo regions.

A preliminary version of this work was presented as a five-page conference paper at
IEEE International Conference on Consumer Electronics-2021 [15]. As an extension, here,
we introduce a dual attention-based method by employing a channel attention module
along with the spatial attention module, a lightweight CNN architecture, and a domain
optimization-based approach. Our new contributions are as follows.

(3) The channel attention module is combined with the new proposed architecture in
a different and effective manner to make it more efficient.

(4) We propose a lightweight CNNs architecture with a reduced number of network
parameters and computation complexity. The architecture can boost the run-time associated
with the inference of network while maintaining the performance.

(5) We propose an adversarial learning-based domain adaptation approach to gener-
alize the network from source to target domain. We propose to use the mid-level output
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feature maps of the feature extraction network instead of using class-wise heatmaps, which
is commonly used in most of the previously proposed domain adaptation based methods.
To the best of our knowledge, this the first domain discriminator network-based adversarial
learning scheme employed with an anchor-free detector.
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