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Abstract: Theoretical and experimental studies are presented to characterize the anisotropic plastic
response under torsion loading of two nominally identical aluminum Al6061-T6 extruded round
bars. Theoretical models are developed using isotropic (Von Mises 1913) and anisotropic (Barlat 1991)
yield criteria, along with isotropic strain hardening formulae, to model post-yield behavior under
simple torsion loading. For the case of simple shear loading, incremental plasticity theory is used to
determine the theoretical elastic, plastic, and total shear strains. A set of experiments are performed
to calibrate Barlat’s 1991 yield function. Several specimens are extracted at different orientations
to the longitudinal direction of each round Al6061-T6 bar and tested under uniaxial tension and
simple torsion to optimally determine all anisotropic (Barlat 1991) yield function parameters. During
loading, Stereo Digital Image Correlation (DIC) is used to quantify surface deformations for the
torsion experiments and a baseline tension specimen to identify and correct measurement anomalies.
Results show the isotropic yield model either underestimates or overestimates the experimental
shear strains for both extrusions. Conversely, results using the Barlat 1991 anisotropic yield criteria
are in excellent agreement with experimental measurements for both extrusions. The presence of
significant differences in the anisotropic parameters for nominally similar extrusions confirms that
plastic anisotropy is essential for the accurate prediction of mechanical behavior in longitudinally
extruded Al6061-T6 bars.

Keywords: incremental plastic theory; stereo digital image correlation; plastic anisotropy; isotropic
strain hardening; anisotropic yield criteria

1. Introduction

Aluminum alloys are used extensively in a wide range of industries, including auto-
mobile, aerospace, transportation, and civilian infrastructure, with the material undergoing
various processes such as rolling, extrusion, and forging to manufacture a component [1–3].
Depending upon the manufacturing operation, anisotropy can arise due to variations in
as-manufactured material [4–6]. To predict the response of such materials, well-known
isotropic yield functions based on the work of Tresca [7] and Von Mises [8] have been
modified by several researchers such as Hill [9–12], Hosford [13], Gotoh [14], Logan and
Hosford [15], Barlat and Lian [16], Barlat et al. [17–21], Karafillis and Boyce [22], Bron
and Besson [23], Cazacu et al. [24], Plunkett et al. [25] and Bai and Wierzbicki [26]. The
widely used quadratic yield criterion of Hill [9,10] includes six material parameters that
are obtained from uniaxial tensile and shear experiments for the three principal directions.
Later, Hill [11,12] developed a modified version of the earlier formulation (Hill [9,10]) to
model in-plane anisotropy for sheet metals. Barlat et al. [16–20] proposed different sets
of anisotropic yield functions for metals, such as Yld91, Yld2000-2d, Yld 2004-8d, and
Yld2004-18p. In particular, the Yld91 (Barlat [17]) criterion requires six parameters in
the yield function formulation to model the material anisotropy. Later, Barlat [20,21] ex-
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tended this approach to linear transformation-based anisotropic yield functions, including
Yld2004-8d and Yld2004-18p.

Fourmeau et al. [27] performed numerical simulations and experiments to investigate
the effect of plastic anisotropy on the mechanical behavior of a high-strength AA7075-T651
aluminum plate. In their work, the authors utilized the Yld2004-18p anisotropic yield
function (Barlat [21]) to show that the experimentally observed anisotropic behavior of
the plate could be modeled effectively. Tardif and Kyriakides [28] performed 3D finite
element simulations using both anisotropic (Yld2004-3D) and isotropic (Von Mises, [8], and
Hosford [13] models to predict the experimental material response of Al 6061-T6 sheet
metal undergoing large strains. In their work, the anisotropy of the Al 6061-T6 sheet
was characterized by a set of uniaxial and biaxial tests conducted in parallel using the
3D Yld2004-18P (Barlat [21]) yield criterion. The predicted material hardening behav-
ior was assessed by comparing both measured and simulation-based force-displacement
response, with results showing the Yld2004-18P model matches very well with the ex-
perimental result while the isotropic models have shown considerable deviation from
the measurements. Additional relevant aluminum material investigations, including
both experimental and numerical, can be found in the publications of Korkolis and Kyri-
akides [29–32], Korkolis et al. [33], Giagmouris et al. [34], Seidt and Gilat [35], Zhang [36],
Kuwabara et al. [37], Esmaeilpour et al. [38,39], Pahlevanpour et al. [40], Mooney et al. [41],
and Kondori [42], Rahmaan et al. [43] and their references.

Sutton et al. [44] presented an approach based on incremental plasticity theory to
determine the stresses and associated elastic and plastic strains from the total strain mea-
sured on a sample surface undergoing nominally plane stress or plane strain conditions.
Kim et al. [45] developed and applied the virtual fields method (VFM) to determine the
constitutive parameters by calculating the stress fields from the heterogeneous strain
fields, showing that the hardening law is important to predict the stress-strain relation-
ship. More background on this subject can be found in Pannier et.al. [46], Avril et al. [47],
Coppieters et al. [48], and Coppieters & Kuwabara [49].

In addition to yield criteria, several researchers including Ludwik [50], Hollomon [51],
Voce [52], Swift [53], and Ludwigson [54] have focused on the flow rule and work hard-
ening behavior for nominally isotropic materials, with limited studies [Stoughton and
Yoon [55], Rousselier et al. [56]] regarding the effect of anisotropy on strain hardening in
aluminum alloys.

The material extrusion process is important in different industries. The extrusion-
based layered deposition is among the most commonly used additive manufacturing
technologies due to its manufacturing flexibility, capability, low cost, and relative sim-
plicity. More on the material extrusion process and behavior of materials produced by
extrusion-based additive manufacturing can be found Feng et al. [57], Vyavahare et.al [58],
Jiang et al. [59], Parpala et al. [60], and Kaill et al. [61].

As many machine parts and other devices are subjected to torsion, it is very important
to learn the mechanical behavior of metal under torsion loading. There have been limited
studies investigating theoretical elastic-plastic strain considering anisotropic and isotropic
yielding behavior of extruded Al6061-T6 under torsion loading. In this study, the authors
employ incremental plasticity with the conjugate work principle to develop the theoretical
equations for predicting the elastic, plastic, and total strains due to the application of simple
torsional shear stress for both isotropic and anisotropic yield criteria, (e.g., Von Mises [8] and
Barlat Yld91 [17]), resulting in separate theoretical models (All six Barlat Yld91 anisotropic
yield criteria parameters for each of the Al6061-T6 materials are determined through
(1) uniaxial tension experiments on specimens extracted from different directions in each
extrusion, and (2) a simple torsion experiment for a longitudinal cylindrical specimen).
Section 2 presents both the theoretical foundations employed to model the anisotropic and
isotropic material behavior, along with the procedures employed for model parameter
identification using the models. Section 3 provides the material specifications while also
describing in detail the experimental considerations to determine anisotropc yield function
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and hardening parameters in this study. Assuming post-yield strain hardening is isotropic
in both models (An assumption that is consistent with those of most previous investigators.
Post-yielding hardening parameters are determined from tensile experiments on a specimen
extracted from the longitudinal direction in the extrusion). Section 4 provides additional
modeling details, along with the predicted stress-strain behavior of the extruded Al-6061
T6 tubular sample. In this section, details regarding the models and comparison of total
shear strain using the models and experimental measurements for both the Von Mises [8]
and Barlat Yld91 [17] are presented. Section 5 provides additional discussion of results. A
Summary and Conclusions for the work are given in Section 6.

2. Background Theory for Yield Functions and Plastic Strain

Since the initiation of macroscopic plastic deformation is associated with the concept
of material yielding, the ability to predict yield for a range of multi-axial stress states is an
essential component of the analysis and design processes. A general form for the yield
function can be written:

F
(
σij, εp) = σ

(
σij
)
− κ(εp) (1)

where σ
(
σij
)

represents the effective stress for a given stress state, σij, κ(εp) is the hardening
rule derived from uniaxial tension data and εp is the equivalent plastic strain. Employing
incremental plasticity, an increment of total strain (dεij) for any strain component at an
arbitrary point can be expressed as the sum of an elastic strain increment (dεe

ij ) and a

plastic strain increment
(

dε
p
ij

)
as follows:

dεij = dεe
ij + dε

p
ij (2)

The elastic strain increments in Equation (2) can be determined from Hooke’s law,
with the elastic response of the tubular specimen experimentally shown to be nominally
isotropic (The authors performed multiple tensile experiments for specimens extracted
longitudinally and along several radial directions).

dεe
ij =

1
E
{
(1 + υ)dσij − υdσkkδij

}
(3)

where dσij represents an increment of the stress tensor, E is the elastic modulus, υ is
Poisson’s ratio and δij is the Kronecker delta symbol.

For plastic deformation, increments in plastic work/dissipation (dWp) in terms
of increments in equivalent plastic (dεp) strain are employed with an effective stress
(σ) and thus connect general multi-axial states to uniaxial experimental results in the
following way;

dWp = σ·dεp = σij·dε
p
ij (4)

In Equations (1) and (4), the effective stress (σ = σBa) employed in the Barlat yield
function can be written;

σ = σBa = ( 1
2 )

1
m (3 J2 )

1
2 (
{[

2 cos
(

2θ+π
6

)]m
+
[
2 cos

(
2θ−3π

6

)]m

+
[
−2 cos

(
2θ+5π

6

)]m}
)

1
m

(5)

where m is an integer with m = 8 for FCC materials such as aluminum alloys. The parameter
θ can be expressed as (The parameter, θ, in Equation (5) is unrelated to rotations associated
with coordinate transformations in either plane stress or plane strain),

θ = cos−1

 J3

J
3
2
2


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where J2 and J3 are the second and third invariants of the deviatoric stress tensor, Sij. For
the Barlat Yld91 [17] anisotropic yield criterion, Sij, J2, and J3 are defined as follows:

Sij =

 Sx Sxy Szx
Sxy Sy Syz
Szx Syz Sz

 =

 C−B
3 H G
H A−C

3 F
G F B−A

3



Sij =

 cC−bB
3 hH gG

hH aA−cC
3 f F

gG f F bB−aA
3


J2 = ( f F)2+(gG)2+(hH)2

3

+ (aA−cC)2+(cC−bB)2+(bB−aA)2

54

J3 = (cC−bB)(aA−cC)(bB−aA)
54

+ f ghFGH − (cC−bB)( f F)2+(aA−cC)(gG)2+(bB−aA)(hH)2

6

In these equations, A = σy − σz, B = σz − σx, C = σx − σy, F = σyz, G = σzx,
H = σxy. The variables a, b, c, f, g, and h are material-specific yield function parameters.
For an isotropic material, a = b = c = d = f = g = 1, so that deviations of the parameters
from unity indicate the presence of anisotropy in the material response (The Barlat yield
function reduces to the Von Mises criterion if m = 2, with a = b = c = f = g = h = 1).

The Von Mises effective stress (σ = σvM) for materials undergoing isotropic plasticity
can be written.

σ = σvM =

√
3
2

SijSij (6)

Incremental equivalent plastic strain (dεp) is represented through an isotropic hard-
ening power-law rule for all cases and is modeled as shown in the following equation
(Sutton et al. [38]);

σ(εp) = σ0(
ε

ε0
)

1
n (7)

∂εp

∂σ
=

n( σ
σ0
)

n−1 − 1

E
(8)

where n is the hardening parameter, σ0 is the initial yield stress and ε0 is the corresponding strain.

3. Experimental Investigations and Parameters Determination
3.1. Material Properties and Microstructure

Two extruded, seamless, drawn Al6061-T6 round bars specimens, designated as
“mother bars” MB1 and MB2, were acquired from McMaster-Carr for this study. Each bar is
28.575 mm in external diameter and 1.83 m long. The reported mechanical properties and
chemical composition for the two specimens that were stated to have undergone nominally
similar manufacturing processes are shown in Table 1. To improve our understanding of
the large differences in ultimate and yield stresses shown in Table 1, the microstructures on
longitudinal-radial planes extracted for MB1 and MB2 are shown in Figure 1. Comparison
of the photographs in Figure 1 indicates that MB2 has undergone much higher elongation
and transverse compressive deformation during extrusion than MB1.

3.2. Anisotropic Yield Function and Hardening Parameters

To employ the Barlat Yld91 yield criterion for model predictions, both the elastic
material properties and all six parameters in Equation (5) must be determined. To do so,
the investigators performed a specific series of experiments, including tension and torsion
loading, on specimens extracted at different orientations with respect to the longitudinal
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direction (Y direction as shown in Figure 2) from MB1 and MB2 bars. Details regarding the
sample preparation and experimental set up are given in the Appendix A. Table 2 lists the
detailed experimental plan for all specimens to determine Barlat Yld91 parameters. The
experimental setup for the LTD samples is shown in the Appendix A.

Table 1. Mechanical properties and chemical composition of Al6061-T6 MB1 and MB2 tubes given by the manufacturer
(McMaster-Carr).

Rod Stock Mechanical Properties Chemical Composition

Alloy Dia
(mm)

Ultimate Strength
(MPa)

Yield Strength
(MPa) Elongation (%) Si Fe Cu Mn Mg Cr Zn Ti

Min Max Min Max Min Max

6061-T6 MB1 28.575 317.2 327.5 286.1 299.4 16.5 18 0.71 0.28 0.33 0.05 0.89 0.05 0.02 0.02

6061-T6 MB2 28.575 341.3 375.8 319.3 355.8 15.8 19.5 0.76 0.37 0.33 0.11 0.90 0.11 0.06 0.03

Figure 1. Microstructure of (a) Al6061-T6 MB1, and (b) Al6061-T6 MB2 longitudinally extruded round bar speci-
mens. Images obtained at 1000X using a Keyence microscope. The axes X and Y represent the radial and longitudinal
directions, respectively.

True stress vs. true strain data for the uniaxial tension experiments (LDD, RDD0,
RDD45, and RDD90 specimens) and shear stress vs. shear strain (γ) for the torsion ex-
periment (LDT specimen) for MB1 and MB2 specimens are shown in Figures 3 and 4,
respectively. The axial stress is calculated at each load level using the axial force and
cross-sectional area,

σxx =
Fx

A
(9)
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Table 2. Experimental Scheme for determining material properties of Al 6061-T6 MB1 and MB2 bar.

Trial No Mode Load Cell Strain Measurement
Approach Specimen Material

Al 6061-T6
Number of

Experiments

1 Tension MTS Extensometer LDD
MB1 2

MB2 2

2 Tension Psylotech micro- tensile tester VIC 3D with stereo
microscope

RDD0
MB1 2

MB2 2

RDD45
MB1 2

MB2 2

RDD90
MB1 2

MB2 2

3 Torsion
Electromechanical

TestResources frame with
torsion load cells

VIC 3D software with
standard cameras LDT

MB1 2

MB2 2

Figure 2. Coordinate system used throughout the developments. The X-axis is an arbitrarily selected
radial direction that approximately corresponds to the bisector between the pair of stereo-cameras
used for surface strain measurements (see Appendix A). The Y-axis is in the longitudinal direction.
The Z axis is another radial direction that is orthogonal to X and Y.

Figure 3. MB1 specimen results for (a) true stress vs. true strain measurements for tension loading of the LDD, RDD0,
RDD45, and RDD90 specimens and (b) shear stress vs. shear strain for torsion of LDT specimens.
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Figure 4. MB2 specimen results for (a) true stress vs. true strain measurements for tension loading of the LDD, RDD0,
RDD45, and RDD90 specimens and (b) shear stress vs. shear strain for torsion of LDT specimens.

In these equations, Fx is the axial force, A = t • w is the cross-sectional area of the
rectangular specimens, where t is the specimen thickness and w is the width of the gage
section,

For the torsion experiments, the shear stress in the thin-walled tubular specimen is
calculated for each applied torque using the torsion equation [62],

σxy =
T

rA
(10)

where, T is applied torque, r is generally the mean radius for thin-walled specimens and A
is the cross-sectional area given by A = π (ro

2 − ri
2), with outer tube radius, ro, and inner

tube radius, ri.
True stress (σ) and true strain (ε) are calculated using standard formulae:

σ = σeng
(
1 + εeng

)
(11)

ε = ln
(
1 + εeng

)
(12)

where σeng(σxx) and εeng are engineering stress and engineering strain, respectively (Since
strains are less than 0.05 in these studies, Lagrangian strain measurements obtained by
StereoDIC are excellent estimates for the engineering strains, and hence are used in Equa-
tions (11)and (12) to determine true strain and true stress).

The yield stresses in the three orthogonal orientations for MB1 and MB2 extrusions
can be determined using the yield stress data for the LDD, RDD0, and RDD90 experi-
ments. Three of the six anisotropic coefficients in Equation (5) are obtained from the three
uniaxial stresses at yielding in the directions of the orthotropic symmetry axes X, Y and
Z (Figures 2 and A1b) via a Newton-Raphson numerical procedure (The effective stress,
(σ) from the LDD measurements for each bar material u considered to be the “reference”
stress state, σo, and will be used to normalize results for both MB1 and MB2. As shown
in Figure 3a, σo = 287 Mpa for MB1 and Figure 4a, σo = 342 Mpa for MB2). The effective
stress, (σ), from the LDD measurements is considered to be the “reference” stress state.

The parameter, g, is obtained using (i) the estimated a, b, and c parameters, (ii) the
plane stress transformation equations for the Z-X plane with φ = −45o to relate the applied
axial stress in the rotated specimen to the stresses in the X-Y-Z coordinate system, and
(iii) Equation (5) to define an equation for g. Finally, to determine the parameters f and h,
the data in Figures 3b and 4b for the RDD specimens shows that there is circumferential
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symmetry in the longitudinally extruded rod material. Consistent with this observation,
the authors assume that the yield stress due to shear are equal in both the X-Y plane and
the Y-Z planes, so that f = h. Following this procedure, the six yield function parameters
for the two 28.6 mm diameters extruded Al 6061 rods were determined, and the results are
shown in Table 3 for both the MB1 and MB2 extruded aluminum bar materials.

Table 3. Anisotropic yield function parameters for longitudinally extruded Al6061-T6 rods.

6061-T6 Al Tube m a b c f g h

MB1 8 1.0000 1.1516 1.000 0.8750 1.0835 0.8750

MB2 8 1.0000 1.4452 1.000 1.2069 1.3059 1.2069

Figure 5 presents a comparison of the Barlat Yld91 anisotropic yield function predic-
tions and the Von Mises isotropic yield function predictions for the case of biaxial loading
in the X-Y plane.

Figure 5. Predicted normalized yield surfaces for biaxial stress states with Barlat and Von Mises yield
function for two Al 6061-T6 bar.

The procedure of obtaining Elastic and Power Law Hardening parameters is given in
the Appendix A. Table 4 presents the results of elastic and power-law hardening parameters
for both MB1 and MB2 bars.

Table 4. Elastic properties and power law hardening parameters.

Material Properties 6061-T6 Al Tube (MB1) 6061-T6 Al Tube (MB2)

Modulus of Elasticity 69 Gpa 69 Gpa

Poisson’s ratio 0.33 0.33

Hardening Parameter, n 13.51 16.47

4. Theoretical Prediction and Experiments for Simple Torsion Case

Once the elastic, hardening, and anisotropic yielding parameters are obtained for
the two extruded bar materials, the theoretical formulae given in Section 2 can be com-
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bined to predict the complete history of elastic-plastic deformations in thin-walled tubular
specimens that are subjected to simple torsional loading.

Figure 6 presents a flow chart for the numerical program that was developed and
implemented by the authors to predict the elastic and plastic strains. Every step, the
program is determined effective stress according to Barlat’s and von Mises’s yield function
presented in Equations (5) and (6) respectively and then compare it with reference yield
stress state. If the effective stress is below the yield stress, the model only determines
elastic shear strain (Equation (3)) which is equal to total shear strain. After yielding,
incremental plasticity is combined with the elastic equations to predict the total shear strain
(Equations (2)–(4) and (8)) for specimens subjected to known applied shear stresses. The
input load cell data is presented in Figure 7. The accuracy of the predictions is assessed
by direct comparison to the experimental measurements for the total shear strain on
the specimen surface during torsional loading using the same loading path as shown in
Figure 7. For that, two simple torsion experiments were conducted using MB1 and MB2
tubular specimens (Figure A1c).

Figure 6. Flow chart theoretical prediction of total shear strain using isotropic and anisotropic
yield criteria.
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Figure 7. Torque vs. time data acquired from electro-mechanical system load cell during simple
torsion experiments.

As discussed in Appendix A, all surface strain measurements were obtained using
a stereovision system with VIC-3D software employed to analyze the images. Baseline
studies using images at zero load showed the standard deviation in the measured surface
effective strain is ≤100 µε. During torsional loading, variability in the measured surface
strains increased with the signal-to-noise ratio ≥ 16 for all torsional loads, confirming that
the measured surface strains are within +/− 6% of the average value used for comparison
to the theoretical predictions.

Figures 8 and 9 present direct comparisons of the experimental shear stress vs. total
shear strain measurements to theoretical predictions using isotropic and anisotropic yield
criteria for MB1 and MB2 specimens, respectively. Inspection of the results shows that
the model using the Barlat anisotropic yield function is in very good agreement with
experimental measurements, with differences less than 5% for both specimens. Conversely,
predictions using a Von Mises isotropic yield function show deviations from the experi-
mental data ranging up to 10% and 25% for the MB1 and MB2 specimens, respectively.

Figure 8. Comparison of experimental and theoretical shear stress vs. total shear strain response for
Al6061-T6, MB1.
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Figure 9. Comparison of experimental and theoretical shear stress vs. total shear strain response for
Al6061-T6, MB2.

5. Discussion of Results

A cursory inspection of the data in Figures 3 and 4 indicates the longitudinal extrusion
process results in (a) circumferential symmetry in the material response for both MB1
and MB2 specimens, (b) a greater than 20% increase in tensile yield stress for the MB2
specimen, and (c) a reduction in shear yield stress by 12% for the MB2 specimens. The
measured increase in tensile yield stress is nominally consistent with manufacturer data
shown in Table 1. Interestingly, the radial tensile results for both MB1 and MB2 specimens
are quite similar.

The effect of anisotropy in the behavior of both longitudinally extruded Al6061-T6
cylindrical tubes is evident in the values of the six Yld61 parameters in Table 3 for both MB1
and MB2 bars. Several of the parameters show significant deviation of the six anisotropic
parameters from unity, where unity is the value required for isotropic yielding. Though
there are slight changes in elemental composition shown in Table 1, the most likely source
of the different behavior for MB1 and MB2 specimens is the longitudinal extrusion process
that resulted in significant changes in material microstructure that are shown in Figure 1.
As noted previously, the large difference in microstructure for MB1 and MB2 mother bars
(Figure 1) shows that the MB2 specimen has undergone much higher elongation and
transverse compression than MB1 during the “nominally similar” extrusion processes.
Such differences are consistent with the observed increase in work-hardening that are
shown in Table 4, as well as the higher yield stress and higher ultimate stresses shown in
Table 1 for MB2 relative to MB1.

As shown in Figure 5, the Barlat Yld91 [17] predictions for tensile loading in the radial
direction (X) and axial direction (Y) are in excellent agreement with the experimental data,
whereas the Von Mises yield criterion overpredicts the required yield stress for loading
in the radial direction by up to 25%. The source of the relatively strong yield anisotropy
is most evident in the Figures 3 and 4, where yield stresses in radial directions for the
MB2 material is ~25% lower than in the longitudinal direction (270 Mpa vs. 340 Mpa).
Furthermore, as shown in Figure 5, the effect of yield anisotropy is largest for σx/σy ≈ 0.5,
with the Barlat criteria predicting yielding for lower stresses (15% for MB1, 30% for MB2)
than the Von Mises criteria. Thus, the Barlat yield criteria provides substantially improved
accuracy in the prediction of yielding for those applications where such differences are
truly important.

As shown in Figures 8 and 9, prediction of the torsional specimen response during
loading shows that (a) isotropic yield models underestimate by ~10% the experimental
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results for MB1 and substantially over-estimate the response by ~25% for MB2. When
using the Barlat Yld91 anisotropic yield criterion, the deviation is less than 5% for both
specimens, again demonstrating the importance of anisotropy for accurate prediction
of material response in extruded material systems. This observation is consistent with
previous studies by Fourmeau et al. [27] and Tardif & Kyriakides [28].

Regarding the choice of yield criteria, the investigators selected the Barlat Yld9 [17]
anisotropic yield function with six material parameters (rather than the Yld2000-2d, Yld
2004-8d or Yld2004-18p [20,21] models) for two reasons. First, the diameter of two mother
bars was 28.575 mm, which was relatively small, limiting the ability to extract usable
specimens from different directions for parameter identification. Secondly, the longitudinal
extrusion process of the Al6061-T6 tubes develops similar material response in all circum-
ferential directions, limiting the number of required specimen orientations necessary for
anisotropic model calibration. Based on the results shown in Figures 8 and 9, the selection
of the Yld91 criterion reduced the complexity of the experimental program while also
providing excellent agreement with experimental observations.

6. Summary and Conclusions

In this study, the elastic, plastic, and total shear strain components are obtained
(a) theoretically through computational modeling using both the Von Mises and Barlat
Yld91 yield criteria with incremental plasticity, and (b) experimentally using StereoDIC for
extruded, thin-walled tubular specimens subjected to applied torsional loads. Results from
the experimental studies and analytic modeling are summarized as follows:

• Uniaxial tension and simple torsion experiments were performed on a series of spe-
cially machined tubular and dog-boned rectangular specimens extracted from two
longitudinally extruded Al6061-T6 cylindrical bars to obtain the required material
parameters for anisotropic yield criteria. Here, the yield function Yld91 developed by
Barlat et al., with six measured material parameters, is used to model the anisotropic
response of the extruded aluminum material and an isotropic yield criterion using the
Von Mises criteria is employed to predict an isotropic response.

• Since the extrusion process is circumferentially symmetric for our longitudinal extru-
sions, yield stresses in all radial directions are expected to be similar, a condition that
was confirmed from a series of radially oriented specimen experiments.

• Assuming isotropic strain hardening beyond yielding, the Von Mises isotropic and
Barlat Yld91 parameters yield functions with power-law hardening and incremental
theory of plasticity are used to develop and then implement a constitutive model
for elastic-plastic material behavior and predict the response of the extruded MB1
and MB2 material. These constitutive models are implemented in a relatively simple
numerical analysis platform to predict the stress-strain response for both materials
undergoing torsional loading.

• Theoretical results indicate that results obtained using the anisotropic yield function
are in excellent agreement with simple torsion experiments for both materials. Con-
versely, results obtained using an isotropic yield function underestimate, and then
over-estimate, the stress-strain response of the MB1 and MB2 specimens, respectively.

• Direct comparison of the experimental and theoretical results indicates that both
extruded Al6061-T6 materials are significantly anisotropic, with the longitudinal yield
stress deviating from the radial yield behavior in the extruded materials by over 20%.
Furthermore, for biaxial loading cases, the Barlat yield criteria provides improved
accuracy in the prediction of yielding for those applications where isotropic yielding
is not adequate.

• Predictions of the stress-strain response for the MB1 and MB2 tubular specimens using
the Barlat Yld91 anisotropic yield criterion are in excellent agreement with experimen-
tal measurements, with differences less than 5% for both specimens, clearly demon-
strating the importance of yielding anisotropy for accurate prediction of material
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response when undergoing complex manufacturing processes, including longitudinal
extrusion.

• Results also show that the nominally similar extrusion processes for mother bars MB1
and MB2 are not the same, with substantial differences in the stress-strain behavior
for the two materials being consistent with microstructural features that indicate the
MB2 extrusion process was more severe.
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Appendix A

Appendix A.1. Sample Design and Preparation

As shown in Figure A1b, thin-walled longitudinal direction tube (LDT) geometries
were designed to maintain nearly uniform stress in the test section while ensuring the ability
to yield the specimen without torsional buckling. Machining of the tubular specimens was
performed using the internal diameter as a reference to ensure minimum wall eccentricity
in the test section (measured eccentricity is +/−0.001 mm). The inner and outer diameters
of the sample were measured using (a) micro-computed tomography (XCT), and (b) a
T-gage (Telescoping gage, amazon.com). For torsion experiments, each LDT specimen is
144.78 mm long with a uniform central section that is 24.13 mm long with 1.27 mm wall
thickness; measurements show a variance of +/−0.001 mm for the wall thickness.

For uniaxial tension loading, Figure A1c,d show the two types of dog-bone speci-
mens that were manufactured. The dog bone specimens are prepared using advanced
pre-programmed software and code-controlled computerized numerical control (CNC)
machining techniques. The tensile axis of the 50 mm long Longitudinal Direction Dog-bone
(LDD) specimen shown in Figure A1c is oriented along the longitudinal direction of the
MB bars. The tensile axes of the Radial Direction Dog-bone (RDD) specimens shown in
Figure A1d are oriented radially at angles of 0◦, −45◦, and 90◦ with respect to the arbitrary
x-direction; the specimens are designated RDD0, RDD45 and RDD90, respectively. Due to
size limitations imposed by the extruded bar diameter, the RDD specimens are relatively
small, with a gage length of 10 mm.
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Figure A1. (a) Tension and tension torsion test specimens’ orientations as excised from both the longitudinal and radial
directions (LD and RD) of the mother bars MB1 and MB2. Geometries are (b) LDT, (c) LDD and (d) RDD0, RDD45, RDD90
for radial specimens. (All units in mm).

Appendix A.2. Experimental Setup

The setup for torsion test shown in Figure A2 consists of an electromechanical tension-
torsion test system and a stereovision imaging system. The stereovision system used to
obtain images of each specimen during mechanical loading consists of a pair of stereo
digital cameras, high-intensity, low-heat, white LED light sources, and a calibration grid.
A rigid crossbar is used to mount the cameras, and a tripod is employed to mount the
rigid bar. A suitable random pattern was adhered to the surface of the LDT samples by
initially coating surface with a thin coat of flat white paint and lightly over-spraying with
flat black paint to obtain high contrast speckles with an average size of 0.250 mm. A
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dedicated computer with StereoDIC image processing software VIC-Snap and VIC-3D [63]
was used to acquire synchronized images and perform image analysis to measure full-field
strains. Calibration of the stereovision system was performed using standard patterns
(Kahn-Jetter et al. [64], Luo et al. [65], Sutton et al. [66], Correlated Solutions, Inc., Irmo,
SC, USA [63], with the authors adopting a modified methodology using a large angle
calibration procedure described previously (Sutton et al. [67], Yasmeen et al. [68–70]).
The mechanical loading system has tension/torsion capacities of 22 kN/300 N-m and is
configured so that each test specimen can be subjected to uniaxial force, torsional moment
or a combination of axial force and torsional moment in a proportional or non-proportional
manner using either load control or displacement control.

The test system for the miniature RDD specimens included a stereomicroscope for high
magnification image and a Psylotech micro-tensile test system (Psylotech Incorporated [71])
to apply tensile loading. Figure A3 presents the experimental setup. The Psylotech micro-
tensile test frame used in these studies is a flexible, computer-controlled system capable of
communicating with the stereo-microscope image acquisition system so that StereoDIC
can be performed on images that are synchronized with the applied load. The RDD
specimens also were patterned by applying a similar light coat of white paint, followed
by a micro-scale black pattern applied using an airbrush system. Average speckle size on
the RDD specimens is 0.013 mm. A specialized back-lit calibration pattern methodology is
used in to calibrate the stereo-microscope imaging system. Both the RDD imaging system
components (e.g., cameras, lenses, lighting) and the VIC-3D image analysis parameters
(e.g., subset size, subset spacing) are summarized in Table A1.

The LDD specimens are uniaxially loaded in a table-top MTS system without stereo
imaging for strain measurement. Instead, an MTS extensometer is attached to the gage
section for axial strain measurements.

Figure A2. Experimental setup for simple torsion loading of LDT specimens using Stereovision system and electromechani-
cal tension-torsion load cell.
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Figure A3. Experimental setup (a) for uniaxial tensile loading of RDD0, RDD45, RDD90 specimens using microscope
Stereovision and micro-tensile test system (b) close view of micro-tensile test grip.

Table A1. Cameras and system parameters for VIC-3D and VIC-3D stereo-microscope.

Parameter # Vic-3D Vic-3D Stereo-Microscope

Cameras and Lenses
Grasshopper3 GS3-U3-91S6M (8 bits,

3376 × 2704)
Schneider XENOPLAN 1.9/35-0511

5 MP CMOS PointGrey camera (2448 × 2048)

Lighting White LED Lighting LEO with a linear polarizing film

Calibration 14 × 10 dot grid, 5 mm dot size (H95-00-03),
70 stereo calibration image pairs

15 × 15 dot grid, 0.28 mm dot size, 70 stereo
calibration image pairs

Lens distortion 1st order radial distortion correction 10 stereo distortion image pairs

Subset size 29 × 29 pixels2 35 × 35 pixels2

Step size 9 pixels 11 pixels

Filter type Center-weighted Gaussian filter

Shape function Affine

Strain filter size 5 × 5

Strain measurement Lagrangian large strain tensor definition for all strain components

Average speckle size 0.25 mm 0.013 mm

Appendix A.3. Elastic Modulus, Poisson’s Ratio and Hardening Parameter for Extruded Rods

The modulus of elasticity (E) and Poisson’s ratio (υ) were determined using measure-
ments obtained during the uniaxial tension experiments on the RDD0 specimens using the
standard equations

E =
σxx

εxx
(A1)

υ = −
εyy

εxx
(A2)

where the stresses and strains are measured within the proportional limit. The hardening
parameters for both MB1 and MB2 specimens are determined from the true stress vs. true
strain data shown in Figure A4 through fitting of the logarithm of Equation (7) in the main
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body of the paper to the logarithms of true stress vs. logarithms of true strain data. The
elastic material properties and the power law hardening parameters are shown in Table 4
in the main body of the paper.

Figure A4. True stress vs. true strain from LDD tension experiment for MB1 and MB2 rod material.
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