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Abstract: The turbulent flow over the DrivAer fastback model is here investigated with an order-
adaptive discontinuous Galerkin (DG) method. The growing need of high-fidelity flow simulations
for the accurate determination of problems, e.g., vehicle aerodynamics, promoted research on models
and methods to improve the computational efficiency and to bring the practice of Scale Resolving
Simulations (SRS), like the large-eddy simulation (LES), to an industrial level. An appealing choice
for SRS is the Implicit LES (ILES) via a high-order DG method, where the favourable numerical
dissipation of the space discretization scheme plays directly the role of a subgrid-scale model.
Implicit time integration and the p-adaptive algorithm reduce the computational cost allowing a
high-fidelity description of the physical phenomenon with very coarse mesh and moderate number
of degrees of freedom. Two different models have been considered: (i) a simplified DrivAer fastback
model, without the rear-view mirrors and the wheels, and a smooth underbody; (ii) the DrivAer
fastback model, without rear-view mirrors and a smooth underbody. The predicted results have been
compared with experimental data and CFD reference results, showing a good agreement.

Keywords: car aerodynamics; DrivAer model; discontinuous Galerkin; Implicit LES; order-
adaptive method

1. Introduction

In the last decade, the Computational Fluid Dynamics (CFD) has received increasing
attention from the research community and automotive industry, as it is considered an
important design tool that can supplement the more expensive experiments in wind tunnels.
The accurate prediction of the complex massively separated turbulent flow around a car
is becoming of paramount importance to reduce noise level and improve fuel efficiency.
As observed in [1], the aerodynamic drag is the main energy-consumption source over
80 km/h. Moreover, the effect of the aerodynamic drag on energy losses is amplified in
electric vehicles, where losses are 4.4 times larger than in vehicles with internal combustion
engines [2]. The prediction of the lift and drag forces has been conventionally carried
out with the Reynolds Averaged Navier Stokes (RANS) approach, which allows one to
obtain reference values at a feasible computing cost for industry. However, the typical
unsteady features of the flow around bluff and blunt ended bodies such as hatchback, estate
and SUV type cars are difficult to predict with a RANS approach. Examples of reliable
drag prediction by RANS can be found in literature, but they seem case dependent [3–6]
and suggest avoiding RANS for an accurate aerodynamic development. To overcome
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these limitations, more accurate and costly turbulence approaches can be used, such as
hybrid RANS-LES [6] or LES [7] methods, whose widespread diffusion in industry has
been fostered by the ever increasing computational resources.

Realistic car models were not available for CFD simulations before 2012, and only
simplified geometries such as the Ahmed [8] or the SAE [9] bodies could be used for
validation and sensitivity studies. However, these models were often characterised by
few aerodynamic features representative of a car. To fill the gap between a very simple
bluff body and a fully detailed production car, TU Munich in collaboration with the Audi
AG and the BMW Group designed and made public the so-called DrivAer car model [10].
The model is available with three different rear end configurations: fastback, estate back,
and notchback. Each model is available with a smoothed and a detailed underbody,
with/without the side mirrors and wheels.

Heft et al. [11] carried out for the first time simulations with k-ω SST and k-ω SAS SST
turbulence models on the fastback geometry. These results predicted reasonably well the
averaged flow field around the vehicle, while some limitations appear for the detached re-
gions. These results strengthen the belief that Scale-Resolving Simulations (SRS) are needed
to correctly describe unsteady flow phenomena around vehicles. Guilmineau et al. [4] in
2014 carried out RANS simulations with an anisotropic two-equation explicit algebraic
Reynolds stress and DES models on the fastback geometry. DES guaranteed a higher
accuracy than RANS simulations in the prediction of drag and lift coefficients and repro-
duced correctly the instantaneous vortical structures. Ashton et al. [6] compared different
turbulence models for RANS simulation, e.g., k-ε, k-ω SST, Spalart–Allmaras, B-EVM
and EB-RSM, and DES-type models, on the fastback and estate geometry. RANS simula-
tions were not able to correctly predict force coefficients and pressure distribution around
the cars. In particular, DDES (delayed detached-eddy) and IDDES (improved delayed
detached-eddy) were also considered to investigate in depth the prediction capability of
the most representative hybrid methods. They showed clear advantages over RANS in the
prediction of the force coefficients and unsteady flow features. However, some limitations
are still evident to correctly capture the pressure distribution and vortical structures in the
rear end of the car. In 2018 Aljure et al. [12] investigated the potential of the wall modelled
large-eddy (WMLES) in simulating unsteady flow features over a realistic car model. WM-
LES proved to be able to predict unsteady flow features, but a detailed analyses on the
vortical structures around the car is not provided. Recently, Rüttgers et al. [13] adopted a
LES (Large Eddy Simulation) approach to predict the turbulent flow around the fastback
geometry, providing a detailed and systematic analysis of the unsteady flow features.

In the present study an efficient order-adaptive discontinuous Galerkin (DG) method [14]
for incompressible flows is used to perform the implicit LES [15] around the DrivAer fastback
model. High-order DG finite elements methods proved to be very well suited [16–25] for ILES,
where the unfiltered incompressible Navier–Stokes equations are solved, and the numerical
dissipation introduced by the discretizaton itself, e.g., by numerical fluxes and the viscous
stabilisation, plays the role of an explicit subgrid-scale (SGS) model that dissipates the smallest
scale eddies.

The DG solver is characterised by (i) the local adaptation of the polynomial degree
of the solution over the mesh, (ii) a multi-constraint domain decomposition algorithm to
ensure the computational balance over the processes, (iii) the adaptation of the degree of
exactness for quadrature rules and (iv) a p-MG multilevel preconditioner for the linear
solver on the implicit time integration. Moreover, the non-trivial task of the high-order
mesh generation is strongly simplified with the p-adaptive algorithm, as the local mesh
refinements related to a priori knowledge of the flow features are avoided.

In particular, the aim of this work is to assess the feasibility of the ILES approach
in the accurate simulation of the high-Reynolds turbulent flow around a simplified car
model with a moderate number of degrees of freedom (DoFs). Two different models have
been considered: (i) a simplified DrivAer fastback model, where the handles, the rear-view
mirrors and the wheels have been removed, the underbody has been smoothed, and the



Appl. Sci. 2021, 11, 10202 3 of 19

front radiator grid has been closed; (ii) the DrivAer fastback model, where the handles
and the rear-view mirrors were removed, and a smoothed underbody and a closed front
radiator grids were considered to reduce the complexity of the “original” DrivAer model.
The first model has been used to investigate the effect of the Reynolds number and of the
absence of the wheels on the aerodynamic performance. Two different Reynolds number
have been considered, ReL = 2.435× 106 and ReL = 4.87× 106, based on the model length
L and the freestream conditions (u∞ = 8 m/s and u∞ = 16 m/s, respectively). The second
model has been used to assess the predicting capability of the proposed ILES approach with
a moderate number of DoFs, comparing the results with experimental data and numerical
results available in literature.

The paper is organised as follows. The present computational methodology is pre-
sented in Sections 2.1 and 2.2, while Section 2.3 gives some information about the mesh
generation process. Sections 3.1 and 3.2 report the results for the two considered DrivAer
geometries. Finally, the conclusions are given in Section 4.

2. The Numerical Framework

In this section the space and time discretizations of the incompressible Navier–Stokes
equations and the main strategies used to speed-up the solution process are presented.

2.1. Discontinuous Galerkin Method

ILES simulations have been performed in this work, where the unfiltered Navier–
Stokes equations are solved. As reported in literature [16–24], DG methods are well suited
for ILES, due to their dissipation and dispersion properties. The numerical dissipation
introduced by the discretizaton itself, e.g., by numerical fluxes and the viscous stabilization,
mainly acts at the smallest under-resolved scales and resembles a high frequency filter that
mimics the role of a sub-grid-scale model. The ILES of several canonical and complex flows
have been performed with the present code and can be found in [14,26].

An efficient order-adaptive incompressible discontinuous Galerkin (DG) method [14]
has been used in this work. The incompressible DG solver relies on a modified formula-
tion for the inviscid interface numerical flux [27], computed as the exact solution of the
Riemann problem relaxed by an artificial compressibility perturbation that guarantees
the necessary coupling between the discrete incompressibility constraint and the rest of
the governing equations. The nonlinear system of differential algebraic equations arising
from the spatial discretization is advanced in time using a high-order time integration
scheme, i.e., the linearly-implicit Rosenbrock-type Runge–Kutta scheme, which overcomes
the severe timestep restriction proper of explicit methods. In particular, the three-stage,
order three ROS3P method [28] has been used. For a comprehensive discussion on the
benefits of a high-order time integration scheme adopted in this work, see [29–31].

The main features of the DG solver are (i) the local adaptation of the polynomial degree
of the solution over the mesh, (ii) a multi-constraint domain decomposition algorithm to
ensure the computational balance over the processes, (iii) the adaptation of the degree of
exactness for quadrature rules, and (iv) a p-MG multilevel preconditioner for the linear
solver included in the implicit time integration.

2.2. p-Adaptation Strategy

Polynomial functions are adopted in DG methods to represent the numerical solution
inside the elements of the mesh with no continuity requirements at the cells interfaces. As a
consequence, the order of accuracy can be varied locally by using a different degree of the
polynomial representation (see Figure 1) according to some error indicator. In literature this
approach is known as p-adaptation [32–36] and allows for the capture of the flow features
by changing locally the solution accuracy.

The time-averaged solution is used to compute the error estimator, as statistically
stationary unsteady flow problems are the objective of this work. The estimator combines
two contributions: (i) a measure of the solution jumps at grid cells interfaces [37,38]; (ii) the
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decay rate of the modal coefficients of the polynomial expansion [39]. Both indicators aim
at revealing a lack/excess of spatial accuracy in the numerical discretization and are here
applied to the pressure variable. For a comprehensive discussion on the error estimator
implementation see [14]. This strategy can be used in parallel only with a balanced re-
partitioning of the computational grid after each adaptation cycle, to overcome the natural
imbalance of floating point operations per domain induced by the adaptation. The flow
chart of the solution strategy is reported in Figure 2. The adaptation process is triggered by
a simple indicator, trg, defined as the norm of the relative increment, computed at each
time step, of the vector of the degrees of freedom of the time-averaged solution at run-time
U. l is the index denoting the l-th adaptive cycle, i denotes the i-th time-step, while j
denotes the j-th iteration between two adaptation cycles. The user-defined parameters for
the simulation are: the number of adaptation cycles nadp, the threshold tolerance for the
activation of the adaptation process toltrg and the minimum number of time steps between
two adaptation cyclesNadp. At each adaptation cycle, only 20% of elements with the higher
estimated error are marked for refinement, while the coarsening is disabled. This choice is
motivated by the use of coarse meshes for the simulations.

Figure 1. Comparison between a fixed (left) and variable (right) order approach to represent
the solution.

The p refinement allows also for the simplification of the mesh generation process,
as the typical a priori mesh refinement required capturing the known flow features, such as
wakes or detachments, is avoided. Moreover, in this work an approach to locally adapt the
degree of exactness of quadrature rules according to the mesh characteristics is adopted,
to avoid the over-integration of straight-sided elements, which appear in regions far from
the walls. Finally, a multilevel preconditioner is used to strongly reduce the memory
requirements and the operation count [26]. This preconditioner speeds up the linear
systems solution, here performed via the memory-saving matrix-free FGMRES method,
by solving coarse problems and moving along a given path, e.g., a V-cycle. These coarse
problems are defined as a sequence of reduced polynomial degree discretizations and use
GMRES as a smoother on each level. On each level, except the coarsest, the smoothers use
a cheap matrix-based preconditioner built by a simply neglecting the off-diagonal blocks
of the restricted implicit operator. All the details of this preconditioning technique and its
use in the order adaptive framework are presented in [14,26].

2.3. High-Order Mesh Generation

An accurate treatment of curved boundaries is mandatory for the application of finite
element methods such as DG methods to industrial CFD computations. In particular, high-
order coarse meshes are needed to fully exploit the potential of high-order DG methods in
delivering accurate solutions, while saving the overall number of cells needed to represent
the geometry.
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Simulation starts (i, j, l = 0)

Advance solution in time

Evalutate the time-averaged
solution at run-time U

Compute the relative
increment, trg, of U

Convergence is met?

Adapt the solution order

Balance the load among
partition via re-partitioning

L2 projection of the solution
on the new polynomial space

(j = 0 and l = l + 1)

i = i + 1
j = j + 1

Simulation ends

if j ≥ Nadp and
trg ≤ toltrg and

l ≤ nadp

if j < Nadp and
trg > toltrg and

l > nadp

yes

Figure 2. Flowchart of the p-adaptation strategy.

In this work, the generation of the curved high-order meshes, suitable for the DG
method, is performed using the GridPro [40] software. Different structured meshes with
high-order hexahedral elements are generated for each geometry. The software elevates
the linear meshes into 2nd- (quadratic edges), 3rd- (cubic edges) or 4th- (quartic edges)
order meshes. A cubic representation of the edges is adopted for the simulations presented
in the following as a good trade-off between accuracy and computing time.

The “original” DrivAer fastback model [11] has been slightly simplified, removing
the handles and the rear-view mirrors, smoothing the underbody and closing the front
radiator grid. Figure 3 shows the geometry of the car body used for the simulations in
Section 3.2, while Figures 4 and 5 show the corresponding high-order mesh. The mesh
consists of 406,304 cubic-edges hexahedral elements.

Figure 3. DrivAer car model adopted for the simulations presented in this work.
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Figure 4. DrivAer model—Mesh with 406 304 cubic-edges hexahedral elements.

Figure 5. DrivAer model—Detail of the mesh near the rear end of the body (left) and the front
wheel (right).

3. Results

In this section the results of the ILES for the following geometries are presented: (i) a
simplified DrivAer fastback model to asses the influence of the Reynolds number and the
absence of the wheels on the aerodynamic performance; (ii) the DrivAer fastback model to
assess the capability of the proposed solver to deliver an accurate solution with a moderate
number of DoFs. The accuracy of the results are assessed comparing the pressure and
aerodynamic coefficients and the flow fields with experimental data [11] and reference
CFD solutions [6,11,13,41]. The pressure coefficient is defined as

cP =
2(p− p∞)

ρU2
∞

, (1)

where p∞ and U∞ are the pressure and velocity at free stream conditions, ρ the constant
density and p the pressure. The drag and lift coefficients are defined as

cD =
2Fx

ρU2
∞ Are f

, (2)

cL =
2Fz

ρU2
∞ Are f

, (3)

where Fx and Fz are the forces acting on the vehicle along the x (streamwise) and z (normal
to the ground) directions, and Are f is the vehicle frontal area.
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The simulations are performed on a Linux cluster at the University of Bergamo (AMD
EPYC 7501 at 2.0 GHz) and on the MARCONI A-2 cluster at CINECA (Intel KNL at
1.4 GHz).

3.1. Flow around a Simplified DrivAer Model

The simplified DrivAer model is considered to estimate the effect of the Reynolds
number and of the absence of the wheels on the aerodynamics performance. Two different
Reynolds number have been considered, ReL = 4.87× 106 [6,11,13,41] (high-Reynolds
number case) and ReL = 2.435× 106 (low-Reynolds number case), based on the model
length L = 4.6 m and the freestream conditions (u∞ = 8 m/s and u∞ = 16 m/s for the
lower and higher Reynolds number, respectively).

The wheelhouses are closed to compare the predicted results with the complete
model investigated in Section 3.2 and the data available in literature. Experimental
data [11] are available only for ReL = 4.87× 106 with a freestream turbulence intensity
Tu∞ < 0.005. The simulations presented in the following have been performed considering
a laminar inlet.

The domain is a box of dimension 10.87L× 2.17L× 2.43L, where x is the streamwise di-
rection, y the spanwise direction and z the direction normal to the ground. The inlet section
is at 2.67L from the car. A no-slip boundary conditions is applied to the model, while the
ground moves at the same velocity as the free stream. According to [13], a symmetric half-
body configuration has been considered for the simulations, and the symmetry condition
is prescribed on the y = 0 symmetry plane. All the simulations are performed with a very
coarse mesh, consisting of 113,780 cubic-edges hexahedral elements. Figures 6 and 7 show
the mesh with details near the side pillars and the rear end of the model. The averaging
time is ∼ TC for the low-Reynolds number case and ∼ 3.2TC for the high-Reynolds number
case, where TC is a convective time computed according to the freestream velocity and
the length of the model. The time step is set equal to ∆t = f TC, where f = 1× 10−3.
The maximum polynomial degree of the solution is P2.

Figure 6. Simplified DrivAer model—Surface mesh of the DrivAer model, 113,780 cubic-edges
hexahedral elements.
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Figure 7. Simplified DrivAer model—Detail of the mesh near the side pillars (left) and the rear part
of the body (right).

Figure 8 shows the polynomial degree distribution Pn of the solution, where the final
number of DoFs per equation is 591,656 and 601,544 for the low- and high-Reynolds number
case, respectively. The front part of the model, the cowl top, the windshield, the A-pillar
and the rear part of the model are the regions with higher order elements. Figure 8 shows
only the order distribution on the model surface, but high order elements are present also
in the wake region. The polynomial degree distribution of the solution after the adaptation
process is very similar between the low- and high-Reynolds number cases.

Figure 8. Simplified DrivAer model—Polynomial degree distribution Pn of the solution in the
low-Reynolds number case far from the model (left) and near to the model (right).

Figure 9 shows the pressure coefficient, cP, distribution on the symmetry plane for
the body (left) and underbody (right) of the car for the low Reynolds number case. The
predicted results are in good agreement with the experimental results [11] and the LES
results [13] (all references are for the ReL = 4.87× 106 and full model case). After the
stagnation point on the front part of the model, flow accelerates and the pressure decreases.
The minimum value is lower in the simulation. A first separation appears at the junction
between the bonnet and the windshield (x/L ∼ 0.23), while a second one appears at the
cowl of the windshield (x/L ∼ 0.3). The pressure decreases as the flow accelerates over
the windshield. The flow passes on the roof, and the pressure slightly increases, while in
the experiment it is almost constant. The different behaviour of the cP on the roof could be
ascribed to the support that holds the model in the wind tunnel during the measurements.
The pressure rises more steeply on the rear window. The rear part of the model, after the
end of the rear window, shows widespread results. However, high-fidelity simulations,
i.e., reference LES and the proposed ILES simulations, share a similar trend.

On the underbody (see left side of Figure 9) the flow separates after the front grid of
the radiator and reattaches near the front wheels. The region between the wheelhouses
is characterized by an almost constant cP. The smooth underbody behaves like a diffuser,
generating a downforce effect.

Figure 10 show the cP distribution on the plane z = 0.06 for the low-Reynolds number
case. The cP distribution shows some discrepancies with experimental data, motivated by
the absence of the front rotating wheels, which alter the flowfield near the doors region.
The rear part seems to be similar to the experimental data, suggesting a lower influence
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of the rear wheels, but the flow separation at the end of the model is more pronounced.
Figures 11 and 12 show the pressure coefficient distributions for the high-Reynolds number
case at the same sections described above (y = 0 and z = 0.06). In addition, in this case
the cP distribution is in good agreement with references, i.e., the experimental data of
Heft et al. [11] and the LES results Rüttgers et al. [13].

An in depth comparison between low and high Reynolds results shows some differ-
ences. In particular, Figure 9 (left) shows at x/L ' 0.15 a pressure drop that corresponds
to a laminar separation bubble. This difference can be explained by the lower Reynolds
number, i.e., by the lower velocity approaching the car model. In fact, in the hood region,
characterised by an adverse pressure gradient, the lower velocity of the flow promotes
the onset of a laminar separation bubble. As expected, the predicted results for the higher
Reynolds number on the symmetry plane for the body (see left side of Figure 11) are very
similar to the reference data and demonstrate that the wheels do not influence significantly
the pressure distribution. On the contrary, the results for the underbody (see right side of
Figure 11) still show the detachment after the radiator grid and an underestimation of the
cP in the doors region. However, starting from the rear wheels, the cP distribution is almost
coincident with the experimental data, suggesting a lower influence of the rear wheels on
the predicted flow field.

Finally, on the plane z = 0.06 (see Figure 12) the discrepancy in the doors region is
still evident, confirming also in this case the importance of considering the frontal wheels
to preserve the simulation accuracy. After the rear wheel, the pressure increase is correctly
predicted, but as for the low-Reynolds case, the final separation is larger.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x/L

c p

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x/L

c p

Heft et al. Exp. [11]
Heft et al. RANS [11]
Rüttgers et al. LES (half) [13]
Rüttgers et al. LES (full) [13]
DG-Pn

Figure 9. Simplified DrivAer model—Time-averaged pressure coefficient distribution on the symme-
try plane for the body (left) and underbody (right) of the car, low-Reynolds number.
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x/L
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Heft et al. Exp. [11]
Heft et al. RANS [11]
DG-Pn

Figure 10. Simplified DrivAer model—Time-averaged pressure coefficient distribution on the plane
z = 0.06, low-Reynolds number.
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Figure 11. Simplified DrivAer model—Time-averaged pressure coefficient distribution on the sym-
metry plane for the body (left) and underbody (right) of the car, high-Reynolds number.
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x/L

c p

Heft et al. Exp. [11]
Heft et al. RANS [11]
DG-Pn

Figure 12. Simplified DrivAer model—Time-averaged pressure coefficient distribution on the plane
z = 0.06, high-Reynolds number

Figure 13 show the time-averaged pressure contours (top-left), the time-averaged pres-
sure coefficient distribution on the windshield (top-right), the front side window (bottom-
left) and the back window (bottom-right) for the low-Reynolds number case. The views
and the scales of the pressure coefficient contours are the same used by Heft et al. [11] to
ease the comparison.

It can be observed that the pressure coefficient distribution on the windshield and back
window are similar to the RANS simulations by Heft et al. [11], while some discrepancies
are evident in the zone near the pillars. The side window shows a more pronounced
low pressure region, probably due to a not correct prediciton of the A-pillar vortices. As
demonstrated in Section 3.2, this difference can be ascribed to the absence of the wheels.

The predicted drag and lift coefficients for the low- and high-Reynolds number cases
are summarised in Table 1 and compared with experimental and numerical results of
Heft et al. [11]. The negative value of cL confirms that the underbody acts like a diffuser.
The cD slightly changes increasing the Reynolds number, confirming the experimental
findings [11]. On the contrary, the cL shows a huge variation, which can be ascribed to
the different distribution of the pressure on the roof of the car. The cD is slightly over-
predicted and confirms the trend summarised in Table 2, where some numerical references,
e.g., Aljure et al. [12], Ashton et al. [6] and Guilmineau et al. [4], predict a drag coefficient
larger than 2.5.

3.2. Flow around the DrivAer Model

The turbulent flow around the DrivAer model is presented in this section for a
Reynolds number ReL = 4.87× 106 [6,11,13,41], based on the model length L = 4.6 m
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and the freestream conditions. The rear mirrors are not considered and the underbody
is smooth.

Figure 13. Simplified DrivAer model—Time-averaged pressure contours (top-left) and time-
averaged pressure coefficient distribution on the windscreen (top-right), the front side window
(bottom-left) and the back window (bottom-right), low-Reynolds number.

Table 1. Simplified DrivAer model—Predicted drag, cD, and downforce, cL, coefficients for low- and
high-Reynolds number case. Results are compared with reference data.

Method cD cL

Heft et al. [11] RANS k-ω SST 0.124 -
Experiment 0.125 -

DG− Pn (low Re) ILES 0.1561 −0.1352

DG− Pn (high Re) ILES 0.1605 −0.0753

The domain is a box of dimension 10.87L× 2.17L× 2.43L, where x is the streamwise
direction, y the spanwise direction and z the direction normal to the ground. The inlet
section is at 2.67L from the car.

A no-slip boundary condition is applied to the model, the wheels rotate with a pre-
scribed angular velocity and the ground moves at the same velocity of the free stream.
Computations with a symmetric half-body configuration are performed, and the symmetry
condition is prescribed to the y = 0 plane. All the simulations are performed with a
very coarse mesh, consisting of 406,304 cubic-edges hexahedral elements. Figures 4 and 5
show the computational domain and some details near the rear end and the front wheel.
Notice the small amount of elements used to discretize the car, especially if compared
to the references. In fact, Rüttgers et al. [13] carried out LES on the full and symmetric
half-body geometry with meshes of 24, 80 and 130 × 106 elements for the full geom-
etry and 65× 106 elements for the symmetric half-body geometry. Heft et al. [11] and
Frank et al. [41] carried out Reynolds-averaged Navier–Stokes (RANS) simulations, using
k-ω SST and k-ω SAS SST models on a mesh made of 19.4× 106 and 110× 106 elements,
respectively. Aljure et al. [12] carried out WMLES on the full geometry with meshes of 6.5,
53 and 79× 106 elements. Ashton et al. [6] performed RANS simulations with meshes of
18, 37 and 80× 106 elements, while meshes of 80 and 100× 106 elements were used for
DES-type simulations.
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Averaging time is ∼ TC, where TC is a convective time computed according to the
freestream velocity and the length of the model. The time step has been set to ∆t = f TC,
where f = 6× 10−4. The maximum polynomial degree of the solution is P2.

Figure 14 shows the polynomial degree distribution Pn of the solution on the surface
of the car model. The front part of the model, the windshield, the A-pillar, the wheels and
the rear part of the model require higher order elements. As expected, the comparison of
the polynomial degree distribution between the present and the simplified (see Figure 8)
DrivAer configuration shows that rotating wheels require high-order elements. The DoFs
per equation are 2,112,776.

Figure 14. DrivAer model—Polynomial degree distribution Pn of the solution from the lateral (left)
and the front (right) point of view.

The pressure coefficient distribution on the symmetry plane y = 0 shows the same
behaviour of the simplified DrivAer model (see Figure 9). Differences are evident for the
cP distribution on the plane z = 0.06 that intersects the wheels, shown in Figure 15. The
flow accelerates from the stagnation point and detaches near the front wheel. In the doors
region the pressure recovers slowly. After the second flow separation at the rear wheel,
there is a sudden pressure recovery in the rear part of the model. However, the simulation
predicts a separation bubble that reattaches just before the end of the model. The predicted
distribution is in good agreement with the WMLES simulations of Aljure et al. [12]. The
comparison between the predicted results presented in this section and in Section 3.1 (see
Figures 12 and 15) puts in evidence the importance of the wheels in the prediction of the
side flow field.

Figure 16 shows the time-averaged pressure coefficient contours on the body (top-left),
underbody (top-right), the windshield (middle-left), the front side window (middle-right)
and the back window (bottom). The views and the scales of the pressure coefficient
contours for the windshield, the front side window and the back window are the same
used by Heft et al. [11] to ease the comparison. The distribution on the top and bottom view
can be compared with the LES results of Rüttgers et al. [13], showing a good agreement.
A discrepancy can be observed in the front part of the bottom distribution, where the
predicted results show a separation that generates a sudden decrease of the pressure.
Moreover, near the A-pillar the low pressure region is less evident in the predicted results
due to the absence of the rear mirrors.

The cP contours on the windshield and on the back window are very close to the
reference. In the central zone of the back window there is a small low pressure region that
is not present in the reference RANS simulations, which suggests the presence of a small
detached zone at the junction between the roof and the back window. Moreover, in contrast
to the simulation without the wheel, the location of vortex in the A-pillar zone is now in
agreement with the references, even if the low pressure region is more widespread for the
absence of the rear mirror.
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Figure 15. DrivAer model—Time-averaged pressure coefficient distribution on the z = 0.06 plane.

Figure 16. DrivAer model—Time-averaged pressure coefficient distribution on the body (top-left),
the underbody (top-right), the windshield (middle-left), the front side window (middle-right)
and the back window (bottom).

Figures 17 and 18 show the time-averaged x-velocity contours on the slices x/L =
(0.173, 0.273, 0.423) and x/L = (0.88, 0.98, 1.10), respectively. In particular, the slice at
x/L = 0.173 cuts the wheel, showing the flow field inside the wheel house, which is
characterised by a negative x-velocity. In fact, the flow inside the wheel house follows the
direction prescribed by the wheel angular velocity. Moreover, near the ground contact,
two counter rotating vortices generated ahead of the wheel are observed. The slice at
x/L = 0.273 shows that vortical structures created by the wheel are convected downstream,
influencing the side flow field. Finally, the slice at x/L = 0.423 intersects the A-pillar and
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shows the A-pillar vortex that is convected downstream. The slices on the rear part of
the model are the same used by Ashton et al. [6]. The contours are in agreement with the
IDDES simulations. In particular, the slice at x/L = 0.88 shows the vortical structures
created by the rear wheel and the small separation on the back window. The slices at
x/L = 0.98 and x/L = 1.10 show the development of the wake. In the lower part there is
a region with positive x-velocity coming from the underbody that is not yes mixed with
the wake.

Figure 17. DrivAer model (top,left)—Time-averaged x-velocity contours at different slices: x/L =

0.173 (top,right), x/L = 0.273 (bottom,left), and x/L = 0.423 (bottom,right).

Figure 18. DrivAer model (top,left)—Time-averaged x-velocity contours at different slices: x/L =

0.88 (top,right), x/L = 0.98 (bottom,left), and x/L = 1.10 (bottom,right).

Figure 19 shows the details of the time-averaged velocity vectors behind the front
wheels, in the gap between the cowl top and the windshield and on the rear slant. In the
wheel region the horseshoe vortices are evident, which are created just ahead of the wheel
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and are convected downstream. The two counter rotating vortices can be observed also
in the LES simulations of Rüttgers et al. [13]. Moreover, the recirculating zone in the gap
between the cowl top and the windshield can be observed, while the recirculation on the
rear slant can be noticed only near the symmetry plane, as shown in Figure 19 (bottom-left),
where the discontinuity between the roof and the rear slant is higher. Moving towards the
side, the discontinuity between roof and the rear slant is not enough to promote separation,
as shown in Figure 19 (bottom-right).

Figure 19. DrivAer model—Details of the time-averaged velocity vectors behind the front wheels
(top,left), in the gap between the cowl top and the windshield (top,right) and on the rear
slant (bottom).

The predicted drag coefficient is cD = cD,wheel + cD,body = 0.2556, where cD,wheel = 0.0327
and cD,body = 0.2229 are the wheels and the body contributions to the drag, respectively.
The drag can be decomposed in the skin friction, cD,v = 0.02cD = 0.0048, and pressure,
cD,P = 0.98cD = 0.2505 contributions. The results are in good agreement with the refer-
ence data, as reported in Table 2. In particular, the predicted cD value overestimates the
experimental data, but this behaviour is confirmed also by most numerical references,
e.g., Aljure et al. [12], Ashton et al. [6] and Guilmineau et al. [4], which predict a drag
coefficient larger than 2.5. As expected, the presence of the wheels heavily influences the
aerodynamic performance of the car model. In fact, the down force predicted without the
wheel becomes a lift force. The predicted lift coefficient is cL = cL,wheel + cL,body = 0.0345,
where cL,wheel = −0.1560 and cL,body = 0.1912 are the wheels and the body contributions
to the lift, respectively. The lift can be decomposed again in the skin friction, cL,v = 0.0011,
and pressure, cL,P = 0.0334, contributions.

Figure 20 shows the A-pillar vortex (the streamlines are coloured with the x-component
velocity for the time-averaged solution), which develops close to the root of the A-pillar
and detaches before the roof. The vortex is convected downstream and merges with the
C-pillar vortex.

Figures 21 and 22 compare the time-averaged streamlines coloured with the time-
averaged x-component velocity contours obtained with the present and the simplified car
model. In both cases the flow accelerates from the stagnation point in the front bump area
and moves toward the bonnet and the wheel region. Along the sides of the bonnet, a high
pressure region (see Figure 16) redirects the flow downward. Moreover, the high pressure
zone on the windshield pushes the flow towards the A-pillar. The vortex created at the A-
pillar root is convected downstream and merges into the wake. The presence of the wheels
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modifies the side flow field: (i) vortices are created at the wheelhouses discontinuities and
convected downstream where they merge into the wake; (ii) the front-wheel influences the
A-pillar region, as it modifies the direction of the A-pillar vortex (the low pressure region
on the side window visible in Figure 13 disappears).

Table 2. DrivAer model—Drag, cD, and downforce, cL, coefficients in comparison with other
reference numerical results and experimental data. DoFs are the degrees of freedom, i.e., the unknown
solutions. All the reference solvers are based on cell-centered finite-volume methods, i.e., the DOFs
are equal to the mesh elements. DoFs of the simulations for half model are reported projected to the
full model simulation in order to have an easy comparison.

Method Elements DoFs cD cL

Rüttgers et al. [13]

LES 24× 106 (full) 24× 106 0.244 0.005
LES 80× 106 (full) 80× 106 0.234 0.005
LES 130× 106 (full) 130× 106 0.228 0.005
LES 55× 106 (half) 110× 106 0.274 0.005
LES 65× 106 (half) 130× 106 0.231 0.005

Aljure et al. [12]

WMLES 9× 105 (full) 9× 105 0.293 0.036
WMLES 6.5× 106 (full) 6.5× 106 0.253 0.057
WMLES 53× 106 (full) 53× 106 0.246 0.083
WMLES 79× 106 (full) 79× 106 0.251 0.069

Ashton et al. [6]

RANS SA 80× 106 (full) 80× 106 0.260 0.136
RANS k-ε 80× 106 (full) 80× 106 0.244 0.085

RANS k-ω SST 80× 106 (full) 80× 106 0.260 0.124
RANS k-ε B-EVM 80× 106 (full) 80× 106 0.243 0.116

RANS EB-ESM 80× 106 (full) 80× 106 0.248 0.075
SST IDDES 80× 106 (full) 80× 106 0.268 0.011
SST IDDES 100× 106 (full) 100× 106 0.261 0.024

Guilmineau et al. [4] RANS EARSM 38.6× 106 (full) 38.6× 106 0.254 0.079
SST DES 38.6× 106 (full) 38.6× 106 0.266 0.024

Heft et al. [11] RANS k-ω SST 19.8× 106 (full) 19.8× 106 0.241 -
Experiment - - 0.243 -

DG− Pn ILES 406 304 (half) 4.22× 106 0.255 0.034

Figure 20. DrivAer model—Details of the streamlines coloured with the x-component of the velocity
for the time-averaged solution near the rear-end (left) and the A-pillar (right) region.
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Figure 21. Simplified DrivAer model—Streamlines coloured with the x-component of the velocity
for the time-averaged solution from the front (left) and the rear (right) point of view.

Figure 22. DrivAer model—Streamlines coloured with the x-component of the velocity for the
time-averaged solution from the front (left) and the rear (right) point of view.

4. Conclusions

In the present study simulations have been performed around different geometries of
the DrivAer fastback model with an order-adaptive discontinuous Galerkin method.

This work has to be considered as a proof of concept for the use of the present DG
solver to capture the main features that characterise the flow around a car, using very
coarse high-order meshes and a moderate number of DoFs.

A simplified DrivAer model has been first considered, i.e., without rear mirrors and
wheels and with a smooth underbody, to assess the influence of the Reynolds number on
the aerodynamic performance. As also shown in the literature, the effect of the Reynolds
number (for Re > 2M) on drag coefficient was found to be negligible, while a considerable
difference is observed for the lift coefficient. Moreover, in this configuration the underbody
promotes a downforce effect.

The second model also takes into account of the rotating wheels. Our computations
have been compared with experimental data and CFD from the literature, showing a good
agreement. When including wheels in the model, downforce vanishes due to the different
flow evolution on the underbody and vortical structures flow on the car sides due to
the discontinuities of the wheelhouses. Moreover, the A-pillar vortex is modified, as the
orientation of its rotation axis is changed, generating a different pressure distribution on
the pillar itself and the side window.

Ongoing work is devoted to further numerically investigate the DrivAer configuration
to corroborate the findings of this paper and to contribute to the creation of a data-base for
validation and comparison purposes.
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